Machinist

Last updated
Machinist
Dreher an einer Drehbank.jpg
Machinist, operating a metal lathe
Occupation
Occupation type
Vocational
Activity sectors
Industrial manufacturing
Description
CompetenciesPatience, steady hand, ability to read plans, attention to detail, physically strong
Education required
Industrial Training Institute, Apprenticeship
Fields of
employment
Industrial manufacturing
Related jobs
Millwright
Machinery repairman creates helicopter part aboard an aircraft carrier US Navy 030227-N-9403F-006 Machinery repair aboard USS Abraham Lincoln CVN 72.jpg
Machinery repairman creates helicopter part aboard an aircraft carrier

A machinist is a tradesperson or trained professional who not only operates machine tools but also has the knowledge of tooling and materials required to create set ups on machine tools such as milling machines, grinders, lathes, and drilling machines.

Contents

A competent machinist should have a well-developed mechanical aptitude, the ability to correctly use precision measuring instruments, and a working knowledge of the proper speeds and feeds required for successfully utilizing the various work and tool materials commonly used in most machining operations.

Nature of work

Mass-produced parts of machines are more common today, but still require machinists and millwrights to calibrate and install machine parts to manufacture other parts. In many parts of the economy, however, custom-made parts are required for various uses. A machinist may work on manufacturing something simple like a motorcycle frame part, a piece of an internal combustion motor, or something extraordinarily complex, such as pieces of submarine engines accurate to 2 micrometers.

Good machinists are highly sought after and respected skilled trades persons and are generally well-paid. In utility and military use companies, experienced machinists can earn over $100,000 per year.

Some titles reflect further development of machinist skills such as tool and die maker, patternmaker, mold maker, programmer, and operator. A machinist is one who is called on to fix a problem with a part or to create a new one using metal working, plastic, or in some cases, wood. Depending on the company, a machinist can be any or all of the titles listed above.

In Australia, the title of the profession is a fitter and turner. A fitter and turner is the tradesperson who fits, assembles, grinds and shapes metal parts and subassemblies to fabricate production machines and other equipment. [1]

Under the machinist title are other specialty titles that refer to specific skills that may be more highly developed to meet the needs of a particular job position, such as fitter (assembles parts), turning hand, mill hand, and grinder.

Role in manufacturing

A machinist is usually called upon when a part needs to be produced from a material by cutting. Such a part may be unique or may be needed in the thousands. This could include a machinery part for a production line or anything that can be made from metal or plastic. Producing a part will often require several steps and more than one machine tool. Each machine tool plays a specific role in cutting away excess material. When large numbers of parts are needed, production planning is required to plan the most logical workflow through a series of machines. Computer numerical controlled (CNC) machines are a special computer-driven tool that can machine a large variety of shapes, and whose use in the workflow depends on the part to be machined. [2]

CNC machines are becoming the standard due to their speed, precision, flexibility, and reduced downtime while changing jobs. Production runs consisting of large numbers of parts are more cost effective and commonly referred to as production work in the trade. Conversely, small production runs are sometimes referred to as prototype or jobbing work.

Production engineers use blueprints and engineering drawings to produce detailed specifications of the part, especially its geometry (shape), then decide on a strategy to make it. Machine tools are then configured by the machinist or toolset and production commences. The machinist works with the quality department to ensure the specifications are maintained in the finished product. [2]

Machinist inspecting a CNC lathe Cnc lathe.png
Machinist inspecting a CNC lathe

Large commercial organizations often staff machinists on site in a maintenance mode to ensure continuing operations of the production machinery. The labor cost for this role is significantly lower than costs involved with production shutdowns.

Additive machining

Additive machining means 3D printing to create industrial components, prototypes, tooling, and end-use production parts. Additive machining comes into its own in the manufacturing of very small intricate parts, which could not be produced through any other manufacturing process. There are several processes in additive manufacturing which include direct metal deposition: electron beam melting, fused filament fabrication, select laser sintering, and variations of them.

