Taps and dies are tools used to create screw threads, which is called threading. Many are cutting tools; others are forming tools. A tap is used to cut or form the female portion of the mating pair (e.g. a nut). A die is used to cut or form the male portion of the mating pair (e.g. a bolt). The process of cutting or forming threads using a tap is called tapping, whereas the process using a die is called threading.
Both tools can be used to clean up a thread, which is called chasing. However, using an ordinary tap or die to clean threads generally removes some material, which results in looser, weaker threads. Because of this, machinists generally clean threads with special taps and dies—called chasers —made for that purpose. Chasers are made of softer materials and don't cut new threads. However they still fit tighter than actual fasteners, and are fluted like regular taps and dies so debris can escape. Car mechanics, for example, use chasers on spark plug threads, to remove corrosion and carbon build-up.
While modern nuts and bolts are routinely made of metal, this was not the case in earlier ages, when woodworking tools were employed to fashion very large wooden bolts and nuts for use in winches, windmills, watermills, and flour mills of the Middle Ages; the ease of cutting and replacing wooden parts was balanced by the need to resist large amounts of torque, and bear up against ever heavier loads of weight. As the loads grew even heavier, bigger and stronger bolts were needed to resist breakage. Some nuts and bolts were measured by the foot or yard. This development eventually led to a complete replacement of wood parts with metal parts of an identical measure. When a wooden part broke, it usually snapped, ripped, or tore. With the splinters having been sanded off, the remaining parts were reassembled, encased in a makeshift mold of clay, and molten metal poured into the mold, so that an identical replacement could be made on the spot.
Metalworking taps and dies were often made by their users during the 18th and 19th centuries (especially if the user was skilled in tool making), using such tools as lathes and files for the shaping, and the smithy for hardening and tempering. Thus builders of, for example, locomotives, firearms, or textile machinery were likely to make their own taps and dies. During the 19th century the machining industries evolved greatly, and the practice of buying taps and dies from suppliers specializing in them gradually supplanted most such in-house work. Joseph Clement was one such early vendor of taps and dies, starting in 1828. [1] With the introduction of more advanced milling practice in the 1860s and 1870s, tasks such as cutting a tap's flutes with a hand file became a thing of the past. In the early 20th century, thread-grinding practice went through significant evolution, further advancing the state of the art (and applied science) of cutting screw threads, including those of taps and dies.
During the 19th and 20th centuries, thread standardization was evolving simultaneously with the techniques of thread generation, including taps and dies.
The largest tap and die company to exist in the United States was Greenfield Tap & Die (GTD) of Greenfield, Massachusetts. GTD was so vital to the Allied war effort from 1940–1945 that anti-aircraft guns were placed around its campus in anticipation of possible Axis air attack[ citation needed ]. The GTD brand is now a part of Widia Products Group.
A tap cuts or forms a thread on the inside surface of a hole, creating a female surface that functions like a nut. The three taps in the image illustrate the basic types commonly used by most machinists:
Whether manual or automatic, the processing of tapping begins with forming (usually by drilling) and slightly countersinking a hole to a diameter somewhat smaller than the tap's major diameter. The correct hole diameter is listed on a drill and tap size chart, a standard reference in many machine shops. The proper diameter for the drill is called the tap drill size. Without a tap drill chart, you can compute the correct tap drill diameter with:
where is the tap drill size, is the major diameter of the tap (e.g., 3⁄8 in for a 3⁄8-16 tap), and is the thread pitch (1⁄16 inch in the case of a 3⁄8-16 tap). For a 3⁄8-16 tap, the above formula would produce 5⁄16, which is the correct tap drill diameter. The above formula ultimately results in an approximate 75% thread.
Since metric threads specify the pitch directly, the correct tap drill diameter for metric-sized taps is computed with:
where is the tap drill size, is the major diameter of the tap (e.g., 10 mm for a M10×1.5 tap), and pitch is the pitch of the thread (1.5 mm in the case of a standard M10 tap) and so the correct drill size is 8.5 mm. This works for both fine and coarse pitches, and also produces an approximate 75% thread.
