Rhodium

Last updated

Rhodium, 45Rh
Rhodium powder pressed melted.jpg
Rhodium
Pronunciation /ˈrdiəm/ (ROH-dee-əm)
Appearancesilvery white metallic
Standard atomic weight Ar, std(Rh)102.90549(2) [1]
Rhodium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Co

Rh

Ir
rutheniumrhodiumpalladium
Atomic number (Z)45
Group group 9
Period period 5
Block   d-block
Electron configuration [ Kr ] 4d8 5s1
Electrons per shell2, 8, 18, 16, 1
Physical properties
Phase at  STP solid
Melting point 2237  K (1964 °C,3567 °F)
Boiling point 3968 K(3695 °C,6683 °F)
Density (near r.t.)12.41 g/cm3
when liquid (at m.p.)10.7 g/cm3
Heat of fusion 26.59  kJ/mol
Heat of vaporization 493 kJ/mol
Molar heat capacity 24.98 J/(mol·K)
Vapor pressure
P (Pa)1101001 k10 k100 k
at T (K)228824962749306334053997
Atomic properties
Oxidation states −3 [2] , −1, 0, +1, [3] +2, +3, +4, +5, +6 (an  amphoteric oxide)
Electronegativity Pauling scale: 2.28
Ionization energies
  • 1st: 719.7 kJ/mol
  • 2nd: 1740 kJ/mol
  • 3rd: 2997 kJ/mol
Atomic radius empirical:134  pm
Covalent radius 142±7 pm
Color lines in a spectral range Rhodium spectrum visible.png
Color lines in a spectral range
Spectral lines of rhodium
Other properties
Natural occurrence primordial
Crystal structure face-centered cubic (fcc)
Cubic-face-centered.svg
Speed of sound thin rod4700 m/s(at 20 °C)
Thermal expansion 8.2 µm/(m⋅K)(at 25 °C)
Thermal conductivity 150 W/(m⋅K)
Electrical resistivity 43.3 nΩ⋅m(at 0 °C)
Magnetic ordering paramagnetic [4]
Molar magnetic susceptibility +111.0×10−6 cm3/mol(298 K) [5]
Young's modulus 380 GPa
Shear modulus 150 GPa
Bulk modulus 275 GPa
Poisson ratio 0.26
Mohs hardness 6.0
Vickers hardness 1100–8000 MPa
Brinell hardness 980–1350 MPa
CAS Number 7440-16-6
History
Discovery and first isolation William Hyde Wollaston (1804)
Main isotopes of rhodium
Iso­tope Abun­dance Half-life (t1/2) Decay mode Pro­duct
99Rh syn 16.1 d ε 99Ru
γ
101m Rhsyn4.34 dε 101Ru
IT 101Rh
γ
101Rhsyn3.3 yε101Ru
γ
102mRhsyn3.7 yε 102Ru
γ
102Rhsyn207 dε102Ru
β+ 102Ru
β 102Pd
γ
103Rh100% stable
105Rhsyn35.36 hβ 105Pd
γ
Symbol category class.svg   Category: Rhodium
| references

Rhodium is a chemical element with the symbol Rh and atomic number 45. It is an extraordinarily rare, silvery-white, hard, corrosion-resistant, and chemically inert transition metal. It is a noble metal and a member of the platinum group. It has only one naturally occurring isotope, 103Rh. Naturally occurring rhodium is usually found as a free metal, as an alloy with similar metals, and rarely as a chemical compound in minerals such as bowieite and rhodplumsite. It is one of the rarest and most valuable precious metals.

Contents

Rhodium is found in platinum or nickel ores together with the other members of the platinum group metals. It was discovered in 1803 by William Hyde Wollaston in one such ore, and named for the rose color of one of its chlorine compounds.

The element's major use (approximately 80% of world rhodium production) is as one of the catalysts in the three-way catalytic converters in automobiles. Because rhodium metal is inert against corrosion and most aggressive chemicals, and because of its rarity, rhodium is usually alloyed with platinum or palladium and applied in high-temperature and corrosion-resistive coatings. White gold is often plated with a thin rhodium layer to improve its appearance while sterling silver is often rhodium-plated for tarnish resistance. Rhodium is sometimes used to cure silicones; a two-part silicone in which one part containing a silicon hydride and the other containing a vinyl-terminated silicone are mixed. One of these liquids contains a rhodium complex. [6]

Rhodium detectors are used in nuclear reactors to measure the neutron flux level. Other uses of rhodium include asymmetric hydrogenation used to form drug precursors and the processes for the production of acetic acid.

