Titanium isopropoxide

Last updated
Titanium isopropoxide
Ti(OiPr)4.png
Sample of Titanium isopropoxide 01.jpg
Names
IUPAC name
Titanium isopropoxide
Other names
Tetraisopropyl titanate
Titanium(IV) i-propoxide
Titanium tetraisopropoxide
Tetraisopropyl orthotitanate
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.008.100 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 208-909-6
PubChem CID
UNII
UN number 1993
  • Key: VXUYXOFXAQZZMF-UHFFFAOYSA-N
  • InChI=1S/4C3H7O.Ti/c4*1-3(2)4;/h4*3H,1-2H3;/q4*-1;+4
  • CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C
Properties
C12H28O4Ti
Molar mass 284.219 g·mol−1
Appearancecolorless to light-yellow liquid
Density 0.96 g/cm3
Melting point 17 °C (63 °F; 290 K) approximation
Boiling point 232 °C (450 °F; 505 K)
Reacts to form TiO2
Solubility soluble in ethanol, ether, benzene, chloroform
1.46
Hazards
GHS labelling:
GHS-pictogram-flamme.svg GHS-pictogram-acid.svg GHS-pictogram-exclam.svg
Danger
H226, H318, H319, H336
P210, P233, P240, P241, P242, P243, P261, P264, P271, P280, P303+P361+P353, P304+P340, P305+P351+P338, P310, P312, P337+P313, P370+P378, P403+P233, P403+P235, P405, P501
Lethal dose or concentration (LD, LC):
7600 mg/kg (rat, oral)
Related compounds
Other anions
Titanium methoxide; Titanium ethoxide; Titanium butoxide
Other cations
Aluminium isopropoxide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Titanium isopropoxide, also commonly referred to as titanium tetraisopropoxide or TTIP, is a chemical compound with the formula Ti{OCH(CH3)2}4. This alkoxide of titanium(IV) is used in organic synthesis and materials science. It is a diamagnetic tetrahedral molecule. Titanium isopropoxide is a component of the Sharpless epoxidation, a method for the synthesis of chiral epoxides. [1] [2]

Contents

The structures of the titanium alkoxides are often complex. Crystalline titanium methoxide is tetrameric with the molecular formula Ti4(OCH3)16. [3] Alkoxides derived from bulkier alcohols such as isopropyl alcohol aggregate less. Titanium isopropoxide is mainly a monomer in nonpolar solvents. [4]

Preparation

It is prepared by treating titanium tetrachloride with isopropanol in presence of ammonia. Hydrogen chloride is formed as a coproduct: [4] :19–20

TiCl4 + 4 (CH3)2CHOH → Ti{OCH(CH3)2}4 + 4 HCl

Properties

Titanium isopropoxide reacts with water to deposit titanium dioxide: [5]

Ti{OCH(CH3)2}4 + 2 H2O → TiO2 + 4 (CH3)2CHOH

This reaction is employed in the sol-gel synthesis of TiO2-based materials in the form of powders or thin films. Typically water is added in excess to a solution of the alkoxide in an alcohol. The composition, crystallinity and morphology of the inorganic product are determined by the presence of additives (e.g. acetic acid), the amount of water (hydrolysis ratio), and reaction conditions. [5]

The compound is also used as a catalyst in the preparation of certain cyclopropanes in the Kulinkovich reaction. Prochiral thioethers are oxidized enantioselectively using a catalyst derived from Ti(O-i-Pr)4. [6] [7]

Naming

Titanium(IV) isopropoxide is a widely used item of commerce and has acquired many names in addition to those listed in the table. A sampling of the names include: titanium(IV) i-propoxide, isopropyl titanate, tetraisopropyl titanate, tetraisopropyl orthotitanate, titanium tetraisopropylate, orthotitanic acid tetraisopropyl ester, Isopropyl titanate(IV), titanic acid tetraisopropyl ester, isopropyltitanate, titanium(IV) isopropoxide, titanium tetraisopropoxide, iso-propyl titanate, titanium tetraisopropanolate, tetraisopropoxytitanium(IV), tetraisopropanolatotitanium, tetrakis(isopropoxy) titanium, tetrakis(isopropanolato) titanium, titanic acid isopropyl ester, titanic acid tetraisopropyl ester, titanium isopropoxide, titanium isopropylate, tetrakis(1-methylethoxy)titanium.

