End mill

Last updated
Several types of end mills MillingCutterSlotEndMillBallnose.jpg
Several types of end mills

An end mill is a type of milling cutter, a cutting tool used in industrial milling applications. It is distinguished from the drill bit in its application, geometry, and manufacture. While a drill bit can only cut in the axial direction, most milling bits can cut in the radial direction. Not all mills can cut axially; those designed to cut axially are known as end mills.

Contents

End mills are used in milling applications such as profile milling, tracer milling, face milling, and plunging.

Types

Several broad categories of end- and face-milling tools exist, such as center-cutting versus non-center-cutting (whether the mill can take plunging cuts); and categorization by number of flutes; by helix angle; by material; and by coating material. Each category may be further divided by specific application and special geometry.

A very popular helix angle, especially for general cutting of metal materials, is 30°. For finishing end mills, it is common to see more tight spiral, with helix angles 45° or 60°. Straight flute end mills (helix angle 0°) are used in special applications, like milling plastics or composites of epoxy and glass. Straight flute end mills were also used historically for metal cutting before invention of helical flute end mill by Carl A. Bergstrom of Weldon Tool Company in 1918.

There exist end mills with variable flute helix or pseudo-random helix angle, and discontinuous flute geometries, to help break material into smaller pieces while cutting (improving chip evacuation and reducing risk of jamming) and reduce tool engagement on big cuts. Some modern designs also include small features like the corner chamfer and chipbreaker. While more expensive, due to more complex design and manufacturing process, such end mills can last longer due to less wear and improve productivity in high speed machining (HSM) applications.

It is becoming increasingly common for traditional solid end mills to be replaced by more cost-effective inserted cutting tools (which, though more expensive initially, reduce tool-change times and allow for the easy replacement of worn or broken cutting edges rather than the entire tool). Another advantage of indexable end mills(another term for tools with inserts) is their ability to be flexible with what materials they can work on, rather than being specialized for a certain material type like more traditional end mills. For the time being however, this only generally applies to larger diameter end mills, at or above 3/4 of an inch. These end mills are generally used for roughing operation, whereas traditional end mills are still used for finishing and work where a smaller diameter, or a tighter tolerance, are required; modular tooling introduces additional margins of error that can compound with each new component, whereas a solid tool can provide a smaller tolerance range for the same price level.

End mills are sold in both imperial and metric shank and cutting diameters. In the USA, metric is readily available, but it is only used in some machine shops and not others; in Canada, due to the country's proximity to the US, much the same is true. In Asia and Europe, metric diameters are standard.

Geometry

A variety of grooves, slots, and pockets in the work-piece may be produced from a variety of tool bits. Common tool bit types are: square end cutters, ball end cutters, t-slot cutters, and shell mills. Square end cutters can mill square slots, pockets, and edges. Ball end cutters mill radiused slots or fillets. T-slot cutters mill exactly that: T-shaped slots. Shell end cutters are used for large flat surfaces and for angle cuts. There are variations of these tool types as well.

There are four critical angles of each cutting tool: end cutting edge angle, axial relief angle, radial relief angle, and radial rake angle.

Depending on the material being milled, and what task should be performed, different tool types and geometry may be used. For instance, when milling a material like aluminum, it may be advantageous to use a tool with very deep, polished flutes, a very sharp cutting edge and high rake angles. When machining a tough material such as stainless steel, however, shallow flutes and a squared-off cutting edge will optimize material removal and tool life.

A wide variety of materials are used to produce the cutting tools. Carbide inserts are the most common because they are good for high production milling. High speed steel is commonly used when a special tool shape is needed, not usually used for high production processes. Ceramics inserts are typically used in high speed machining with high production. Diamond inserts are typically used on products that require tight tolerances, typically consisting of high surface qualities (nonferrous or non-metallic materials).

In the early 90s, use of coatings became more common. Coatings can provide various benefits including wear resistance, reduction of friction to assist with chip evacuation, and increased heat resistance. Most of these coatings are referred to by their chemical composition.

Aluminum titanium nitride (AlTiN) coated end mills, coated using the cathodic arc deposition technique AlTiNCoatedEndmill NanoShieldPVD Thailand.JPG
Aluminum titanium nitride (AlTiN) coated end mills, coated using the cathodic arc deposition technique
Common End Mill Coatings
CoatingAppearanceRemarks
TiN Yellow/GoldA basic coating that has fallen out of wide use on end mills. Still sees wide use in drills.
TiCNBluish-grey
TiAlN and AlTiN Dark grey or dark purpleAn extremely popular coating.
TiAlCrN, AlTiCrN and AlCrTiNBluish-greyA PVD coating

Though PCD veins is not a coating, some end mills are manufactured with a 'vein' of polycrystalline diamond. The vein is formed in a high temperature-high pressure environment. The vein is formed in a blank and then the material is ground out along the vein to form the cutting edge. Although the tools can be very costly, they can last many times longer than other tooling.

