Machinist calculator

Last updated

A machinist calculator is a hand-held calculator programmed with built-in formulas making it easy and quick for machinists to establish speeds, feeds and time without guesswork or conversion charts. Formulas may include revolutions per minute (RPM), surface feet per minute (SFM), inches per minute (IPM), feed per tooth (FPT). A cut time (CT) function takes the user, step-by-step, through a calculation to determine cycle time (execution time) for a given tool motion. Other features may include a metric-English conversion function, a stop watch/timer function and a standard math calculator.

This type of calculator is useful for machinists, programmers, inspectors, estimators, supervisors, and students.

When Handheld Machinist calculators first came to market they were complicated to use due to their small liquid-crystal displays and were fairly expensive with a price of around $70-$80. These older units were missing many features and could not be upgraded. With the invention of the smartphone, Machinist Calculators now have many more features and are ever evolving with constant software upgrades. One popular example of a Machinist calculator is an application called "CNC Machinist Calculator Pro". [1] This machinist calculator has 35 subsections of machining calculations which include turning, milling (machining), drilling, tapping, Grinding (abrasive cutting), gun drilling, GD&T, M-codes, G-codes, thread data, Threading (manufacturing), Position tolerance, bolt circle, surface finish, over wire thread pitch dimensions, center drill dimensions, triangle solver, machinability data with Surface feet per minute (SFM) and RPM conversions, List of materials properties, Brinell scale material hardenability, hardness conversions, scientific calculator functions, etc..

Modern Machinist Speed and Feed Calculators

Because early Machinist Calculators were limited by the analog user interface and computing power, Speeds and Feeds were fairly rudimentary, most of the time providing speed and feed independently from each other.

Some of the modern Machinist Calculators have departed from the scattered approach to Speeds and Feeds and incorporated selectors for all supported tool types, materials, and tool data input fields on to a single screen, making Speeds and Feeds calculator a first-class citizen. For example, FSWizard [2] - the first app in its class, contains cutting data for hundreds of work-piece materials and dozens of tool types and allows to calculate Speeds and Feeds with high accuracy and reliability. As a bonus, it contains other useful references to Drill Charts, Geometry Calculators, and so on.

Steps required to accurately calculate Speeds and Feeds include:

With modern GUI these steps take only a few seconds and yield results far greater than having to go through typical trial and error cycle.

Related Research Articles

Computer-aided manufacturing Use of software to control industrial processes

Computer-aided manufacturing (CAM) also known as computer-aided modeling or computer-aided machining is the use of software to control machine tools in the manufacturing of work pieces. This is not the only definition for CAM, but it is the most common; CAM may also refer to the use of a computer to assist in all operations of a manufacturing plant, including planning, management, transportation and storage. Its primary purpose is to create a faster production process and components and tooling with more precise dimensions and material consistency, which in some cases, uses only the required amount of raw material, while simultaneously reducing energy consumption. CAM is now a system used in schools and lower educational purposes. CAM is a subsequent computer-aided process after computer-aided design (CAD) and sometimes computer-aided engineering (CAE), as the model generated in CAD and verified in CAE can be input into CAM software, which then controls the machine tool. CAM is used in many schools alongside computer-aided design (CAD) to create objects.

Metalworking Process of making items from metal

Metalworking is the process of shaping and reshaping metals to create useful objects, parts, assemblies, and large scale structures. As a term it covers a wide and diverse range of processes, skills, and tools for producing objects on every scale: from huge ships, buildings, and bridges down to precise engine parts and delicate jewelry.

Taps and dies are tools used to create screw threads, which is called threading. Many are cutting tools; others are forming tools. A tap is used to cut or form the female portion of the mating pair. A die is used to cut or form the male portion of the mating pair. The process of cutting or forming threads using a tap is called tapping, whereas the process using a die is called threading.

Machinist Technician

A machinist is a tradesperson or trained professional who not only operates machine tools, but also has the knowledge of tooling and materials required to create set ups on machine tools such as milling machines, grinders, lathes, and drilling machines.

Machining Material-removal process; Manufacturing process

Machining is a process in which a material is cut to a desired final shape and size by a controlled material-removal process. The processes that have this common theme are collectively called subtractive manufacturing, which utilizes machine tools, in contrast to additive manufacturing, which uses controlled addition of material.

Windows Calculator Calculator application included in Microsoft Windows

Windows Calculator is a software calculator developed by Microsoft and included in Windows. It has four modes: standard, scientific, programmer, and a graphing mode. The standard mode includes a number pad and buttons for performing arithmetic operations. The scientific mode takes this a step further and adds exponents and trigonometric function, and programmer mode allows the user to perform operations related to computer programming. Recently, a graphing mode was added to the Calculator, allowing users to graph equations on a coordinate plane.