Applications

TTIP can be used as a precursor for ambient conditions vapour phase deposition such as infiltration into polymer thin films. [8]

Related Research Articles

<span class="mw-page-title-main">Ester</span> Compound derived from an acid

In chemistry, an ester is a compound derived from an acid in which the hydrogen atom (H) of at least one acidic hydroxyl group of that acid is replaced by an organyl group. Analogues derived from oxygen replaced by other chalcogens belong to the ester category as well. According to some authors, organyl derivatives of acidic hydrogen of other acids are esters as well, but not according to the IUPAC.

<span class="mw-page-title-main">Sharpless epoxidation</span> Chemical reaction

The Sharpless epoxidation reaction is an enantioselective chemical reaction to prepare 2,3-epoxyalcohols from primary and secondary allylic alcohols. The oxidizing agent is tert-butyl hydroperoxide. The method relies on a catalyst formed from titanium tetra(isopropoxide) and diethyl tartrate.

In chemistry, titanate usually refers to inorganic compounds composed of titanium oxides, or oxides containing the titanium element. Together with niobate, titanate salts form the Perovskite group.

<span class="mw-page-title-main">Epoxide</span> Organic compounds with a carbon-carbon-oxygen ring

In organic chemistry, an epoxide is a cyclic ether, where the ether forms a three-atom ring: two atoms of carbon and one atom of oxygen. This triangular structure has substantial ring strain, making epoxides highly reactive, more so than other ethers. They are produced on a large scale for many applications. In general, low molecular weight epoxides are colourless and nonpolar, and often volatile.

<span class="mw-page-title-main">Transition metal alkoxide complex</span> Conjugate base of an alcohol

A transition metal alkoxide complex is a kind of coordination complex containing one or more alkoxide ligands, written as RO, where R is the organic substituent. Metal alkoxides are used for coatings and as catalysts.

<span class="mw-page-title-main">Titanium tetrachloride</span> Inorganic chemical compound

Titanium tetrachloride is the inorganic compound with the formula TiCl4. It is an important intermediate in the production of titanium metal and the pigment titanium dioxide. TiCl4 is a volatile liquid. Upon contact with humid air, it forms thick clouds of titanium dioxide and hydrochloric acid, a reaction that was formerly exploited for use in smoke machines. It is sometimes referred to as "tickle" or "tickle 4", as a phonetic representation of the symbols of its molecular formula.

<span class="mw-page-title-main">Xanthate</span> Salt that is a metal-thioate/O-esters of dithiocarbonate

A xanthate is a salt or ester of a xanthic acid. The formula of the salt of xanthic acid is [R−O−CS2]M+. Xanthate also refers to the anion [R−O−CS2]. The formula of a xanthic acid is R−O−C(=S)−S−H, such as ethyl xanthic acid, while the formula of an ester of a xanthic acid is R−O−C(=S)−S−R', where R and R' are organyl groups. The salts of xanthates are also called O-organyl dithioates. The esters of xanthic acid are also called O,S-diorganyl esters of dithiocarbonic acid. The name xanthate is derived from Ancient Greek ξανθός (xanthos) meaning 'yellowish' or 'golden', and indeed most xanthate salts are yellow. They were discovered and named in 1823 by Danish chemist William Christopher Zeise. These organosulfur compounds are important in two areas: the production of cellophane and related polymers from cellulose and for extraction of certain sulphide bearing ores. They are also versatile intermediates in organic synthesis.