Advances in end mill coatings are being made, however, with coatings such as Amorphous Diamond and nanocomposite PVD coatings beginning to be seen at high-end shops (as of 2004).

Although coatings have a typical color, manufacturers may modify the coating process or add additives to change the appearance without affecting the performance as part of their branding. Bright blues, reds and turquoise are among the "unnatural" colors.

End mills are typically made on CNC (computer numeric controlled) tool and cutter grinder machines under high-pressure lubricants such as water, water-soluble oil, and high-flashpoint oil. Grinding inside the machine is accomplished with abrasive wheels mounted on a spindle (and in some cases, multiple spindles). Depending on what material is being ground, these wheels are made with industrial diamond (when grinding tungsten carbide), cubic boron nitride (when grinding cobalt steel), and other materials (when grinding, for instance, ceramics), set in a bond (sometimes copper).

Flute types

Single: Is used to remove lots of material at a very fast rate. Traditionally used in a roughing operation. [1]

2 Flute: Allows for more chips to be removed from the part. Primarily used in slotting and pocketing operations in non-ferrous materials.

3 Flute: Similar to the 2 Flute end mill but can be used to cut ferrous and non-ferrous materials

4+ Flute: Designed to run at faster feed rates but due to having more flutes it causes issues with chip removal.

Operations

Roughing: the purpose is to remove a big chunk of material from workpieces, sometimes to get rid of excess material in order to get closer to the final shape. [2] It attempts to get really close to the finalized shape. Traditionally it's the first major operation in the machining process.

Contouring/Profiling: this is a process used to mill different surfaces such as flat or irregular ones. This type of process can be done during the roughing or finishing phase of the overall operation. [3]

Facing: is an operation used to face the part down to specified dimension. Facing can be done using end mills or a special face mill. [4] [5] [6]

Pocketing/Slotting: this is a process to make a pocket on the inside of the part. A pocket can be shallow or deep, depending on specs. [7]

See also

Related Research Articles

<span class="mw-page-title-main">Router (woodworking)</span> Woodworking power tool

The router is a power tool with a flat base and a rotating blade extending past the base. The spindle may be driven by an electric motor or by a pneumatic motor. It routs an area in hard material, such as wood or plastic. Routers are used most often in woodworking, especially cabinetry. They may be handheld or affixed to router tables. Some woodworkers consider the router one of the most versatile power tools.

<span class="mw-page-title-main">Metalworking</span> Process of making items from metal

Metalworking is the process of shaping and reshaping metals to create useful objects, parts, assemblies, and large scale structures. As a term it covers a wide and diverse range of processes, skills, and tools for producing objects on every scale: from huge ships, buildings, and bridges down to precise engine parts and delicate jewelry.

<span class="mw-page-title-main">Machining</span> Material-removal process; manufacturing process

Machining is a manufacturing process whereby a desired shape or part is achieved by the controlled removal of material from a larger piece of raw material by cutting; most often performed with metal material. These processes are collectively called subtractive manufacturing, which utilizes machine tools, in contrast to additive manufacturing, which uses controlled addition of material.

<span class="mw-page-title-main">Drill bit</span> Type of cutting tool

Drill bits are cutting tools used in a drill to remove material to create holes, almost always of circular cross-section. Drill bits come in many sizes and shapes and can create different kinds of holes in many different materials. In order to create holes drill bits are usually attached to a drill, which powers them to cut through the workpiece, typically by rotation. The drill will grasp the upper end of a bit called the shank in the chuck.

<span class="mw-page-title-main">Drilling</span> Cutting process that uses a drill bit to cut a circular hole into the workpiece

Drilling is a cutting process where a drill bit is spun to cut a hole of circular cross-section in solid materials. The drill bit is usually a rotary cutting tool, often multi-point. The bit is pressed against the work-piece and rotated at rates from hundreds to thousands of revolutions per minute. This forces the cutting edge against the work-piece, cutting off chips (swarf) from the hole as it is drilled.

<span class="mw-page-title-main">Tool bit</span> Non-rotary cutting tool used in machining

In machining, a tool bit is a non-rotary cutting tool used in metal lathes, shapers, and planers. Such cutters are also often referred to by the set-phrase name of single-point cutting tool, as distinguished from other cutting tools such as a saw or water jet cutter. The cutting edge is ground to suit a particular machining operation and may be resharpened or reshaped as needed. The ground tool bit is held rigidly by a tool holder while it is cutting.

<span class="mw-page-title-main">Countersink</span> Conical hole cut so a fastener can be inserted flush with the surface

In manufacturing, a countersink is a conical hole cut into a manufactured object, or the cutter used to cut such a hole. A common use is to allow the head of a countersunk bolt, screw or rivet, when placed in the hole, to sit flush with or below the surface of the surrounding material. A countersink may also be used to remove the burr left from a drilling or tapping operation, thereby improving the finish of the product and removing any hazardous sharp edges.