With soft or average hardness materials, such as plastic, aluminum or mild steel, common practice is to use an intermediate (plug) tap to cut the threads. If the threads must extend to the bottom of a blind hole, the machinist uses an intermediate (plug) tap to cut threads until the point of the tap reaches bottom, and then switches to a bottoming tap to finish. The machinist must frequently eject chips to avoid jamming or breaking the tap. With hard materials, the machinist may start with a taper tap, whose less severe diameter transition reduces the torque required to cut threads. To threads to the bottom of a blind hole, the machinist follows the taper tap with an intermediate (plug) tap, and then a bottoming tap to finish.
Tapping may either be achieved by a hand tapping by using a set of taps (first tap, second tap & final (finish) tap) or using a machine to do the tapping, such as a lathe, radial drilling machine, bench type drill machine, pillar type drill machine, vertical milling machines, HMCs, VMCs. Machine tapping is faster, and generally more accurate because human error is eliminated. Final tapping is achieved with single tap.
Although in general machine tapping is more accurate, tapping operations have traditionally been very tricky to execute due to frequent tap breakage and inconsistent quality of tapping.
Common reasons for tap breakage are:
To overcome these problems, special tool holders are required to minimize the chances of tap breakage during tapping. These are usually classified as conventional tool holders and CNC tool holders.
Various tool holders may be used for tapping depending on the requirements of the user:
The biggest problem with simple hand-tapping is accurately aligning the tap with the hole so that they are coaxial—in other words, going in straight instead of on an angle. The operator must get this alignment close to ideal to produce good threads and not break the tap. The deeper the thread depth, the more pronounced the effect of the angular error. With a depth of 1 or 2 diameters, it matters little. With depths beyond 2 diameters, the error becomes too pronounced to ignore. Another fact about alignment is that the first thread cut or two establishes the direction that the rest of the threads will follow. You can't correct the angle after the first thread or two.
To help with this alignment task, several kinds of jigs and fixtures can be used to provide the correct geometry (i.e., accurate coaxiality with the hole) without having to use freehand skill to approximate it:
Generally the following features are required of tapping holders:
Tapping case studies with typical examples of tapping operations in various environments are shown on source machinetoolaid.com
Double-lead taps and insert taps need different speeds and feeds, and different starting hole diameters than other taps.
Imperial tap and drill bit size table | Metric tap and drill bit size table | [5] [6] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|
A comprehensive reference for US tap and drill bit sizes can be found in the chart provided by Albany County Fasteners. This chart includes detailed specifications for machine screw size, threads per inch, major and minor diameters, and appropriate drill sizes for different materials.
