Titanocene pentasulfide

Last updated
Titanocene pentasulfide
Cp2TiS5imp.png
Names
Other names
titanocene pentasulfide
Identifiers
Properties
C10H10S5Ti
Molar mass 338.382
Appearancered solid
Structure
Dist. tetrahedral
Related compounds
Related compounds
Zirconocene pentasulfide
Titanocene dichloride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Titanocene pentasulfide is the organotitanium compound with the formula (C5H5)2TiS5, commonly abbreviated as Cp2TiS5. This metallocene exists as a bright red solid that is soluble in organic solvents. It is of academic interest as a precursor to unusual allotropes of elemental sulfur as well as some related inorganic rings.

Organotitanium compound any metaloorganic compound having a carbon–titanium bond

Organotitanium compounds in organometallic chemistry contain carbon-to-titanium chemical bonds. Organotitanium chemistry is the science of organotitanium compounds describing their physical properties, synthesis and reactions. They are reagents in organic chemistry and are involved in major industrial processes.

Metallocene class of chemical compounds

A metallocene is a compound typically consisting of two cyclopentadienyl anions (C
5
H
5
, abbreviated Cp) bound to a metal center (M) in the oxidation state II, with the resulting general formula (C5H5)2M. Closely related to the metallocenes are the metallocene derivatives, e.g. titanocene dichloride, vanadocene dichloride. Certain metallocenes and their derivatives exhibit catalytic properties, although metallocenes are rarely used industrially. Cationic group 4 metallocene derivatives related to [Cp2ZrCH3]+ catalyze olefin polymerization.

Allotropes of sulfur class of simple substances consisting only of sulfur atoms

The element sulfur exists as many allotropes. In terms of large number of allotropes, sulfur is second only to carbon. In addition to the allotropes, each allotrope often exists in polymorphs, delineated by Greek prefixes.

Contents

Preparation

Titanocene pentasulfide is prepared by treating Cp2TiCl2 with polysulfide salts: [1] It was first produced by the addition of elemental sulfur to titanocene dicarbonyl: [2]

Titanocene dichloride chemical compound

Titanocene dichloride is the organotitanium compound with the formula (η5-C5H5)2TiCl2, commonly abbreviated as Cp2TiCl2. This metallocene is a common reagent in organometallic and organic synthesis. It exists as a bright red solid that slowly hydrolyzes in air. Cp2TiCl2 does not adopt the typical "sandwich" structure like ferrocene due to the 4 ligands around the metal centre, but rather takes on a distorted tetrahedral shape. It shows antitumour activity and was the first non-platinum complex to undergo clinical trials as a chemotherapy drug.

Titanocene dicarbonyl chemical compound

Dicarbonylbis(cyclopentadienyl)titanium is the chemical compound with the formula (η5-C5H5)2Ti(CO)2, abbreviated Cp2Ti(CO)2. This maroon-coloured, air-sensitive species is soluble in aliphatic and aromatic solvents. It has been used for the deoxygenation of sulfoxides, reductive coupling of aromatic aldehydes and reduction of aldehydes.

(C5H5)2Ti(CO)2 + 58 S8 → (C5H5)2TiS5 + 2 CO

The complex is viewed as a pseudotetrahedral complex of Ti(IV). The Ti–S distances are 2.420 and 2.446  Å and the S–S bond distances are of a normal range, 2.051–2.059 Å. [3] The molecule exhibits a dynamic NMR spectrum owing to the chair–chair equilibrium of the TiS5 ring which equivalizes the Cp signals at high temperatures. [4]

Reactions

Cp2TiS5 reacts with sulfur and selenium chlorides, ExCl2, to afford titanocene dichloride and various S5+x and S5Sex rings. Illustrative is the synthesis of S7 from disulfur dichloride: [5]

Disulfur dichloride chemical compound

Disulfur dichloride is the chemical compound of sulfur and chlorine with the formula S2Cl2.