History

William Hyde Wollaston Wollaston William Hyde Jackson color.jpg
William Hyde Wollaston

Rhodium (Greek rhodon (ῥόδον) meaning "rose") was discovered in 1803 by William Hyde Wollaston, [7] soon after his discovery of palladium. [8] [9] [10] He used crude platinum ore presumably obtained from South America. [11] His procedure involved dissolving the ore in aqua regia and neutralizing the acid with sodium hydroxide (NaOH). He then precipitated the platinum as ammonium chloroplatinate by adding ammonium chloride (NH
4
Cl
). Most other metals like copper, lead, palladium and rhodium were precipitated with zinc. Diluted nitric acid dissolved all but palladium and rhodium. Of these, palladium dissolved in aqua regia but rhodium did not, [12] and the rhodium was precipitated by the addition of sodium chloride as Na
3
[RhCl
6
nH
2
O
. After being washed with ethanol, the rose-red precipitate was reacted with zinc, which displaced the rhodium in the ionic compound and thereby released the rhodium as free metal. [13]

After the discovery, the rare element had only minor applications; for example, by the turn of the century, rhodium-containing thermocouples were used to measure temperatures up to 1800 °C. [14] [15] They have exceptionally good stability in the temperature range of 1300 to 1800 °C. [16]

The first major application was electroplating for decorative uses and as corrosion-resistant coating. [17] The introduction of the three-way catalytic converter by Volvo in 1976 increased the demand for rhodium. The previous catalytic converters used platinum or palladium, while the three-way catalytic converter used rhodium to reduce the amount of NOx in the exhaust. [18] [19] [20]

Characteristics

Z Element No. of electrons/shell
27cobalt2, 8, 15, 2
45rhodium2, 8, 18, 16, 1
77iridium2, 8, 18, 32, 15, 2
109meitnerium2, 8, 18, 32, 32, 15, 2 (predicted)

Rhodium is a hard, silvery, durable metal that has a high reflectance. Rhodium metal does not normally form an oxide, even when heated. [21] Oxygen is absorbed from the atmosphere only at the melting point of rhodium, but is released on solidification. [22] Rhodium has both a higher melting point and lower density than platinum. It is not attacked by most acids: it is completely insoluble in nitric acid and dissolves slightly in aqua regia.

Chemical properties

Wilkinson's catalyst Wilkinson's-catalyst-2D.png
Wilkinson's catalyst

Rhodium belongs to group 9 of the periodic table, but the configuration of electrons in the outermost shells is atypical for the group. This anomaly is also observed in the neighboring elements, niobium (41), ruthenium (44), and palladium (46).

Oxidation states
of rhodium
+0Rh
4
(CO)
12
+1RhCl(PH
3
)
2
+2Rh
2
(O
2
CCH
3
)
4
+3RhCl
3
, Rh
2
O
3
+4RhO
2
+5RhF
5
, Sr
3
LiRhO
6
+6RhF
6

The common oxidation state of rhodium is +3, but oxidation states from 0 to +6 are also observed. [23]

Unlike ruthenium and osmium, rhodium forms no volatile oxygen compounds. The known stable oxides include Rh
2
O
3
, RhO
2
, RhO
2
·xH
2
O
, Na
2
RhO
3
, Sr
3
LiRhO
6
and Sr
3
NaRhO
6
. [24] Halogen compounds are known in nearly the full range of possible oxidation states. Rhodium(III) chloride, rhodium trifluoride, rhodium pentafluoride and rhodium hexafluoride are examples. The lower oxidation states are stable only in the presence of ligands. [25]

The best-known rhodium-halogen compound is the Wilkinson's catalyst chlorotris(triphenylphosphine)rhodium(I). This catalyst is used in the hydroformylation or hydrogenation of alkenes. [26]

Isotopes

Naturally occurring rhodium is composed of only one isotope, 103Rh. The most stable radioisotopes are 101Rh with a half-life of 3.3 years, 102Rh with a half-life of 207 days, 102mRh with a half-life of 2.9 years, and 99Rh with a half-life of 16.1 days. Twenty other radioisotopes have been characterized with atomic weights ranging from 92.926 u (93Rh) to 116.925 u (117Rh). Most of these have half-lives shorter than an hour, except 100Rh (20.8 hours) and 105Rh (35.36 hours). Rhodium has numerous meta states, the most stable being 102mRh (0.141 MeV) with a half-life of about 2.9 years and 101mRh (0.157 MeV) with a half-life of 4.34 days (see isotopes of rhodium). [27]

