File (tool)

Last updated
Detail of a double-cut flat file showing cutting surfaces on both wide and narrow faces Surface of a file.jpg
Detail of a double-cut flat file showing cutting surfaces on both wide and narrow faces

A file is a tool used to remove fine amounts of material from a workpiece. It is common in woodworking, metalworking, and other similar trade and hobby tasks. Most are hand tools, made of a case hardened steel bar of rectangular, square, triangular, or round cross-section, with one or more surfaces cut with sharp, generally parallel teeth. A narrow, pointed tang is common at one end, to which a handle may be fitted. [1]

Contents

A rasp is a form of file with distinct, individually cut teeth used for coarsely removing large amounts of material. [2]

Files have also been developed with abrasive surfaces, such as natural or synthetic diamond grains or silicon carbide, allowing removal of material that would dull or resist steel files, such as ceramic.

History

Early filing or rasping has prehistoric roots and grew naturally out of the blending of the twin inspirations of cutting with stone cutting tools (such as hand axes) and abrading using natural abrasives, such as well-suited types of stone (for example, sandstone). [3] Relatedly, lapping is also quite ancient, with wood and beach sand offering a natural pair of lap and lapping compound. The Disston authors state, "To abrade, or file, ancient man used sand, grit, coral, bone, fish skin, and gritty woods,—also stone of varying hardness in connection with sand and water." [3]

The Bronze Age and the Iron Age had various kinds of files and rasps. Archaeologists have discovered rasps made from bronze in Egypt, dating back to the years 1200–1000 BC. Archaeologists have also discovered rasps made of iron used by the Assyrians, dating back to the 7th Century BC.

During the Middle Ages files were already quite advanced, thanks to the extensive talents of blacksmiths. [4] By the 11th century, there already existed hardened files that would seem quite modern even to today's eyes. [4] But although they existed, and could even have spread widely, in a geographical sense, via trade, they were not widespread in the cultural sense of the word—that is, most people, and even many smiths, did not have them. For example, in the 13th century, ornamental iron work at Paris was done skillfully with the aid of files, but the process was a secret known only to a master craftsman. [4] The Disston authors state, "It was not until the fourteenth century, however, that those who practiced art in ironwork began to use other tools, besides heat and the hammer, regularly." [4] This statement could mislead in the sense that stoning (with sandstone) and lapping (with wood, sand, and water) have never been rare activities among humans, or especially smiths. But the point is that modern iron or steel files, with teeth and hardening, and the material culture of intricate filing that would lead to locksmithing and gunsmithing, for example, are what took time to become common. But by the late Middle Ages, the transition was extensive. The Disston authors mention Nuremberg, Sheffield, and Remscheid (they use the Reimscheid spelling) as leading centers of production for files as well as tools in general. The activity in Remscheid reflects the metalworking spirit of the Rhine-Ruhr region in general (including Essen, Düsseldorf, and Cologne) rather than representing a single village of geniuses in isolation. (Considering the Disston authors' mention of the blacksmith guilds of 13th-century Florence and 15th-century England, coupled with their mention of Nuremberg, Sheffield, and Remscheid, the region that sweeps from Florence through Nuremberg, the Rhine-Ruhr, the Netherlands, and up to Sheffield, can be compared to the modern economics notation of the Blue Banana.) Most files of the period were smithed by hand in a sequence in which the iron was forged (heated and hammered), then the teeth were cut with a chisel (some of this action was just as much upsetting/swaging as it was cutting), and then the piece was hardened (by heating and then quenching), followed sometimes by tempering. Among the drawings of Leonardo da Vinci is a sketch of a machine tool for the cutting of files (the chisel would make one strike, swaging a tooth, then automatically advance into position for the next tooth, and strike again).