(C5H5)2TiS5 + S2Cl2 → (C5H5)2TiCl2 + S7

It also reacts with alkenes and ketenes to give heterocycles composed of Ti, C and S. With trialkylphosphines, the cycle dimerize into rings of various sizes, depending on the trialkylphosphine used. [6]

Alkene unsaturated chemical compound containing one carbon-to-carbon double bond

In organic chemistry, an alkene is an unsaturated hydrocarbon that contains at least one carbon–carbon double bond. The words alkene and olefin are often used interchangeably (see nomenclature section below). Acyclic alkenes, with only one double bond and no other functional groups, known as mono-enes, form a homologous series of hydrocarbons with the general formula CnH2n. Alkenes have two hydrogen atoms fewer than the corresponding alkane (with the same number of carbon atoms). The simplest alkene, ethylene (C2H4), with the International Union of Pure and Applied Chemistry (IUPAC) name ethene, is the organic compound produced on the largest scale industrially. Aromatic compounds are often drawn as cyclic alkenes, but their structure and properties are different and they are not considered to be alkenes.

Ketene function group

A ketene is an organic compound of the form R′R″C=C=O. Ketene also refers to the specific compound CH2=C=O, the simplest ketene molecule, which is occasionally called ethenone. Although they are highly useful, most ketenes are unstable, so they are not usually isolated during a reaction process.

Phosphine chemical compound

Phosphine (IUPAC name: phosphane) is the compound with the chemical formula PH3. It is a colorless, flammable, toxic gas and pnictogen hydride. Pure phosphine is odorless, but technical grade samples have a highly unpleasant odor like garlic or rotting fish, due to the presence of substituted phosphine and diphosphane (P2H4). With traces of P2H4 present, PH3 is spontaneously flammable in air (pyrophoric), burning with a luminous flame. Phosphines are also a group of organophosphorus compounds with the formula R3P (R = organic derivative). Organophosphines are important in catalysts where they complex to various metal ions; complexes derived from a chiral phosphine can catalyze reactions to give chiral, enantioenriched products.

Selected reactions of titanocene pentasulfide Selected reactions of titanocene pentasulfide.png
Selected reactions of titanocene pentasulfide

Related Research Articles

Titanium tetrachloride inorganic chemical compound

Titanium tetrachloride is the inorganic compound with the formula TiCl4. It is an important intermediate in the production of titanium metal and the pigment titanium dioxide. TiCl4 is a volatile liquid. Upon contact with humid air, it forms spectacular opaque clouds of titanium dioxide (TiO2) and hydrated hydrogen chloride. It is sometimes referred to as "tickle" or "tickle 4" due to the phonetic resemblance of its molecular formula (TiCl4) to the word.

Tebbes reagent chemical compound

The Tebbe reagent is the organometallic compound with the formula (C5H5)2TiCH2ClAl(CH3)2. It is used in the methylenation of carbonyl compounds, that is it converts organic compounds containing the R2C=O group into the related R2C=CH2 derivative. It is a red solid that is pyrophoric in the air, and thus is typically handled with air-free techniques. It was originally synthesized by Fred Tebbe at DuPont Central Research.

Vanadocene dichloride is an organometallic complex with formula (η5-C5H5)2VCl2 (commonly abbreviated as Cp2VCl2). It is a structural analogue of titanocene dichloride but with vanadium(IV) instead of titanium(IV). This compound has one unpaired electron, hence Cp2VCl2 is paramagnetic. Vanadocene dichloride is a suitable precursor for variety of bis(cyclopentadienyl)vanadium(IV) compounds.

Hapticity coordination of a ligand to a metal center via an uninterrupted and contiguous series of atoms.

Hapticity is the coordination of a ligand to a metal center via an uninterrupted and contiguous series of atoms. The hapticity of a ligand is described with the Greek letter η ('eta'). For example, η2 describes a ligand that coordinates through 2 contiguous atoms. In general the η-notation only applies when multiple atoms are coordinated. In addition, if the ligand coordinates through multiple atoms that are not contiguous then this is considered denticity, and the κ-notation is used once again. When naming complexes care should be taken not to confuse η with μ ('mu'), which relates to bridging ligands.

Niobocene dichloride is the organometallic compound with the formula (C5H5)2NbCl2, abbreviated Cp2NbCl2. This paramagnetic brown solid is a starting reagent for the synthesis of other organoniobium compounds. The compound adopts a pseudotetrahedral structure with two cyclopentadienyl and two chloride substituents attached to the metal. A variety of similar compounds are known, including Cp2TiCl2.

Methylcyclopentadiene chemical compound

Methylcyclopentadiene is any of three isomeric cyclic dialkenes with the formula C5MeH5 (Me = CH3). These isomers are the organic precursor to the methylcyclopentadienyl ligand (C5H4Me, often denoted as Cp′), commonly found in organometallic chemistry.