In isotopes weighing less than 103 (the stable isotope), the primary decay mode is electron capture and the primary decay product is ruthenium. In isotopes greater than 103, the primary decay mode is beta emission and the primary product is palladium. [28]

Occurrence

Rhodium is one of the rarest elements in the Earth's crust, comprising an estimated 0.0002 parts per million (2 × 10−10). [29] Its rarity affects its price and its use in commercial applications. The concentration of rhodium in nickel meteorites is typically 1 part per billion. [30] Rhodium has been measured in some potatoes with concentrations between 0.8 and 30 ppt. [31]

Mining and price

Rh price evolution Rh price.png
Rh price evolution

The industrial extraction of rhodium is complex because the ores are mixed with other metals such as palladium, silver, platinum, and gold and there are very few rhodium-bearing minerals. It is found in platinum ores and extracted as a white inert metal that is difficult to fuse. Principal sources are located in South Africa; in river sands of the Ural Mountains in Russia; and in North America, including the copper-nickel sulfide mining area of the Sudbury, Ontario, region. Although the rhodium abundance at Sudbury is very small, the large amount of processed nickel ore makes rhodium recovery cost-effective.

The main exporter of rhodium is South Africa (approximately 80% in 2010) followed by Russia. [32] The annual world production is 30 tonnes. The price of rhodium is highly variable. In 2007, rhodium cost approximately eight times more than gold, 450 times more than silver, and 27,250 times more than copper by weight. In 2008, the price briefly rose above $10,000 per ounce ($350,000 per kilogram). The economic slowdown of the 3rd quarter of 2008 pushed rhodium prices sharply back below $1,000 per ounce ($35,000 per kilogram); the price rebounded to $2,750 by early 2010 ($97,000 per kilogram) (more than twice the gold price), but in late 2013, the prices were less than $1000. Political and financial problems[ clarification needed ] led to very low oil prices and over supply, causing most metals to drop in price. The economies of China, India and other emerging countries slowed in 2014 and 2015. In 2014 alone, 23,722,890 motor vehicles were produced in China, excluding motorbikes.[ clarification needed ] This resulted in a rhodium price of 740.00 US-$ per Troy ounce (31.1 grams) in late November 2015. [33]

Owners of rhodium—a metal with a highly volatile market price—are periodically put in an extremely advantageous market position: extracting more rhodium-containing ore from the ground will necessarily also extract other much more abundant precious metals—notably platinum and palladium—which would oversupply the market with those other metals, lowering their prices. Since it is economically infeasible to simply extract these other metals just to obtain rhodium, the market is often left hopelessly squeezed for rhodium supply, causing prices to spike. Recovery from this supply-deficit position may be quite problematic in the future for many reasons, notably because it is not known how much rhodium (and other precious metals) actually was placed in catalytic converters during the many years when manufacturers' emissions-cheating software was in use. Much of the world supply of rhodium is obtained from recycled catalytic converters obtained from scrapped vehicles. As of early November 2020, the spot price of rhodium was US$14,700 per troy ounce. In early March 2021, rhodium reached a price of US$29,400 per troy ounce on Metals Daily (a precious metals commodity listing).

Used nuclear fuels

Rhodium is a fission product of uranium-235: each kilogram of fission product contains a significant amount of the lighter platinum group metals. Used nuclear fuel is therefore a potential source of rhodium, but the extraction is complex and expensive, and the presence of rhodium radioisotopes requires a period of cooling storage for multiple half-lives of the longest-lived isotope (101Rh with a half-life of 3.3 years, and 102mRh with a half-life of 2.9 years), or about 10 years. These factors make the source unattractive and no large-scale extraction has been attempted. [34] [35] [36]

Applications

The primary use of this element is in automobiles as a catalytic converter, changing harmful unburned hydrocarbons, carbon monoxide, and nitrogen oxide exhaust emissions into less noxious gases. Of 30,000 kg of rhodium consumed worldwide in 2012, 81% (24,300 kg) went into this application, and 8,060 kg was recovered from old converters. About 964 kg of rhodium was used in the glass industry, mostly for production of fiberglass and flat-panel glass, and 2,520 kg was used in the chemical industry. [32]

Catalyst

Rhodium is preferable to the other platinum metals in the reduction of nitrogen oxides to nitrogen and oxygen: [37]

2 NO
x
xO
2
+ N
2

Rhodium catalysts are used in a number of industrial processes, notably in catalytic carbonylation of methanol to produce acetic acid by the Monsanto process. [38] It is also used to catalyze addition of hydrosilanes to molecular double bonds, a process important in manufacture of certain silicone rubbers. [39] Rhodium catalysts are also used to reduce benzene to cyclohexane. [40]

