Borazon

Last updated

Borazon is a brand name of a cubic form of boron nitride (cBN). Its color ranges from black to brown and gold, depending on the chemical bond. It is one of the hardest known materials, along with various forms of diamond and other kinds of boron nitride. Borazon is a crystal created by heating equal quantities of boron and nitrogen at temperatures greater than 1800 °C (3300 °F) at 7  GPa (1 million lbf/in2).

Contents

Borazon was first produced in 1957 by Robert H. Wentorf, Jr., a physical chemist working for the General Electric. [1] In 1969, General Electric adopted the name Borazon as its trademark for the material. The trademark is now owned by Diamond Innovations, doing business as Hyperion Materials & Technologies, Inc., and Borazon is manufactured only by Hyperion Materials & Technologies. [2]

Uses and production

Borazon has a number of uses [ clarification needed ], such as: cutting tools, dies, punches, shears, knives, saw blades, bearing rings, needles, rollers, spacers, balls, pump and compressor parts, engine and drive train components (e.g. camshafts, crankshafts, gears, valve stems, drive shafts, CV joints, piston pins, fuel injectors, turbochargers, and aerospace and land-based gas turbine parts such as vanes, blades, nozzles, and seals), surgical knives, blades, scissors, honing, superfinishing, cylinder liners, connecting rods, grinding of steel and paper mill rolls, and gears.

Prior to the production of Borazon, diamond was the preferred abrasive used for grinding very hard superalloys but it could not be used effectively on steels because carbon tends to dissolve in iron at high temperatures. Aluminium oxide was the conventional abrasive used on hardened steel tools. [3]

Borazon replaced aluminium oxide for grinding hardened steels owing to its superior abrasive properties, comparable to that of diamond. [3] Borazon is used in industrial applications to shape tools, as it can withstand temperatures greater than 2000 °C (3632 °F), much higher than that of a pure diamond at 871 °C (1600 °F). [4] Other uses include jewellery designing, glass cutting and laceration of diamonds.

CBN-coated grinding wheels, referred to as Borazon wheels, are routinely used in the machining of hard ferrous metals, cast irons, and nickel-base and cobalt-base superalloys. They can grind more material, to a higher degree of accuracy, than any other abrasive. The limiting factor in the life of such tools is typically determined not by wear on the cutting surface but by its break-down and separation from the metal core resulting from failure of the bonding layer. [3]

Cultural references

A Borazon drill is used in the TV miniseries and film Quatermass and the Pit . In this story an alien spacecraft is unearthed in London and the drill is used in an attempt to open a sealed bulkhead. The shell of the object is so hard that even the Borazon drill makes no impression, and when the attempt is made, vibrations cause severe distress in people around the object.

In Ivan Yefremov's novel Andromeda: A Space-Age Tale (written 1954–1956, published Jan 1957) boron nitride named borazon is routinely used in sublight engine parts and spaceship surface coating.

In Randall Garrett's's short story "Thin Edge" (Analog, Dec 1963) [5] a fictional borazon-tungsten cable of extraordinary tensile strength is a central plot element. The cable is developed by asteroid miners for a tow-rope for hauling asteroids. The protagonist cuts through cell bars and booby-traps his room using a single strand of the wire, similar to a monomolecular wire.

See also

Related Research Articles

<span class="mw-page-title-main">Boron nitride</span> Refractory compound of boron and nitrogen with formula BN

Boron nitride is a thermally and chemically resistant refractory compound of boron and nitrogen with the chemical formula BN. It exists in various crystalline forms that are isoelectronic to a similarly structured carbon lattice. The hexagonal form corresponding to graphite is the most stable and soft among BN polymorphs, and is therefore used as a lubricant and an additive to cosmetic products. The cubic variety analogous to diamond is called c-BN; it is softer than diamond, but its thermal and chemical stability is superior. The rare wurtzite BN modification is similar to lonsdaleite but slightly softer than the cubic form.

An abrasive is a material, often a mineral, that is used to shape or finish a workpiece through rubbing which leads to part of the workpiece being worn away by friction. While finishing a material often means polishing it to gain a smooth, reflective surface, the process can also involve roughening as in satin, matte or beaded finishes. In short, the ceramics which are used to cut, grind and polish other softer materials are known as abrasives.

<span class="mw-page-title-main">Superhard material</span> Material with Vickers hardness exceeding 40 gigapascals

A superhard material is a material with a hardness value exceeding 40 gigapascals (GPa) when measured by the Vickers hardness test. They are virtually incompressible solids with high electron density and high bond covalency. As a result of their unique properties, these materials are of great interest in many industrial areas including, but not limited to, abrasives, polishing and cutting tools, disc brakes, and wear-resistant and protective coatings.

<span class="mw-page-title-main">Grinding wheel</span> Abrasive cutting tool for grinders

Grinding wheels are wheels that contain abrasive compounds for grinding and abrasive machining operations. Such wheels are also used in grinding machines.

A grinding dresser or wheel dresser is a tool to dress the surface of a grinding wheel. Grinding dressers are used to return a wheel to its original round shape, to expose fresh grains for renewed cutting action, or to make a different profile on the wheel's edge. Utilizing pre-determined dressing parameters will allow the wheel to be conditioned for optimum grinding performance while truing and restoring the form simultaneously.