Materials commonly encountered by machinists

A machinist is to metal as a woodcarver is to wood. The most common materials that machinists make parts from are steel, aluminium, brass, copper, and various alloys of these materials. Other less common materials such as vanadium, zinc, lead, or manganese are often used as alloying elements for the most common materials. Materials that machinists work with occasionally are plastics, rubber, glass, and wood products. Rarely, machinists also work with exotic and refractory metals. The term exotic metals is a general term describing out of the ordinary, rare or special purpose metals. A synonym might be space-age. A list of exotic metals might include, but is not limited to, titanium, beryllium, vanadium, chromium, molybdenum and tungsten, as well as special high-temperature metal alloys like Inconel or Hastelloy (superalloys). Very often the meaning of the term suggests the need for specialized handling and/or tooling to machine them effectively. [3]

While the foregoing were primarily the materials that a machinist would be cutting, the cutters that the machinist uses must be harder and tougher than the materials to be cut. The materials in the cutters a machinist uses are most commonly high-speed steel, tungsten carbide, ceramics, Borazon, and diamond. [3]

Machinists usually work to very small tolerances, usually within 0.010" or 0.25 mm (more commonly expressed as ±0.005" (Plus or minus five thousandth's of an inch) or ±0.13 mm), and sometimes at tolerances as low as 0.0001" (plus or minus one tenth of a thousandth of an inch – or 0.0025 mm) for specialty operations. A machinist deals with all facets of shaping, cutting and some aspects of forming metal, although forming is typically a separate trade. The operations most commonly performed by machinists are milling, drilling, turning, and grinding. There are other more specialized operations that a machinist will less frequently be called upon to perform such as honing, keyseating, lapping, and polishing, to name a few.

Tools of the machinist

The tools that a machinist is expected to be proficient with fall into 6 broad categories:

See also

Related Research Articles

Lathe Machine tool which rotates the work piece on its axis

A lathe is a machine tool that rotates a workpiece about an axis of rotation to perform various operations such as cutting, sanding, knurling, drilling, deformation, facing, and turning, with tools that are applied to the workpiece to create an object with symmetry about that axis.

Machine tool Machine for handling or machining metal or other rigid materials

A machine tool is a machine for handling or machining metal or other rigid materials, usually by cutting, boring, grinding, shearing, or other forms of deformations. Machine tools employ some sort of tool that does the cutting or shaping. All machine tools have some means of constraining the work piece and provide a guided movement of the parts of the machine. Thus, the relative movement between the workpiece and the cutting tool is controlled or constrained by the machine to at least some extent, rather than being entirely "offhand" or "freehand". It is a power-driven metal cutting machine which assists in managing the needed relative motion between cutting tool and the job that changes the size and shape of the job material.

Shaper Machine that uses linear motion to cut. Ot is also used to grind the surface

A shaper is a type of machine tool that uses linear relative motion between the workpiece and a single-point cutting tool to machine a linear toolpath. Its cut is analogous to that of a lathe, except that it is (archetypally) linear instead of helical.

Metalworking Process of making items from metal

Metalworking is the process of shaping and reshaping metals to create useful objects, parts, assemblies, and large scale structures. As a term it covers a wide and diverse range of processes, skills, and tools for producing objects on every scale: from huge ships, buildings, and bridges down to precise engine parts and delicate jewelry.

Taps and dies are tools used to create screw threads, which is called threading. Many are cutting tools; others are forming tools. A tap is used to cut or form the female portion of the mating pair. A die is used to cut or form the male portion of the mating pair. The process of cutting or forming threads using a tap is called tapping, whereas the process using a die is called threading.

Machining Material-removal process; Manufacturing process

Machining is a process in which a material is cut to a desired final shape and size by a controlled material-removal process. The processes that have this common theme are collectively called subtractive manufacturing, in contrast to additive manufacturing, which uses controlled addition of material. Subtractive manufacturing utilizes machine tools, while additive manufacturing utilizes 3D printing.

Metal fabrication Creation of metal structures

Metal fabrication is the creation of metal structures by cutting, bending and assembling processes. It is a value-added process involving the creation of machines, parts, and structures from various raw materials.

Grinding machine

A grinding machine, often shortened to grinder, is one of power tools or machine tools used for grinding. It is a type of machining using an abrasive wheel as the cutting tool. Each grain of abrasive on the wheel's surface cuts a small chip from the workpiece via shear deformation.

Speeds and feeds Two separate velocities in machine tool practice, cutting speed and feed rate

The phrase speeds and feeds or feeds and speeds refers to two separate velocities in machine tool practice, cutting speed and feed rate. They are often considered as a pair because of their combined effect on the cutting process. Each, however, can also be considered and analyzed in its own right.