Numerical control Computer control of machine tools, lathes and milling machines, also used on 3D printers

Numerical control is the automated control of machining tools by means of a computer. A CNC machine processes a piece of material to meet specifications by following coded programmed instructions and without a manual operator directly controlling the machining operation.

Drilling Cutting process that uses a drill bit to cut a hole of circular cross-section in solid materials

Drilling is a cutting process that uses a drill bit to cut a hole of circular cross-section in solid materials. The drill bit is usually a rotary cutting tool, often multi-point. The bit is pressed against the work-piece and rotated at rates from hundreds to thousands of revolutions per minute. This forces the cutting edge against the work-piece, cutting off chips (swarf) from the hole as it is drilled.

G-code is the most widely used computer numerical control (CNC) programming language. It is used mainly in computer-aided manufacturing to control automated machine tools, and has many variants.

Printed circuit board milling

Printed circuit board milling is the process of removing areas of copper from a sheet of printed circuit board material to recreate the pads, signal traces and structures according to patterns from a digital circuit board plan known as a layout file. Similar to the more common and well known chemical PCB etch process, the PCB milling process is subtractive: material is removed to create the electrical isolation and ground planes required. However, unlike the chemical etch process, PCB milling is typically a non-chemical process and as such it can be completed in a typical office or lab environment without exposure to hazardous chemicals. High quality circuit boards can be produced using either process. In the case of PCB milling, the quality of a circuit board is chiefly determined by the system's true, or weighted, milling accuracy and control as well as the condition of the milling bits and their respective feed/rotational speeds. By contrast, in the chemical etch process, the quality of a circuit board depends on the accuracy and/or quality of the mask used to protect the copper from the chemicals and the state of the etching chemicals.

Grinding machine

A grinding machine, often shortened to grinder, is one of power tools or machine tools used for grinding. It is a type of machining using an abrasive wheel as the cutting tool. Each grain of abrasive on the wheel's surface cuts a small chip from the workpiece via shear deformation.

Speeds and feeds Two separate velocities in machine tool practice, cutting speed and feed rate

The phrase speeds and feeds or feeds and speeds refers to two separate velocities in machine tool practice, cutting speed and feed rate. They are often considered as a pair because of their combined effect on the cutting process. Each, however, can also be considered and analyzed in its own right.

Chuck (engineering) Clamp used to hold an object with radial symmetry, especially a cylinder

A chuck is a specialized type of clamp used to hold an object with radial symmetry, especially a cylinder. In a drill, a mill and a transmission, a chuck holds the rotating tool; in a lathe, it holds the rotating workpiece.

Turning Machining process

Turning is a machining process in which a cutting tool, typically a non-rotary tool bit, describes a helix toolpath by moving more or less linearly while the workpiece rotates.

Milling cutters are cutting tools typically used in milling machines or machining centres to perform milling operations. They remove material by their movement within the machine or directly from the cutter's shape.

Metal lathe Lathe machine

A metal lathe or metalworking lathe is a large class of lathes designed for precisely machining relatively hard materials. They were originally designed to machine metals; however, with the advent of plastics and other materials, and with their inherent versatility, they are used in a wide range of applications, and a broad range of materials. In machining jargon, where the larger context is already understood, they are usually simply called lathes, or else referred to by more-specific subtype names. These rigid machine tools remove material from a rotating workpiece via the movements of various cutting tools, such as tool bits and drill bits.

Surface feet per minute is the combination of a physical quantity and an imperial and American customary unit. It is defined as the number of linear feet that a location on a rotating component travels in one minute. Its most common use is in the measurement of cutting speed in machining. It is a unit of velocity that describes how fast the cutting edge of the cutting tool travels. It correlates directly to the machinability of the workpiece material and the hardness of the cutting tool material. It relates to spindle speed via variables such as cutter diameter or workpiece diameter.

In manufacturing, threading is the process of creating a screw thread. More screw threads are produced each year than any other machine element. There are many methods of generating threads, including subtractive methods ; deformative or transformative methods ; additive methods ; or combinations thereof.

WorkNC

WorkNC is a Computer aided manufacturing (CAM) software developed by Sescoi for multi-axis machining.

Milling (machining) Removal of material from a workpiece using rotating tools

Milling is the process of machining using rotary cutters to remove material by advancing a cutter into a workpiece. This may be done varying direction on one or several axes, cutter head speed, and pressure. Milling covers a wide variety of different operations and machines, on scales from small individual parts to large, heavy-duty gang milling operations. It is one of the most commonly used processes for machining custom parts to precise tolerances.

References

  1. "CNC Machinist Calculator Pro | We're working to become the best machining app on the market!".
  2. "FSWizard Machinist Calculator".