The complex of a rhodium ion with BINAP is a widely used chiral catalyst for chiral synthesis, as in the synthesis of menthol. [41]

Ornamental uses

Rhodium finds use in jewelry and for decorations. It is electroplated on white gold and platinum to give it a reflective white surface at time of sale, after which the thin layer wears away with use. This is known as rhodium flashing in the jewelry business. It may also be used in coating sterling silver to protect against tarnish (silver sulfide, Ag2S, produced from atmospheric hydrogen sulfide, H2S). Solid (pure) rhodium jewelry is very rare, more because of the difficulty of fabrication (high melting point and poor malleability) than because of the high price. [42] The high cost ensures that rhodium is applied only as an electroplate. Rhodium has also been used for honors or to signify elite status, when more commonly used metals such as silver, gold or platinum were deemed insufficient. In 1979 the Guinness Book of World Records gave Paul McCartney a rhodium-plated disc for being history's all-time best-selling songwriter and recording artist. [43]

Other uses

Rhodium is used as an alloying agent for hardening and improving the corrosion resistance [21] of platinum and palladium. These alloys are used in furnace windings, bushings for glass fiber production, thermocouple elements, electrodes for aircraft spark plugs, and laboratory crucibles. [44] Other uses include:

In automobile manufacturing, rhodium is also used in the construction of headlight reflectors. [49]

Precautions

Rhodium
Hazards
H413
P273, P501 [50]
NFPA 704 (fire diamond)
0
0
0

Being a noble metal, pure rhodium is inert and harmless in elemental form. [51] However, chemical complexes of rhodium can be reactive. For rhodium chloride, the median lethal dose (LD50) for rats is 198 mg (RhCl
3
) per kilogram of body weight. [52] Like the other noble metals, rhodium has not been found to serve any biological function.

People can be exposed to rhodium in the workplace by inhalation. The Occupational Safety and Health Administration (OSHA) has specified the legal limit (Permissible exposure limit) for rhodium exposure in the workplace at 0.1 mg/m3 over an 8-hour workday, and the National Institute for Occupational Safety and Health (NIOSH) has set the recommended exposure limit (REL), at the same level. At levels of 100 mg/m3, rhodium is immediately dangerous to life or health. [53] For soluble compounds, the PEL and REL are both 0.001 mg/m3. [54]

See also

Related Research Articles

Hafnium Chemical element, symbol Hf and atomic number 72

Hafnium is a chemical element with the symbol Hf and atomic number 72. A lustrous, silvery gray, tetravalent transition metal, hafnium chemically resembles zirconium and is found in many zirconium minerals. Its existence was predicted by Dmitri Mendeleev in 1869, though it was not identified until 1923, by Coster and Hevesy, making it the second-last stable element to be discovered. Hafnium is named after Hafnia, the Latin name for Copenhagen, where it was discovered.

Iridium Chemical element, symbol Ir and atomic number 77

Iridium is a chemical element with the symbol Ir and atomic number 77. A very hard, brittle, silvery-white transition metal of the platinum group, iridium is considered to be the second-densest metal with a density of 22.56 g/cm3 as defined by experimental X-ray crystallography. However, at room temperature and standard atmospheric pressure, iridium has been calculated to have a density of 22.65 g/cm3, 0.04 g/cm3 higher than osmium measured the same way. Still, the experimental X-ray crystallography value is considered to be the most accurate, and as such iridium is considered to be the second densest element. It is the most corrosion-resistant metal, even at temperatures as high as 2000 °C. Although only certain molten salts and halogens are corrosive to solid iridium, finely divided iridium dust is much more reactive and can be flammable.

Palladium Chemical element, symbol Pd and atomic number 46

Palladium is a chemical element with the symbol Pd and atomic number 46. It is a rare and lustrous silvery-white metal discovered in 1803 by the English chemist William Hyde Wollaston. He named it after the asteroid Pallas, which was itself named after the epithet of the Greek goddess Athena, acquired by her when she slew Pallas. Palladium, platinum, rhodium, ruthenium, iridium and osmium form a group of elements referred to as the platinum group metals (PGMs). They have similar chemical properties, but palladium has the lowest melting point and is the least dense of them.

Platinum Chemical element, symbol Pt and atomic number 78

Platinum is a chemical element with the symbol Pt and atomic number 78. It is a dense, malleable, ductile, highly unreactive, precious, silverish-white transition metal. Its name is derived from the Spanish term platino, meaning "little silver".