Machine Screw Size | Number of Threads Per Inch (TPI) | Major Diameter | Minor Diameter | Tap drills | Clearance Drill | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
75% Thread for Aluminum, Brass, & Plastics | 50% Thread for Steel, Stainless, & Iron | Close Fit | Free Fit | ||||||||
Drill Size | Decimal Equiv. | Drill Size | Decimal Equiv. | Drill Size | Decimal Equiv. | Drill Size | Decimal Equiv. | ||||
0 | 80 | .0600 | .0447 | 3/64 | .0469 | 55 | .0520 | 52 | .0635 | 50 | .0700 |
1 | 64/72 | .0730 | .0538/.0560 | 53 | .0595 | 1/16 | .0625 | 48 | .0760 | 46 | .0810 |
2 | 56/64 | .0860 | .0641/.0668 | 50 | .0700 | 49 | .0730 | 43 | .0890 | 41 | .0960 |
3 | 48/56 | .0990 | .0734/.0771 | 47 | .0785 | 44 | .0860 | 37 | .1040 | 35 | .1100 |
4 | 40/48 | .1120 | .0813/.0864 | 43 | .0890 | 41 | .0960 | 32 | .1160 | 30 | .1285 |
5 | 40/44 | .1250 | .0943/.0971 | 38 | .1015 | 7/64 | .1094 | 30 | .1285 | 29 | .1360 |
6 | 32/40 | .1380 | .0997/.1073 | 36 | .1065 | 32 | .1160 | 27 | .1440 | 25 | .1495 |
8 | 32/36 | .1640 | .1257/.1299 | 29 | .1360 | 27 | .1440 | 18 | .1695 | 16 | .1770 |
10 | 24/32 | .1900 | .1389/.1517 | 25 | .1495 | 20 | .1610 | 9 | .1960 | 7 | .2010 |
12 | 24/28/32 | .2160 | .1649/.1722/.1777 | 16 | .1770 | 12 | .1890 | 2 | .2210 | 1 | .2280 |
1⁄4 | 20/28/32 | .2500 | .1887/.2062/.2117 | 7 | .2010 | 7/32 | .2188 | F | .2570 | H | .2660 |
5⁄16 | 18/24/32 | .3125 | .2443/.2614/.2742 | F | .2570 | J | .2770 | P | .3230 | Q | .3320 |
3⁄8 | 16/24/32 | .3750 | .2983/.3239/.3367 | 5/16 | .3125 | Q | .3320 | W | .3860 | X | .3970 |
7⁄16 | 14/20/28 | .4375 | .3499/.3762/.3937 | U | .3680 | 25/64 | .3906 | 29/64 | .4531 | 15/32 | .4687 |
1⁄2 | 13/20/28 | .5000 | .4056/.4387/.4562 | 27/64 | .4219 | 29/64 | .4531 | 33/64 | .5156 | 17/32 | .5312 |
9⁄16 | 12/18/24 | .5625 | .4603/.4943/.5514 | 31/64 | .4844 | 33/64 | .5156 | 37/64 | .5781 | 19/32 | .5938 |
5⁄8 | 11/18/24 | .6250 | .5135/.5568/.5739 | 17/32 | .5312 | 37/64 | .5781 | 41/64 | .6406 | 21/32 | .6562 |
5⁄8 | 11/18/24 | .6250 | .5135/.5568/.5739 | 17/32 | .5312 | 9/16 | .5625 | 41/64 | .6406 | 21/32 | .6562 |
11⁄16 | 24 | .6875 | .6364 | 41/64 | .6406 | 21/32 | .6562 | 45/64 | .7031 | 23/32 | .7188 |
3⁄4 | 10/16/20 | .7500 | .6273/.6733/.6887 | 21/32 | .6562 | 11/16 | .6875 | 49/64 | .7656 | 25/32 | .7812 |
13⁄16 | 20 | .8125 | .7512 | 49/64 | .7656 | 25/32 | .7812 | 53/64 | .8281 | 27/32 | .8438 |
7⁄8 | 9/14/20 | .8750 | .7387/.7874/.8137 | 49/64 | .7656 | 51/64 | .7969 | 57/64 | .8906 | 29/32 | .9062 |
15⁄16 | 20 | .9375 | .8762 | 57/64 | .8906 | 29/32 | .9062 | 61/64 | .9531 | 31/32 | .9688 |
1 | 8/12/20 | 1.0000 | .8466/.8978/.9387 | 7/8 | .8750 | 59/64 | .9219 | 1-1/64 | 1.0156 | 1-1/32 | 1.0313 |
1+1⁄16 | 18 | 1.0625 | .9943 | 1.000 | 1.000 | 1-1/64 | 1.0156 | 1-5/64 | 1.0781 | 1-3/32 | 1.0938 |
1+1⁄8 | 7/12/18 | 1.1250 | .9497/1.0228/1.0568 | 63/64 | .9844 | 1-1/32 | 1.0313 | 1-9/64 | 1.1406 | 1-5/32 | 1.1562 |
1+3⁄16 | 18 | 1.1875 | 1.1193 | 1-1/8 | 1.1250 | 1-9/64 | 1.1406 | 1-13/64 | 1.2031 | 1-7/32 | 1.2188 |
A die cuts an external thread on cylindrical material, such as a rod, which creates a male threaded piece that functions like a bolt. Dies are generally made in two styles: solid and adjustable. An adjustable die may be adjusted either by an integrated screw or by a set of screws set in to the die holder (termed a "die stock"). Integral adjusting screws may be arranged to work axially, where the movement of the adjusting screw into a threaded hole in the die forces the slit section of the die open, or tangentially where a screw threaded in to one side of the slit bears against the opposite side of the slit. Dies without integrated screws are adjusted inside the die stock by radially-arranged screws. Two screws in the stock bear in to indentations on either side of the slit, tending to squeeze the slit closed, whilst a third screw with a tapered tip screws in to the slit forcing it open. Working these three screws against each other adjusts the die.