Prior to the industrialization of machining and the development of interchangeable parts during the 19th century, filing was much more important in the construction of mechanisms. Component parts were roughly shaped by forging, casting, and by primitive machining operations. These components were then individually hand-fitted for assembly by careful and deliberate filing. The potential precision of such fitting is much higher than generally assumed, but the components of such hand-fit assemblies are decidedly not interchangeable with those from another assembly. Locks, clocks, and firearms (flintlocks and earlier) were manufactured in this way for centuries before the Industrial Revolution.

Machining in the mid-19th century was heavily dependent on filing, because milling practice was slowly evolving out of its infancy. As late as the early 20th century, manufacturing often involved filing parts to precise shape and size. In today's manufacturing environment, milling and grinding have generally replaced this type of work, and filing (when it occurs at all) usually tends to be for deburring only. Skillful filing to shape and size is still a part of diemaking, moldmaking, toolmaking, etc., but even in those fields, the goal is usually to avoid handwork when possible.

Types

Relative tooth sizes for smooth, 2nd cut and bastard files FilesFlat-Smooth-2ndCut-Bastard.jpg
Relative tooth sizes for smooth, 2nd cut and bastard files

Files come in a wide variety of materials, sizes, shapes, cuts, and tooth configurations. The cross-section of a file can be flat, round, half-round, triangular, square, knife edge or of a more specialized shape. [5] [6] Steel files are made from high carbon steel [7] [8] (1.0 to 1.25% carbon) and may be through hardened [9] or case hardened. [10] [11]

There is no unitary international standard for file nomenclature; however, there are many generally accepted names for certain kinds of files. A file is "blunt" if its sides and width are both parallel throughout its length. [2] It is "tapered" if there is a reduction in its dimensions from its heel toward its point. A file may taper in width, in thickness, or both. [2] A "tang" is a protrusion at the heel, tapered, parallel sided, or conical, for gripping, inserting in a handle, or mounting in a chuck. [2]

The cut of the file refers to how fine its teeth are. They are defined as (from roughest to smoothest): rough, middle, bastard, second cut, smooth, and dead smooth. A single-cut file has one set of parallel teeth while a cross-cut or double-cut file has a second set of cuts forming diamond shaped cutting surfaces. [1] In Swiss-pattern files the teeth are cut at a shallower angle, and are graded by number, with a number 1 file being coarser than a number 2, etc. Most files have teeth on all faces, but some specialty flat files have teeth on only one face or one edge, so that the user can come right up to another edge without damaging the finish on it.

Some of the common shapes and their uses:

File Types and Uses
NameImageDescription
Mill fileThe most common shape, single-cut, rectangular in cross section, with an even thickness throughout their length; they may be either parallel sided or taper slightly in width from heel to end [9]
Flat file Flat File.jpg Similar to a mill file, but may be double-cut
Hand fileParallel in width and tapered in thickness, used for general work
Square file Square File.jpg Gradually tapered and cut on all four sides. Used for a wide variety of tasks
Three square/Triangular file Fil, Trekantfil, fingradig, lika pa alla tre sidorna - Skoklosters slott - 92578.tif Triangular in cross-section, which may taper gradually, often to a point on smaller files. The sides may be equal in cross-section, or have two long and one short surface
Rat tail Queue de rat.png Round in cross-section and gradually tapered over their length. They are used for enlarging round holes or cutting scalloped edges
Round Round File.jpg Round in cross section and equal diameter over their length (not tapered). They are used for smoothing inside holes and circular grooves, and for sharpening certain kinds of saw.
Half round file Half-Round File.jpg Has one flat and one convex surface, and either tapering slightly or maintaining an even thickness, width, or both over their length
Combination fileTangless, flat sided or half-round, with two to four cutting surfaces, typically including a combination of single cut, double cut, or rasp

Diamond files

A selection of diamond impregnated files DiamondFiles.jpg
A selection of diamond impregnated files

Instead of having teeth cut into the file's working surface, diamond files have small particles of industrial diamond embedded in their surface (or into a softer material that is bonded to the underlying surface of the file). The use of diamonds in this manner allows the file to be used effectively against extremely hard materials, such as stone, glass or very hard metals such as hardened steel or carbide against which a standard steel file is ineffective. Diamond files are also the only type that may be used with a back-and-forth motion without damaging the file. These may also be called diamond laps, as the "teeth" are not regular projections, as in a file, but particles, usually shaped and located randomly and held in place by a softer (any other) material.