<span class="mw-page-title-main">Diisopropyl tartrate</span> Chemical compound

Diisopropyl tartrate (DIPT) is a diester of tartaric acid. It has a two chiral carbon atoms giving rise to three stereoisomeric variants. It is commonly used in asymmetric synthesis as a catalyst and as chiral building block for pharmaceuticals and agrochemicals. Its main application is in Sharpless epoxidation, where it serves as a chiral ligand to titanium after reaction with titanium isopropoxide.

<span class="mw-page-title-main">Aluminium isopropoxide</span> Chemical compound

Aluminium isopropoxide is the chemical compound usually described with the formula Al(O-i-Pr)3, where i-Pr is the isopropyl group (–CH(CH3)2). This colourless solid is a useful reagent in organic synthesis.

<span class="mw-page-title-main">Hydroperoxide</span> Class of chemical compounds

Hydroperoxides or peroxols are compounds of the form ROOH, where R stands for any group, typically organic, which contain the hydroperoxy functional group. Hydroperoxide also refers to the hydroperoxide anion and its salts, and the neutral hydroperoxyl radical (•OOH) consist of an unbond hydroperoxy group. When R is organic, the compounds are called organic hydroperoxides. Such compounds are a subset of organic peroxides, which have the formula ROOR. Organic hydroperoxides can either intentionally or unintentionally initiate explosive polymerisation in materials with unsaturated chemical bonds.

<span class="mw-page-title-main">Tebbe's reagent</span> Chemical compound

Tebbe's reagent is the organometallic compound with the formula (C5H5)2TiCH2ClAl(CH3)2. It is used in the methylidenation of carbonyl compounds, that is it converts organic compounds containing the R2C=O group into the related R2C=CH2 derivative. It is a red solid that is pyrophoric in the air, and thus is typically handled with air-free techniques. It was originally synthesized by Fred Tebbe at DuPont Central Research.

<span class="mw-page-title-main">Organotitanium chemistry</span>

Organotitanium chemistry is the science of organotitanium compounds describing their physical properties, synthesis, and reactions. Organotitanium compounds in organometallic chemistry contain carbon-titanium chemical bonds. They are reagents in organic chemistry and are involved in major industrial processes.

Asymmetric catalytic oxidation is a technique of oxidizing various substrates to give an enantio-enriched product using a catalyst. Typically, but not necessarily, asymmetry is induced by the chirality of the catalyst. Typically, but again not necessarily, the methodology applies to organic substrates. Functional groups that can be prochiral and readily susceptible to oxidation include certain alkenes and thioethers. Challenging but pervasive prochiral substrates are C-H bonds of alkanes. Instead of introducing oxygen, some catalysts, biological and otherwise, enantioselectively introduce halogens, another form of oxidation.

<span class="mw-page-title-main">Diethyl tartrate</span> Chemical compound

Diethyl tartrate is an organic compound with the formula (HOCHCO2Et)2 (Et = ethyl). Three stereoisomers exist, R,R-, S,S-, and R,S (=S,R-). They are the ethyl esters of the respective R,R-, S,S-, and R,S-tartaric acids. The R,R- and S,S- isomers are enantiomeric, being mirror images. The meso stereoisomer is not chiral. The chiral isomer is far more common.

Isopropyl alcohol is a colorless, flammable organic compound with a pungent alcoholic odor.

Nucleophilic epoxidation is the formation of epoxides from electron-deficient double bonds through the action of nucleophilic oxidants. Nucleophilic epoxidation methods represent a viable alternative to electrophilic methods, many of which do not epoxidize electron-poor double bonds efficiently.

<span class="mw-page-title-main">Titanium ethoxide</span> Chemical compound

Titanium ethoxide is a chemical compound with the formula Ti4(OCH2CH3)16. It is a commercially available colorless liquid that is soluble in organic solvents but hydrolyzes readily. Its structure is more complex than suggested by its empirical formula. Like other alkoxides of titanium(IV) and zirconium(IV), it finds used in organic synthesis and materials science.