Integrated screws appear to be common in the US but are almost unknown in the UK and Europe.
The dies shown in the image to the right are adjustable:
Solid dies cut a nominal thread form and depth, whose accuracy is subject to the precision the die was made with, and the effects of wear. Adjustable dies can be slightly compressed or expanded to provide some compensation for wear, or to achieve different classes of thread fit (class A, B and more rarely, C). Adjustable taps also exist but are not common. These have a tip that is split through the flutes and an axial screw which forces the cutting edges slightly apart.
The work piece (blank) to be threaded, which is usually slightly smaller in diameter than the die's major diameter, is given a slight taper (chamfer) at the end that is to be threaded. This chamfer helps center the die on the blank and reduces the force required to start the thread cutting. [8] Once the die has started, it self-feeds. Periodic reversal of the die is often required to break the chip and prevent crowding.
Die nuts, also known as rethreading dies, are dies made for cleaning up damaged threads, [9] have no split for resizing and are made from a hexagonal bar so that a wrench may be used to turn them. The process of repairing damaged threads is referred to as "chasing." Rethreading dies cannot be used to cut new threads as they lack chip forming teeth. [10] However the external profile of a die does not strictly map to its function. Manufacturers of dies have produced models in a hex form which are intended for the creation of new threads. [11] These appear identical to solid dies in all aspects besides the external shape. Hexagonal thread cutting dies are used with a die stock with hexagonal holding features.
The use of a suitable lubricant is essential with most tapping and threading operations. Recommended lubricants for some common materials are as follows:
A lathe is a machine tool that rotates a workpiece about an axis of rotation to perform various operations such as cutting, sanding, knurling, drilling, deformation, facing, threading and turning, with tools that are applied to the workpiece to create an object with symmetry about that axis.
A drill is a tool used for making round holes or driving fasteners. It is fitted with a bit, either a drill or driver chuck. Hand-operated types are dramatically decreasing in popularity and cordless battery-powered ones proliferating due to increased efficiency and ease of use.
Metalworking is the process of shaping and reshaping metals in order to create useful objects, parts, assemblies, and large scale structures. As a term, it covers a wide and diverse range of processes, skills, and tools for producing objects on every scale: from huge ships, buildings, and bridges, down to precise engine parts and delicate jewelry.
Machining is a manufacturing process where a desired shape or part is created using the controlled removal of material, most often metal, from a larger piece of raw material by cutting. Machining is a form of subtractive manufacturing, which utilizes machine tools, in contrast to additive manufacturing, which uses controlled addition of material.
The bottom bracket on a bicycle connects the crankset (chainset) to the bicycle and allows the crankset to rotate freely. It contains a spindle to which the crankset attaches, and the bearings that allow the spindle and crankset to rotate. The chainrings and pedals attach to the cranks. Bottom bracket bearings fit inside the bottom bracket shell, which connects the seat tube, down tube and chain stays as part of the bicycle frame.