Ruthenium Chemical element, symbol Ru and atomic number 44

Ruthenium is a chemical element with the symbol Ru and atomic number 44. It is a rare transition metal belonging to the platinum group of the periodic table. Like the other metals of the platinum group, ruthenium is inert to most other chemicals. Russian-born scientist of Baltic-German ancestry Karl Ernst Claus discovered the element in 1844 at Kazan State University and named ruthenium in honor of Russia. Ruthenium is usually found as a minor component of platinum ores; the annual production has risen from about 19 tonnes in 2009 to some 35.5 tonnes in 2017. Most ruthenium produced is used in wear-resistant electrical contacts and thick-film resistors. A minor application for ruthenium is in platinum alloys and as a chemistry catalyst. A new application of ruthenium is as the capping layer for extreme ultraviolet photomasks. Ruthenium is generally found in ores with the other platinum group metals in the Ural Mountains and in North and South America. Small but commercially important quantities are also found in pentlandite extracted from Sudbury, Ontario and in pyroxenite deposits in South Africa.

Rhenium Chemical element, symbol Re and atomic number 75

Rhenium is a chemical element with the symbol Re and atomic number 75. It is a silvery-gray, heavy, third-row transition metal in group 7 of the periodic table. With an estimated average concentration of 1 part per billion (ppb), rhenium is one of the rarest elements in the Earth's crust. Rhenium has the third-highest melting point and highest boiling point of any stable element at 5869 K. Rhenium resembles manganese and technetium chemically and is mainly obtained as a by-product of the extraction and refinement of molybdenum and copper ores. Rhenium shows in its compounds a wide variety of oxidation states ranging from −1 to +7.

The periodic table is laid out in rows to illustrate recurring (periodic) trends in the chemical behaviour of the elements as their atomic number increases: a new row is begun when chemical behaviour begins to repeat, meaning that elements with similar behaviour fall into the same vertical columns. The fifth period contains 18 elements, beginning with rubidium and ending with xenon. As a rule, period 5 elements fill their 5s shells first, then their 4d, and 5p shells, in that order; however, there are exceptions, such as rhodium.

Noble metal Metallic elements that are nearly chemically inert

In chemistry, noble metals are metallic elements that show outstanding resistance to chemical attack even at high temperatures. They are well known for their catalytic properties and associated capacity to facilitate or control the rates of chemical reactions. The short list of chemically noble metals comprises ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), iridium (Ir), platinum (Pt), gold (Au), silver (Ag). In periodic table terms, an analogy can be made between the noble metals and the noble gases, which are mainly unreactive.

A period 6 element is one of the chemical elements in the sixth row (or period) of the periodic table of the elements, including the lanthanides. The periodic table is laid out in rows to illustrate recurring (periodic) trends in the chemical behaviour of the elements as their atomic number increases: a new row is begun when chemical behaviour begins to repeat, meaning that elements with similar behaviour fall into the same vertical columns. The sixth period contains 32 elements, tied for the most with period 7, beginning with caesium and ending with radon. Lead is currently the last stable element; all subsequent elements are radioactive. For bismuth, however, its only primordial isotope, 209Bi, has a half-life of more than 1019 years, over a billion times longer than the current age of the universe. As a rule, period 6 elements fill their 6s shells first, then their 4f, 5d, and 6p shells, in that order; however, there are exceptions, such as gold.

Hydrogenation Chemical reaction between molecular hydrogen and another compound or element

Hydrogenation is a chemical reaction between molecular hydrogen (H2) and another compound or element, usually in the presence of a catalyst such as nickel, palladium or platinum. The process is commonly employed to reduce or saturate organic compounds. Hydrogenation typically constitutes the addition of pairs of hydrogen atoms to a molecule, often an alkene. Catalysts are required for the reaction to be usable; non-catalytic hydrogenation takes place only at very high temperatures. Hydrogenation reduces double and triple bonds in hydrocarbons.

The platinum-group metals are six noble, precious metallic elements clustered together in the periodic table. These elements are all transition metals in the d-block.

The synthesis of precious metals involves the use of either nuclear reactors or particle accelerators to produce these elements.

Wilkinsons catalyst Chemical compound

Wilkinson's catalyst is the common name for chloridotris(triphenylphosphine)rhodium(I), a coordination complex of rhodium with the formula [RhCl(PPh3)3] (Ph = phenyl). It is a red-brown colored solid that is soluble in hydrocarbon solvents such as benzene, and more so in tetrahydrofuran or chlorinated solvents such as dichloromethane. The compound is widely used as a catalyst for hydrogenation of alkenes. It is named after chemist and Nobel laureate Sir Geoffrey Wilkinson, who first popularized its use.