Needle files

A needle file set depicting various shapes, from top to bottom: pillar, half round, barrette, square, round, triangular. Glardon Vallorbe LA2442-0 140 mm Swiss cut 0 6-piece needle file set.png
A needle file set depicting various shapes, from top to bottom: pillar, half round, barrette, square, round, triangular.

The image to the left shows a selection of needle files in an assortment of cross sectional shapes.

Needle files are small files that are used in applications where the surface finish takes priority over metal removal rates but they are most suited for smaller work pieces. They are often sold in sets, including different shapes.

Riffler files

A selection of riffler files RifflerFiles.jpg
A selection of riffler files

Riffler files are small to medium-sized files in an assortment of cross sectional shapes and profiles. The varying profiles and shapes enable them to be used in hard to reach, or unusually shaped areas. They are often used as an intermediate step in die making where the surface finish of a cavity die may need to be improved, e.g. in plastic injection moulding or die casting.

Machine files

A selection of machine files MachineFiles.jpg
A selection of machine files

Files are produced specifically for use in a filing machine, which is similar in appearance to a scroll saw with a vertically reciprocating file mounted in the middle of a table. A workpiece is manipulated around the file's face as the shape requires.

A cone point (as pictured in the top and bottom files at left) allows a file to center itself in its mount. Files with flat mounting surfaces must be secured with set screws.

Filing machines are rarely seen in modern production environments, but may be found in older toolrooms or diemaking shops as an aid in the manufacture of specialist tooling.

Escapement files

Escapement files, also known as watchmaker's files, are a classification of short, (very) thin files with bastard-cut (medium coarseness) or embedded diamond surfaces, similar to needle files in form and function but smaller. Typical dimensions are on the order of approximately 100–140 mm (4–512 in.) in length and 3–5 mm (18316 in.) in width. Best used for fine, delicate work on small pieces or mechanisms (such as escapements), escapement files are commonly used by clock and watchmakers, as well as in crafting jewelry.

Dental files

During root canal therapy, round files ranging from .06-to-0.8-millimetre (0.0024 to 0.0315 in) diameter files are used to smooth the narrow canals of the interior of the tooth and thus facilitate disinfection of the internal surface. Typically the files are made of stainless steel or nickel titanium (NiTi) and come in a variety of styles. Mechanized files, known as rotary files, are also commonly used. These files attach to the head of a specific oscillating or rotating drill.

Use

Files have forward-facing cutting teeth, and cut most effectively when pushed over the workpiece. A variety of strokes are employed to stabilize the cutting action and produce a varied result. [2] Pulling a file directly backwards on a workpiece will cause the teeth to dull according to some sources. Other sources including a youtube experiment run in 2021 using coarse, medium and fine files dispute this. [12] Draw filing is an operation in which the file is grasped at each end, and with an even pressure alternately pulled and pushed perpendicularly over the work. [2] A variation involves laying the file sideways on the work, and carefully pushing or pulling it across the work. This catches the teeth of the file sideways instead of head on, and an extremely fine shaving action is produced. There are also varying strokes that produce a combination of the straight ahead stroke and the drawfiling stroke, and very fine work can be attained in this fashion. Using a combination of strokes, and progressively finer files, a skilled operator can attain a surface that is perfectly flat and near flawless finish.

Pinning refers to the clogging of the file teeth with pins, which are material shavings.[ citation needed ] These pins cause the file to lose its cutting ability and can scratch the workpiece. A file card, which is a brush with metal bristles, is used to clean the file. (The name, "card", is the same as used for the "raising cards" (spiked brushes) used in woolmaking.)[ citation needed ] Chalk can help prevent pinning. [13]

See also

Related Research Articles

<span class="mw-page-title-main">Chisel</span> Tool for cutting and carving

A chisel is a wedged hand tool with a characteristically shaped cutting edge of blade on its end for carving or cutting a hard material. The tool can be used by hand, struck with a mallet, or applied with mechanical power. The handle and blade of some types of chisel are made of metal or wood with a sharp edge in it.