A drill bit is a cutting tool used in a drill to remove material to create holes, almost always of circular cross-section. Drill bits come in many sizes and shapes and can create different kinds of holes in many different materials. In order to create holes drill bits are usually attached to a drill, which powers them to cut through the workpiece, typically by rotation. The drill will grasp the upper end of a bit called the shank in the chuck.
A reamer is a type of rotary cutting tool used in metalworking. Precision reamers are designed to enlarge the size of a previously formed hole by a small amount but with a high degree of accuracy to leave smooth sides. There are also non-precision reamers which are used for more basic enlargement of holes or for removing burrs. The process of enlarging the hole is called reaming. There are many different types of reamer and they may be designed for use as a hand tool or in a machine tool, such as a milling machine or drill press.
The phrase speeds and feeds or feeds and speeds refers to two separate parameters in machine tool practice, cutting speed and feed rate. They are often considered as a pair because of their combined effect on the cutting process. Each, however, can also be considered and analyzed in its own right.
A collet is a segmented sleeve, band or collar. One of the two radial surfaces of a collet is usually tapered and the other is cylindrical. The term collet commonly refers to a type of chuck that uses collets to hold either a workpiece or a tool, but collets have other mechanical applications.
A screw thread is a helical structure used to convert between rotational and linear movement or force. A screw thread is a ridge wrapped around a cylinder or cone in the form of a helix, with the former being called a straight thread and the latter called a tapered thread. A screw thread is the essential feature of the screw as a simple machine and also as a threaded fastener.
In manufacturing, a countersink is a conical hole cut into a manufactured object, or the cutter used to cut such a hole. A common use is to allow the head of a countersunk bolt, screw or rivet, when placed in the hole, to sit flush with or below the surface of the surrounding material. A countersink may also be used to remove the burr left from a drilling or tapping operation, thereby improving the finish of the product and removing any hazardous sharp edges.
A chuck is a specialized type of clamp used to hold an object with radial symmetry, especially a cylinder. In a drill, a mill and a transmission, a chuck holds the rotating tool; in a lathe, it holds the rotating workpiece.
A machine taper is a system for securing cutting tools or toolholders in the spindle of a machine tool or power tool. A male member of conical form fits into the female socket, which has a matching taper of equal angle.
A tap wrench is a hand tool used to turn taps or other small tools, such as hand reamers and screw extractors.
Turning is a machining process in which a cutting tool, typically a non-rotary tool bit, describes a helix toolpath by moving more or less linearly while the workpiece rotates.
Milling cutters are cutting tools typically used in milling machines or machining centres to perform milling operations. They remove material by their movement within the machine or directly from the cutter's shape.
In machining, a metal lathe or metalworking lathe is a large class of lathes designed for precisely machining relatively hard materials. They were originally designed to machine metals; however, with the advent of plastics and other materials, and with their inherent versatility, they are used in a wide range of applications, and a broad range of materials. In machining jargon, where the larger context is already understood, they are usually simply called lathes, or else referred to by more-specific subtype names. These rigid machine tools remove material from a rotating workpiece via the movements of various cutting tools, such as tool bits and drill bits.
A lathe faceplate is a basic workholding accessory for a wood or metal turning lathe. It is a circular metal plate which fixes to the end of the lathe spindle. The workpiece is then clamped to the faceplate, typically using t-slot nuts in slots in the faceplate, or less commonly threaded holes in the faceplate itself.
A screw is an externally helical threaded fastener capable of being tightened or released by a twisting force (torque) to the head. The most common uses of screws are to hold objects together and there are many forms for a variety of materials. Screws might be inserted into holes in assembled parts or a screw may form its own thread. The difference between a screw and a bolt is that the latter is designed to be tightened or released by torquing a nut.
In manufacturing, threading is the process of creating a screw thread. More screw threads are produced each year than any other machine element. There are many methods of generating threads, including subtractive methods ; deformative or transformative methods ; additive methods ; or combinations thereof.