Rhodium(III) chloride Chemical compound

Rhodium(III) chloride refers to inorganic compounds with the formula RhCl3(H2O)n, where n varies from 0 to 3. These are diamagnetic solids featuring octahedral Rh(III) centres. Depending on the value of n, the material is either a dense brown solid or a soluble reddish salt. The soluble trihydrated (n = 3) salt is widely used to prepare compounds used in homogeneous catalysis, notably for the industrial production of acetic acid and hydroformylation.

Adams' catalyst, also known as platinum dioxide, is usually represented as platinum(IV) oxide hydrate, PtO2•H2O. It is a catalyst for hydrogenation and hydrogenolysis in organic synthesis. This dark brown powder is commercially available. The oxide itself is not an active catalyst, but it becomes active after exposure to hydrogen whereupon it converts to platinum black, which is responsible for reactions.

Nanomaterial-based catalysts are usually heterogeneous catalysts broken up into metal nanoparticles in order to enhance the catalytic process. Metal nanoparticles have high surface area, which can increase catalytic activity. Nanoparticle catalysts can be easily separated and recycled. They are typically used under mild conditions to prevent decomposition of the nanoparticles.

Rhodium(III) oxide Chemical compound

Rhodium(III) oxide (or Rhodium sesquioxide) is the inorganic compound with the formula Rh2O3. It is a gray solid that is insoluble in ordinary solvents.

Organorhodium chemistry

Organorhodium chemistry is the chemistry of organometallic compounds containing a rhodium-carbon chemical bond, and the study of rhodium and rhodium compounds as catalysts in organic reactions.

Rhodium-platinum oxide , or Nishimura's catalyst, is an inorganic compound used as a hydrogenation catalyst.

Activation of cyclopropanes by transition metals

In organometallic chemistry, the activation of cyclopropanes by transition metals is a research theme with implications for organic synthesis and homogeneous catalysis. Being highly strained, cyclopropanes are prone to oxidative addition to transition metal complexes. The resulting metallacycles are susceptible to a variety of reactions. These reactions are rare examples of C-C bond activation. The rarity of C-C activation processes has been attributed to Steric effects that protect C-C bonds. Furthermore, the directionality of C-C bonds as compared to C-H bonds makes orbital interaction with transition metals less favorable. Thermodynamically, C-C bond activation is more favored than C-H bond activation as the strength of a typical C-C bond is around 90 kcal per mole while the strength of a typical unactivated C-H bond is around 104 kcal per mole.