<span class="mw-page-title-main">Nickel(II) titanate</span> Chemical compound

Nickel(II) titanate, also known as nickel titanium oxide, is an inorganic compound with the chemical formula NiTiO3. It is a coordination compound between nickel(II), titanium(IV) and oxide ions. It has the appearance of a yellow powder. Nickel(II) titanate has been used as a catalyst for toluene oxidation.

<span class="mw-page-title-main">Titanium butoxide</span> Chemical compound

Titanium butoxide is a metal alkoxide with the formula Ti(OBu)4 (Bu = –CH2CH2CH2CH3). It is a colorless odorless liquid although aged samples can appear yellowish. Owing to hydrolysis, samples have a weak alcohol-like odor. It is soluble in many organic solvents. Decomposition in water is not hazardous, and therefore titanium butoxide is often used as a liquid source of titanium dioxide, which allows deposition of TiO2 coatings of various shapes and sizes down to the nanoscale.

The +4 oxidation state dominates titanium chemistry, but compounds in the +3 oxidation state are also numerous. Commonly, titanium adopts an octahedral coordination geometry in its complexes, but tetrahedral TiCl4 is a notable exception. Because of its high oxidation state, titanium(IV) compounds exhibit a high degree of covalent bonding.

References

  1. Katsuki, T.; Sharpless, K. Barry (1980). "The first practical method for asymmetric epoxidation". J. Am. Chem. Soc. 102 (18): 5974. doi:10.1021/ja00538a077.
  2. Hill, J. G.; Sharpless, K. B.; Exon, C. M.; Regenye, R. (1985). "Enantioselective Epoxidation Of Allylic Alcohols: (2s,3s)-3-propyloxiranemethanol". Org. Synth. 63: 66. doi:10.15227/orgsyn.063.0066.
  3. Wright, D. A.; Williams, D. A. (1968). "The Crystal and Molecular Structure of Titanium Tetramethoxide". Acta Crystallographica B . 24 (8): 1107–1114. Bibcode:1968AcCrB..24.1107W. doi:10.1107/S0567740868003766.
  4. 1 2 Bradley, Donald Charlton; Mehrotra, Ram C.; Rothwell, Ian P.; Singh, A. (2001). Alkoxo and Aryloxo Derivatives of Metals. San Diego: Academic Press. ISBN   978-0-08-048832-5.
  5. 1 2 Hanaor, Dorian A. H.; Chironi, Ilkay; Karatchevtseva, Inna; Triani, Gerry; Sorrell, Charles C. (2012). "Single and Mixed Phase TiO2 Powders Prepared by Excess Hydrolysis of Titanium Alkoxide". Advances in Applied Ceramics . 111 (3): 149–158. arXiv: 1410.8255 . Bibcode:2012AdApC.111..149H. doi:10.1179/1743676111Y.0000000059. S2CID   98265180.
  6. Zhao, S. H.; Samuel, O.; Kagan, H. B. (1987). "Asymmetric Oxidation of Sulfides Mediated by Chiral Titanium Complexes: Mechanistic and Synthetic Aspects". Tetrahedron . 43 (21): 5135–5144. doi:10.1016/S0040-4020(01)87689-4.
  7. Zhao, S. H.; Samuel, O.; Kagan, H. B. (1990). "Enantioelective Oxidation of a Sulfide: (S)-(−)-Methyl p-Tolyl Sulfoxide". Organic Syntheses . 68: 49. doi:10.15227/orgsyn.068.0049 ; Collected Volumes, vol. 8, p. 464.
  8. Giraud, Elsa C.; Mokarian-Tabari, Parvaneh; Toolan, Daniel T. W.; Arnold, Thomas; Smith, Andrew J.; Howse, Jonathan R.; Topham, Paul D.; Morris, Michael A. (2018-07-27). "Highly Ordered Titanium Dioxide Nanostructures via a Simple One-Step Vapor-Inclusion Method in Block Copolymer Films" (PDF). ACS Applied Nano Materials. 1 (7): 3426–3434. doi:10.1021/acsanm.8b00632. hdl:10468/11768. S2CID   139474500.