<span class="mw-page-title-main">Lathe</span> Machine tool which rotates the work piece on its axis

A lathe is a machine tool that rotates a workpiece about an axis of rotation to perform various operations such as cutting, sanding, knurling, drilling, deformation, facing, and turning, with tools that are applied to the workpiece to create an object with symmetry about that axis.

A saw is a tool consisting of a tough blade, wire, or chain with a hard toothed edge used to cut through material. Various terms are used to describe toothed and abrasive saws.

<span class="mw-page-title-main">Shaper</span> Machine tool which linearly cuts or grinds the workpiece

In machining, a shaper is a type of machine tool that uses linear relative motion between the workpiece and a single-point cutting tool to machine a linear toolpath. Its cut is analogous to that of a lathe, except that it is (archetypally) linear instead of helical.

<span class="mw-page-title-main">Machining</span> Material-removal process; manufacturing process

Machining is a manufacturing process whereby a desired shape or part is achieved by the controlled removal of material from a larger piece of raw material by cutting; it is most often performed with metal material. These processes are collectively called subtractive manufacturing, which utilizes machine tools, in contrast to additive manufacturing, which uses controlled addition of material.

<span class="mw-page-title-main">Drill bit</span> Type of cutting tool

A drill bit is a cutting tool used in a drill to remove material to create holes, almost always of circular cross-section. Drill bits come in many sizes and shapes and can create different kinds of holes in many different materials. In order to create holes drill bits are usually attached to a drill, which powers them to cut through the workpiece, typically by rotation. The drill will grasp the upper end of a bit called the shank in the chuck.

<span class="mw-page-title-main">Plane (tool)</span> Tool for working with wood

A hand plane is a tool for shaping wood using muscle power to force the cutting blade over the wood surface. Some rotary power planers are motorized power tools used for the same types of larger tasks, but are unsuitable for fine-scale planing, where a miniature hand plane is used.

Broaching is a machining process that uses a toothed tool, called a broach, to remove material. There are two main types of broaching: linear and rotary. In linear broaching, which is the more common process, the broach is run linearly against a surface of the workpiece to produce the cut. Linear broaches are used in a broaching machine, which is also sometimes shortened to broach. In rotary broaching, the broach is rotated and pressed into the workpiece to cut an axisymmetric shape. A rotary broach is used in a lathe or screw machine. In both processes the cut is performed in one pass of the broach, which makes it very efficient.

<span class="mw-page-title-main">Rasp</span> Filing tool

A rasp is a coarse form of file used for coarsely shaping wood or other material. Typically a hand tool, it consists of a generally tapered rectangular, round, or half-round sectioned bar of case hardened steel with distinct, individually cut teeth. A narrow, pointed tang is common at one end, to which a handle may be fitted.

<span class="mw-page-title-main">Turning</span> Machining process

Turning is a machining process in which a cutting tool, typically a non-rotary tool bit, describes a helix toolpath by moving more or less linearly while the workpiece rotates.

Milling cutters are cutting tools typically used in milling machines or machining centres to perform milling operations. They remove material by their movement within the machine or directly from the cutter's shape.

<span class="mw-page-title-main">Boring (manufacturing)</span> Process of enlarging an already-drilled hole with a single-point cutting tool

In machining, boring is the process of enlarging a hole that has already been drilled by means of a single-point cutting tool, such as in boring a gun barrel or an engine cylinder. Boring is used to achieve greater accuracy of the diameter of a hole, and can be used to cut a tapered hole. Boring can be viewed as the internal-diameter counterpart to turning, which cuts external diameters.