Zirconocene dichloride is an organozirconium compound composed of a zirconium central atom, with two cyclopentadienyl and two chloro ligands. It is a colourless diamagnetic solid that is somewhat stable in air.

<i>Ansa</i>-metallocene

An ansa-metallocene is a type of organometallic compound containing two cyclopentadienyl ligands that are linked by a bridging group such that both cyclopentadienyl groups are bound to the same metal. The link prevents rotation of the cyclopentadienyl ligand and often modifies the structure and reactivity of the metal center. Some ansa-metallocenes are active in Ziegler-Natta catalysis, although none are used commercially. The term ansa-metallocene was coined by Lüttringhaus and Kullick to describe alkylidene-bridged ferrocenes, which were developed in the 1950s.

In organometallic chemistry, bent metallocenes are a subset of metallocenes. In bent metallocenes, the ring systems coordinated to the metal are not parallel, but are tilted at an angle. A common example of a bent metallocene is Cp2TiCl2. Several reagents and much research is based on bent metallocenes.

Titanium ethoxide chemical compound

Titanium ethoxide is a chemical compound with the formula Ti4(OCH2CH3)16. It is a colorless liquid that is soluble in organic solvents but hydrolyzes readily. It is sold commercially as a colorless solution. Alkoxides of titanium(IV) and zirconium(IV) are used in organic synthesis and materials science. They adopt more complex structures than suggested by their empirical formulas.

Molybdocene dichloride is the organomolybdenum compound with the formula (η5-C5H5)2MoCl2 and IUPAC name dichlorobis(η5-cyclopentadienyl)molybdenum(IV), and is commonly abbreviated as Cp2MoCl2. It is a brownish-green air- and moisture-sensitive powder. In the research laboratory, it is used to prepare many derivatives.

Titanocene Y

Titanocene Y also known as bis[(p-methoxybenzyl)cyclopentadienyl]titanium(IV) dichloride or dichloridobis(η5- cyclopentadienyl)titanium is an organotitanium compound that has been investigated for use as an anticancer drug.

Bis(cyclopentadienyl)titanium(III) chloride

Bis(cyclopentadienyl)titanium(III) chloride, also known as the Nugent–RajanBabu reagent, is the organotitanium compound which exists as a dimer with the formula [(C5H5)2TiCl]2. It is an air sensitive green solid. The complex finds specialized use in synthetic organic chemistry as a single electron reductant.

Molybdocene dihydride

Molybdocene dihydride is the organomolybdenum compound with the formula (η5-C5H5)2MoH2. Commonly abbreviated as Cp2MoH2, it is a yellow air--sensitive solid that dissolves in some organic solvents.

(Cyclopentadienyl)titanium trichloride chemical compound

(Cyclopentadienyl)titanium trichloride is an organotitanium compound with the formula (C5H5)TiCl3. It is a moisture sensitive orange solid. The compound adopts a piano stool geometry.

References

  1. Shaver, Alan; Mccall, James M.; Marmolejo, Gabriela (1990). "Cyclometallapolysulfanes (and Selanes) of Bis(η5-Cyclopentadienyl) Titanium(IV), Zirconium(IV), Molybdenum(IV), and Tungsten(IV)". Inorg. Synth. 27: 59–65. doi:10.1002/9780470132586.ch11.
  2. "π-Complexes of Group IVA metals with cyclopentadiene, indene, and fluorine". Bull. Soc. Chim. France . 11: 3548–64. 1966.
  3. Epstein, E. F.; Bernal, I. (1970). "Pentachalcogenide dianions in transition-metal complexes: crystal structure of bis-(π-cyclopentadienyl)titanium pentasulphide". J. Chem. Soc. D . 1970: 410–411. doi:10.1039/C29700000410.
  4. Shaver, Alan; McCall, James M. (1984). "Preparation and Variable-Temperature NMR Studies of the Metallacyclosulfanes Cp2MS5 and (MeSCp)MS3, Where M = Ti, Zr, and Hf". Organometallics. 3: 1823–1829. doi:10.1021/om00090a008.
  5. Steudel, Ralf; Eckert, Bodo (2003). "Solid Sulfur Allotropes Sulfur Allotropes". Topics in Current Chemistry. 230: 1–80. doi:10.1007/b12110.
  6. Cotton, F. Albert; Wilkinson, Geoffrey; Murillo, Carlos A.; Bochmann, Manfred (1999). Advanced Inorganic Chemistry (6th ed.). Wiley. ISBN   978-0471199571.