References

  1. Meija, Juris; et al. (2016). "Atomic weights of the elements 2013 (IUPAC Technical Report)". Pure and Applied Chemistry . 88 (3): 265–91. doi: 10.1515/pac-2015-0305 .
  2. Ellis J E. Highly Reduced Metal Carbonyl Anions: Synthesis, Characterization, and Chemical Properties. Adv. Organomet. Chem, 1990, 31: 1-51.
  3. "Rhodium: rhodium(I) fluoride compound data". OpenMOPAC.net. Retrieved 10 December 2007.
  4. Lide, D. R., ed. (2005). "Magnetic susceptibility of the elements and inorganic compounds". CRC Handbook of Chemistry and Physics (PDF) (86th ed.). Boca Raton (FL): CRC Press. ISBN   0-8493-0486-5.
  5. Weast, Robert (1984). CRC, Handbook of Chemistry and Physics. Boca Raton, Florida: Chemical Rubber Company Publishing. pp. E110. ISBN   0-8493-0464-4.
  6. Armin Fehn and Juergen Weidinger, Wacker Chemie AG, US patent US7129309B2
  7. Wollaston, W. H. (1804). "On a New Metal, Found in Crude Platina". Philosophical Transactions of the Royal Society of London . 94: 419–430. doi: 10.1098/rstl.1804.0019 .
  8. Griffith, W. P. (2003). "Rhodium and Palladium – Events Surrounding Its Discovery". Platinum Metals Review. 47 (4): 175–183.
  9. Wollaston, W. H. (1805). "On the Discovery of Palladium; With Observations on Other Substances Found with Platina". Philosophical Transactions of the Royal Society of London . 95: 316–330. doi: 10.1098/rstl.1805.0024 .
  10. Usselman, Melvyn (1978). "The Wollaston/Chenevix controversy over the elemental nature of palladium: A curious episode in the history of chemistry". Annals of Science. 35 (6): 551–579. doi:10.1080/00033797800200431.
  11. Lide, David R. (2004). CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data . Boca Raton: CRC Press. pp.  4–26. ISBN   978-0-8493-0485-9.
  12. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 1113. ISBN   978-0-08-037941-8.
  13. Griffith, W. P. (2003). "Bicentenary of Four Platinum Group Metals: Osmium and iridium – events surrounding their discoveries". Platinum Metals Review. 47 (4): 175–183.
  14. Hulett, G. A.; Berger, H. W. (1904). "Volatilization of Platinum". Journal of the American Chemical Society. 26 (11): 1512–1515. doi:10.1021/ja02001a012.
  15. Measurement, ASTM Committee E.2.0. on Temperature (1993). "Platinum Type". Manual on the use of thermocouples in temperature measurement. ASTM Special Technical Publication. ASTM International. Bibcode:1981mutt.book.....B. ISBN   978-0-8031-1466-1.
  16. J.V. Pearce, F. Edler, C.J. Elliott, A. Greenen, P.M. Harris, C.G. Izquierdo, Y.G. Kim, M.J. Martin, I.M. Smith, D. Tucker and R.I. Veitcheva, A systematic investigation of the thermoelectric stability of Pt-Rh thermocouples between 1300 °C and 1500 °C, METROLOGIA, 2018, Volume: 55 Issue: 4 Pages: 558-567
  17. Kushner, Joseph B. (1940). "Modern rhodium plating". Metals and Alloys. 11: 137–140.
  18. Amatayakul, W.; Ramnäs, Olle (2001). "Life cycle assessment of a catalytic converter for passenger cars". Journal of Cleaner Production. 9 (5): 395. doi:10.1016/S0959-6526(00)00082-2.
  19. Heck, R.; Farrauto, Robert J. (2001). "Automobile exhaust catalysts". Applied Catalysis A: General. 221 (1–2): 443–457. doi:10.1016/S0926-860X(01)00818-3.
  20. Heck, R.; Gulati, Suresh; Farrauto, Robert J. (2001). "The application of monoliths for gas phase catalytic reactions". Chemical Engineering Journal. 82 (1–3): 149–156. doi:10.1016/S1385-8947(00)00365-X.
  21. 1 2 Cramer, Stephen D.; Covino, Jr., Bernard S., eds. (1990). ASM handbook. Materials Park, OH: ASM International. pp. 393–396. ISBN   978-0-87170-707-9.
  22. Emsley, John (2001). Nature's Building Blocks ((Hardcover, First Edition) ed.). Oxford University Press. p.  363. ISBN   978-0-19-850340-8.
  23. Holleman, Arnold F.; Wiberg, Egon; Wiberg, Nils (1985). Lehrbuch der Anorganischen Chemie (91–100 ed.). Walter de Gruyter. pp. 1056–1057. ISBN   978-3-11-007511-3.
  24. Reisner, B. A.; Stacy, A. M. (1998). "Sr
    3
    ARhO
    6
    (A = Li, Na): Crystallization of a Rhodium(V) Oxide from Molten Hydroxide". Journal of the American Chemical Society. 120 (37): 9682–9989. doi:10.1021/ja974231q.
  25. Griffith, W. P. The Rarer Platinum Metals, John Wiley and Sons: New York, 1976, p. 313.
  26. Osborn, J. A.; Jardine, F. H.; Young, J. F.; Wilkinson, G. (1966). "The Preparation and Properties of Tris(triphenylphosphine)halogenorhodium(I) and Some Reactions Thereof Including Catalytic Homogeneous Hydrogenation of Olefins and Acetylenes and Their Derivatives". Journal of the Chemical Society A : 1711–1732. doi:10.1039/J19660001711.