In the context of machining, a cutting tool or cutter is typically a hardened metal tool that is used to cut, shape, and remove material from a workpiece by means of machining tools as well as abrasive tools by way of shear deformation. The majority of these tools are designed exclusively for metals.

This glossary of woodworking lists a number of specialized terms and concepts used in woodworking, carpentry, and related disciplines.

<span class="mw-page-title-main">Float (woodworking)</span> Metal file used for making wooden hand planes

A woodworking float, also called a planemaker's float, is a tapered, flat, single cut file of two types: edge float and the flat sided float which are traditional woodworking tools generally used when making a wooden plane. The float is used to cut, flatten, and smooth key areas of wood by abrasion. Despite the name its woodworking uses go well beyond planemaking.

<span class="mw-page-title-main">Grinding (abrasive cutting)</span> Machining process using a grinding wheel

Grinding is a type of abrasive machining process which uses a grinding wheel as cutting tool.

<span class="mw-page-title-main">Burnishing (metal)</span> Deformation of a metal surface due to friction

Burnishing is the plastic deformation of a surface due to sliding contact with another object. It smooths the surface and makes it shinier. Burnishing may occur on any sliding surface if the contact stress locally exceeds the yield strength of the material. The phenomenon can occur both unintentionally as a failure mode, and intentionally as part of a metalworking or manufacturing process. It is a squeezing operation under cold working.

In mechanical engineering, a key is a machine element used to connect a rotating machine element to a shaft. The key prevents relative rotation between the two parts and may enable torque transmission. For a key to function, the shaft and rotating machine element must have a keyway and a keyseat, which is a slot and pocket in which the key fits. The whole system is called a keyed joint. A keyed joint may allow relative axial movement between the parts.

<span class="mw-page-title-main">Blanking and piercing</span> Shearing processes

Blanking and piercing are shearing processes in which a punch and die are used to produce parts from coil or sheet stock. Blanking produces the outside features of the component, while piercing produces internal holes or shapes. The web is created after multiple components have been produced and is considered scrap material. The "slugs" produced by piercing internal features are also considered scrap. The terms "piercing" and "punching" can be used interchangeably.

Arbor milling is a cutting process which removes material via a multi-toothed cutter. An arbor mill is a type of milling machine characterized by its ability to rapidly remove material from a variety of materials. This milling process is not only rapid but also versatile.

References

  1. 1 2 Lye 1993 , pp. 12–13.
  2. 1 2 3 4 5 6 Facts About Files. C.O. Öberg & Co. 1930.
  3. 1 2 Henry Disston & Sons, Inc 1920, pp. 5–15.
  4. 1 2 3 4 Henry Disston & Sons, Inc 1920, pp. 16–17.
  5. "Types of Files". Files and Filing : Machinery's Reference Series : Number 48. Industrial Press. 1909. pp. 3–12.
  6. "Files". Machinery’s Handbook. The Industrial Press, New York. 1924. pp. 1140–1145.
  7. Goddard, Wayne (2000). The wonder of knifemaking. Krause Publications. pp. 30–31. ISBN   978-0-87341-798-3.
  8. R.L., Timings (2005). Newnes mechanical engineer's pocket book (3rd ed.). Elsevier. p. 560. ISBN   978-0-7506-6508-7.
  9. 1 2 Henry Disston & Sons, Inc 1920, p. 43.
  10. A.G., Atkins (2008). The science and engineering of cutting: the mechanics and processes of separating, scratching and puncturing biomaterials, metals and non-metals. Butterworth-Heinemann. p. 187. ISBN   978-0-7506-8531-3. The reference actually states that they are hardened to 40 HRC, but the HRC scale is commonly incorrectly used on case hardened surfaces, so the value has been converted to the correct superficial Rockwell scale.
  11. Martin, Thomas (1813). The circle of the mechanical arts. London. pp.  341.
  12. Fireball Tool (Nov 20, 2021). "I Filed Backwards 2500 Times, And This Happened". YouTube. Retrieved 13 February 2024.
  13. Lye 1993 , p. 13.

Bibliography