Tool and cutter grinder

A tool and cutter grinder is used to sharpen milling cutters and tool bits along with a host of other cutting tools.

Turning Machining process

Turning is a machining process in which a cutting tool, typically a non-rotary tool bit, describes a helix toolpath by moving more or less linearly while the workpiece rotates.

Milling cutters are cutting tools typically used in milling machines or machining centres to perform milling operations. They remove material by their movement within the machine or directly from the cutter's shape.

Metal lathe

A metal lathe or metalworking lathe is a large class of lathes designed for precisely machining relatively hard materials. They were originally designed to machine metals; however, with the advent of plastics and other materials, and with their inherent versatility, they are used in a wide range of applications, and a broad range of materials. In machining jargon, where the larger context is already understood, they are usually simply called lathes, or else referred to by more-specific subtype names. These rigid machine tools remove material from a rotating workpiece via the movements of various cutting tools, such as tool bits and drill bits.

Tipped tool

A tipped tool is any cutting tool in which the cutting edge consists of a separate piece of material that is brazed, welded, or clamped onto a body made of another material. In the types in which the cutter portion is an indexable part clamped by a screw, the cutters are called inserts. Tipped tools allow each part of the tool, the shank and the cutter(s), to be made of the material with the best properties for its job. Common materials for the cutters include cemented carbide, polycrystalline diamond, and cubic boron nitride. Tools that are commonly tipped include milling cutters, tool bits, router bits, and saw blades.

End mill

An end mill is a type of milling cutter, a cutting tool used in industrial milling applications. It is distinguished from the drill bit in its application, geometry, and manufacture. While a drill bit can only cut in the axial direction, most milling bits can cut in the radial direction. Not all mills can cut axially; those designed to cut axially are known as end mills.

Machine shop

A machine shop is a room, building, or company where machining, a form of subtractive manufacturing, is done. In a machine shop, machinists use machine tools and cutting tools to make parts, usually of metal or plastic. A machine shop can be a small business or a portion of a factory, whether a toolroom or a production area for manufacturing. The building construction and the layout of the place and equipment vary, and are specific to the shop; for instance, the flooring in one shop may be concrete, or even compacted dirt, and another shop may have asphalt floors. A shop may be air-conditioned or not; but in other shops it may be necessary to maintain a controlled climate. Each shop has its own tools and machinery which differ from other shops in quantity, capability and focus of expertise.

Gear cutting is any machining process for creating a gear. The most common gear-cutting processes include hobbing, broaching, milling, and grinding. Such cutting operations may occur either after or instead of forming processes such as forging, extruding, investment casting, or sand casting.

Threading is the process of creating a screw thread. More screw threads are produced each year than any other machine element. There are many methods of generating threads, including subtractive methods ; deformative or transformative methods ; additive methods ; or combinations thereof.

Facing in machining can be used in two different areas: facing on a milling machine and facing on a lathe. Facing on the milling machine involves various milling operations, but primarily face milling. On the lathe, facing is commonly used in turning and boring operations. Other operations remove material in ways similar to facing, for example, planing, shaping, and grinding, but these processes are not labeled by the term "facing."

Milling (machining) Removal of material from a workpiece using rotating tools

Milling is the process of machining using rotary cutters to remove material by advancing a cutter into a workpiece. This may be done varying direction on one or several axes, cutter head speed, and pressure. Milling covers a wide variety of different operations and machines, on scales from small individual parts to large, heavy-duty gang milling operations. It is one of the most commonly used processes for machining custom parts to precise tolerances.

References

  1. "Fitter and Turners – JobOutlook" . Retrieved 12 February 2022.
  2. 1 2 "Tool & Die Makers - Tooling Engineers | ESI Engineering Specialties Inc". ESI Engineering Specialties Inc. Retrieved 2016-02-04.
  3. 1 2 Fagerlund, Jaakko (2010-12-08). "Home Shop Machinist: Materials and their properties". Home Shop Machinist. Retrieved 2016-02-04.
  4. "CNCCookbook: Useful Tools". www.cnccookbook.com. Retrieved 2016-02-04.
  5. "10 Must-See Ideas for Cutting, Tooling, Programming, Machining, and Shop Management". americanmachinist.com. Retrieved 2016-02-04.