<span class="mw-page-title-main">Sharpening stone</span> Abrasive slab used to sharpen tools

Sharpening stones, or whetstones, are used to sharpen the edges of steel tools such as knives through grinding and honing.

<span class="mw-page-title-main">Sharpening</span> Creating or refining the edge of a cutting tool

Sharpening is the process of creating or refining the edge joining two non-coplanar faces into a converging apex, thereby creating an edge of appropriate shape on a tool or implement designed for cutting. Sharpening is done by removing material on an implement with an abrasive substance harder than the material of the implement, followed sometimes by processes to polish/hone the sharp surface to increase smoothness.

<span class="mw-page-title-main">Ceramic knife</span> Knife with a blade made out of non-metallic material

A ceramic knife is a knife with a ceramic blade typically made from zirconium dioxide (ZrO2; also known as zirconia), rather than the steel used for most knives. Ceramic knife blades are usually produced through the dry-pressing and firing of powdered zirconia using solid-state sintering. The blades typically score 8.5 on the Mohs scale of mineral hardness, compared to 4.5 for normal steel and 7.5 to 8 for hardened steel and 10 for diamond. The resultant blade has a hard edge that stays sharp for much longer than conventional steel blades. However, the blade is brittle, subject to chipping, and will break rather than flex if twisted. The ceramic blade is sharpened by grinding the edges with a diamond-dust-coated grinding wheel.

<span class="mw-page-title-main">Robert H. Wentorf Jr.</span>

Robert H. Wentorf Jr. was a staff scientist at General Electric Corporate Research and Development Laboratory in Schenectady, N.Y. and a professor of chemical engineering at Rensselaer Polytechnic Institute in Troy, N.Y.

In the context of machining, a cutting tool or cutter is typically a hardened metal tool that is used to cut, shape, and remove material from a workpiece by means of machining tools as well as abrasive tools by way of shear deformation. The majority of these tools are designed exclusively for metals.

Element Six is a company specialised in providing synthetic diamond, cubic boron nitride and other superhard materials for industrial use. Part of the De Beers Group, Element Six employs over 1,900 people and its primary manufacturing sites are located in the UK, Ireland, Germany, South Africa, and the US.

<span class="mw-page-title-main">Magnesium nitride</span> Chemical compound

Magnesium nitride, which possesses the chemical formula Mg3N2, is an inorganic compound of magnesium and nitrogen. At room temperature and pressure it is a greenish yellow powder.

<span class="mw-page-title-main">Knife sharpening</span>

Knife sharpening is the process of making a knife or similar tool sharp by grinding against a hard, rough surface, typically a stone, or a flexible surface with hard particles, such as sandpaper. Additionally, a leather razor strop, or strop, is often used to straighten and polish an edge.

<span class="mw-page-title-main">Diamond tool</span>

A diamond tool is a cutting tool with diamond grains fixed on the functional parts of the tool via a bonding material or another method. As diamond is a superhard material, diamond tools have many advantages as compared with tools made with common abrasives such as corundum and silicon carbide.

<span class="mw-page-title-main">Abrasive saw</span> Type of circular saw

An abrasive saw, also known as a cut-off saw or chop saw, is a circular saw which is typically used to cut hard materials, such as metals, tile, and concrete. The cutting action is performed by an abrasive disc, similar to a thin grinding wheel. Technically speaking this is not a saw, as it does not use regularly shaped edges (teeth) for cutting.

Abrasive machining is a machining process where material is removed from a workpiece using a multitude of small abrasive particles. Common examples include grinding, honing, and polishing. Abrasive processes are usually expensive, but capable of tighter tolerances and better surface finish than other machining processes

<span class="mw-page-title-main">Grinding (abrasive cutting)</span> Machining process using a grinding wheel

Grinding is a type of abrasive machining process which uses a grinding wheel as cutting tool.

Surface grinding is done on flat surfaces to produce a smooth finish.

<span class="mw-page-title-main">Flat honing</span> Metalworking grinding process

Flat honing is a metalworking grinding process used to provide high quality flat surfaces. It combines the speed of grinding or honing with the precision of lapping. It has also been known under the terms high speed lapping and high precision grinding.

Cutting tool materials are materials that are used to make cutting tools which are used in machining but not other cutting tools like knives or punches.

References

  1. R. H. Wentorf (1957). "Cubic Form of Boron Nitride". J. Chem. Phys. 26 (4): 956. Bibcode:1957JChPh..26..956W. doi:10.1063/1.1745964.
  2. "TESS -- Error". tmsearch.uspto.gov. Archived from the original on 2020-07-22. Retrieved 2020-07-22.
  3. 1 2 3 Description of Borazon and Borozon as prior art in patent from 31 December 1969 [ permanent dead link ]
  4. Beiss, P; Ruthardt, R; Warlimont, H, eds. (2002). "13.5 Properties of diamond and cubic boron nitride". Landolt-Börnstein - Group VIII Advanced Materials and Technologies: Powder Metallurgy Data. Refractory, Hard and Intermetallic Materials. Landolt-Börnstein - Group VIII Advanced Materials and Technologies. Vol. 2A2. pp. 118–139. doi:10.1007/b83029. ISBN   978-3-540-42961-6.
  5. "Thin Edge". Internet Speculative Fiction Database. IFSDB. Retrieved 24 May 2020.