<span class="mw-page-title-main">Tool and cutter grinder</span>

A Tool and Cutter Grinder is used to sharpen milling cutters and tool bits along with a host of other cutting tools.

<span class="mw-page-title-main">Turning</span> Machining process

Turning is a machining process in which a cutting tool, typically a non-rotary tool bit, describes a helix toolpath by moving more or less linearly while the workpiece rotates.

Milling cutters are cutting tools typically used in milling machines or machining centres to perform milling operations. They remove material by their movement within the machine or directly from the cutter's shape.

<span class="mw-page-title-main">Tipped tool</span> Cutting tool whose cutting edge is a separate piece of material

A tipped tool is any cutting tool in which the cutting edge consists of a separate piece of material that is brazed, welded, or clamped onto a body made of another material. In the types in which the cutter portion is an indexable part clamped by a screw, the cutters are called inserts. Tipped tools allow each part of the tool, the shank and the cutter(s), to be made of the material with the best properties for its job. Common materials for the cutters include cemented carbide, polycrystalline diamond, and cubic boron nitride. Tools that are commonly tipped include milling cutters, tool bits, router bits, and saw blades.

<span class="mw-page-title-main">Boring (manufacturing)</span> Process of enlarging an already-drilled hole with a single-point cutting tool

In machining, boring is the process of enlarging a hole that has already been drilled by means of a single-point cutting tool, such as in boring a gun barrel or an engine cylinder. Boring is used to achieve greater accuracy of the diameter of a hole, and can be used to cut a tapered hole. Boring can be viewed as the internal-diameter counterpart to turning, which cuts external diameters.

In the context of machining, a cutting tool or cutter is typically a hardened metal tool that is used to cut, shape, and remove material from a workpiece by means of machining tools as well as abrasive tools by way of shear deformation. The majority of these tools are designed exclusively for metals.

<span class="mw-page-title-main">Diamond tool</span>

A diamond tool is a cutting tool with diamond grains fixed on the functional parts of the tool via a bonding material or another method. As diamond is a superhard material, diamond tools have many advantages as compared with tools made with common abrasives such as corundum and silicon carbide.

Gear manufacturing refers to the making of gears. Gears can be manufactured by a variety of processes, including casting, forging, extrusion, powder metallurgy, and blanking. As a general rule, however, machining is applied to achieve the final dimensions, shape and surface finish in the gear. The initial operations that produce a semifinishing part ready for gear machining as referred to as blanking operations; the starting product in gear machining is called a gear blank.

<span class="mw-page-title-main">Grinding (abrasive cutting)</span> Machining process using a grinding wheel

Grinding is a type of abrasive machining process which uses a grinding wheel as cutting tool.

In mechanical engineering, a key is a machine element used to connect a rotating machine element to a shaft. The key prevents relative rotation between the two parts and may enable torque transmission. For a key to function, the shaft and rotating machine element must have a keyway and a keyseat, which is a slot and pocket in which the key fits. The whole system is called a keyed joint. A keyed joint may allow relative axial movement between the parts.

In manufacturing, threading is the process of creating a screw thread. More screw threads are produced each year than any other machine element. There are many methods of generating threads, including subtractive methods ; deformative or transformative methods ; additive methods ; or combinations thereof.

Arbor milling is a cutting process which removes material via a multi-toothed cutter. An arbor mill is a type of milling machine characterized by its ability to rapidly remove material from a variety of materials. This milling process is not only rapid but also versatile.

<span class="mw-page-title-main">Milling (machining)</span> Removal of material from a workpiece using rotating tools

Milling is the process of machining using rotary cutters to remove material by advancing a cutter into a workpiece. This may be done by varying directions on one or several axes, cutter head speed, and pressure. Milling covers a wide variety of different operations and machines, on scales from small individual parts to large, heavy-duty gang milling operations. It is one of the most commonly used processes for machining custom parts to precise tolerances.

References

  1. "Basic End Mills Technical Information | MSC Industrial Supply Co". www.mscdirect.com. Retrieved 2023-02-14.
  2. "Roughing vs Finishing in Machining: What Are Their Differences - WayKen". Rapid Prototype Manufacturing in China - WayKen. 2022-11-11. Retrieved 2023-02-14.
  3. "Contour Milling/Profiling - CNC Term & Definition | Owens Industries, Inc Oak Creek, Wisconsin". www.owensind.com. Retrieved 2023-02-14.
  4. SPW (2020-12-01). "THE FACING OPERATION IN MACHINING, EXPLAINED | Winn Machine" . Retrieved 2023-02-14.
  5. admin (2019-06-29). "A Beginner's Guide to Facing Operations | Blog Posts". OneMonroe. Retrieved 2023-02-14.
  6. SPW (2020-08-19). "COMMON MILLING OPERATIONS | Winn Machine" . Retrieved 2023-02-14.
  7. "Sandvik Coromant". Sandvik Coromant. Retrieved 2023-02-14.