  27. Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
  28. David R. Lide (ed.), Norman E. Holden in CRC Handbook of Chemistry and Physics, 85th Edition CRC Press. Boca Raton, Florida (2005). Section 11, Table of the Isotopes.
  29. Barbalace, Kenneth, "Table of Elements". Environmental Chemistry.com; retrieved 2007-04-14.
  30. D.E.Ryan, J.Holzbecher and R.R.Brooks, Chemical Geology, Volume 85, Issues 3–4, 30 July 1990, Pages 295-303
  31. Orecchio and Amorello, Foods, 2019, volume 8, issue 2, doi : 10.3390/foods8020059
  32. 1 2 Loferski, Patricia J. (2013). "Commodity Report: Platinum-Group Metals" (PDF). United States Geological Survey. Retrieved 16 July 2012.
  33. "Rhodiumpreis aktuell in Euro und Dollar | Rhodium | Rhodiumkurs". finanzen.net.
  34. Kolarik, Zdenek; Renard, Edouard V. (2005). "Potential Applications of Fission Platinoids in Industry" (PDF). Platinum Metals Review. 49 (2): 79. doi: 10.1595/147106705X35263 .
  35. Kolarik, Zdenek; Renard, Edouard V. (2003). "Recovery of Value Fission Platinoids from Spent Nuclear Fuel. Part I PART I: General Considerations and Basic Chemistry" (PDF). Platinum Metals Review. 47 (2): 74–87.
  36. Kolarik, Zdenek; Renard, Edouard V. (2003). "Recovery of Value Fission Platinoids from Spent Nuclear Fuel. Part II: Separation Process" (PDF). Platinum Metals Review. 47 (2): 123–131.
  37. Shelef, M.; Graham, G. W. (1994). "Why Rhodium in Automotive Three-Way Catalysts?". Catalysis Reviews. 36 (3): 433–457. doi:10.1080/01614949408009468.
  38. Roth, James F. (1975). "Rhodium Catalysed Carbonylation of Methanol" (PDF). Platinum Metals Review. 19 (1 January): 12–14.
  39. Heidingsfeldova, M. & Capka, M. (2003). "Rhodium complexes as catalysts for hydrosilylation crosslinking of silicone rubber". Journal of Applied Polymer Science. 30 (5): 1837. doi:10.1002/app.1985.070300505.
  40. Halligudi, S. B.; et al. (1992). "Hydrogenation of benzene to cyclohexane catalyzed by rhodium(I) complex supported on montmorillonite clay". Reaction Kinetics and Catalysis Letters. 48 (2): 547. Bibcode:1992RKCL...48..505T. doi:10.1007/BF02162706. S2CID   97802315.
  41. Akutagawa, S. (1995). "Asymmetric synthesis by metal BINAP catalysts". Applied Catalysis A: General. 128 (2): 171. doi:10.1016/0926-860X(95)00097-6.
  42. Fischer, Torkel; Fregert, S.; Gruvberger, B.; Rystedt, I. (1984). "Contact sensitivity to nickel in white gold". Contact Dermatitis. 10 (1): 23–24. doi:10.1111/j.1600-0536.1984.tb00056.x. PMID   6705515. S2CID   46626556.
  43. "Hit & Run: Ring the changes". The Independent . London. 2 December 2008. Retrieved 6 June 2009.
  44. Lide, David R (2004). CRC handbook of chemistry and physics 2004–2005: a ready-reference book of chemical and physical data (85th ed.). Boca Raton: CRC Press. pp. 4–26. ISBN   978-0-8493-0485-9.
  45. Weisberg, Alfred M. (1999). "Rhodium plating". Metal Finishing. 97 (1): 296–299. doi:10.1016/S0026-0576(00)83088-3.
  46. Smith, Warren J. (2007). "Reflectors". Modern optical engineering: the design of optical systems. McGraw-Hill. pp. 247–248. ISBN   978-0-07-147687-4.
  47. McDonagh, C P; et al. (1984). "Optimum x-ray spectra for mammography: choice of K-edge filters for tungsten anode tubes". Phys. Med. Biol. 29 (3): 249–52. Bibcode:1984PMB....29..249M. doi:10.1088/0031-9155/29/3/004. PMID   6709704.
  48. Sokolov, A. P.; Pochivalin, G. P.; Shipovskikh, Yu. M.; Garusov, Yu. V.; Chernikov, O. G.; Shevchenko, V. G. (1993). "Rhodium self-powered detector for monitoring neutron fluence, energy production, and isotopic composition of fuel". Atomic Energy. 74 (5): 365–367. doi:10.1007/BF00844622. S2CID   96175609.
  49. Stwertka, Albert. A Guide to the Elements, Oxford University Press, 1996, p. 125. ISBN   0-19-508083-1
  50. "MSDS - 357340". www.sigmaaldrich.com.
  51. Leikin, Jerrold B.; Paloucek Frank P. (2008). Poisoning and Toxicology Handbook. Informa Health Care. p. 846. ISBN   978-1-4200-4479-9.
  52. Landolt, Robert R.; Berk Harold W.; Russell, Henry T. (1972). "Studies on the toxicity of rhodium trichloride in rats and rabbits". Toxicology and Applied Pharmacology . 21 (4): 589–590. doi:10.1016/0041-008X(72)90016-6. PMID   5047055.
  53. "CDC - NIOSH Pocket Guide to Chemical Hazards - Rhodium (metal fume and insoluble compounds, as Rh)". www.cdc.gov. Retrieved 21 November 2015.
  54. "CDC - NIOSH Pocket Guide to Chemical Hazards - Rhodium (soluble compounds, as Rh)". www.cdc.gov. Retrieved 21 November 2015.