Drill bit shank

Last updated

The shank is the end of a drill bit grasped by the chuck of a drill. The cutting edges of the drill bit contact the workpiece, and are connected via the shaft with the shank, which fits into the chuck. In many cases a general-purpose arrangement is used, such as a bit with cylindrical shaft and shank in a three-jaw chuck which grips a cylindrical shank tightly. Different shank and chuck combination can deliver improved performance, such as allowing higher torque, greater centering accuracy, or moving the bit independently of the chuck, with a hammer action.

Contents

Brace shank

Brace drill bit shank Drill shank brace.jpg
Brace drill bit shank

This shank was common before 1850, and is still in production. At first, the tapered shank was just rammed into a square hole in the end of the drill. Over time, various chuck designs have been invented, and modern chucks can grasp and drive this shank effectively.

It has been difficult to find a reference to the included angle of the taper, but 7 different bits were measured, and they all had an included angle of 8 ± 0.25 degrees.

Straight shank

Straight drill bit shank Drill shank round.jpg
Straight drill bit shank

The straight shank is the most usual style on modern drill bits, by number manufactured. The whole of the drill bit, shaft and shank, is usually of the same diameter. It is held usually in a three-jaw drill chuck. Bits of diameter too small to grip firmly can have straight shanks of larger diameter than the drill, which can be held firmly in a standard size collet or chuck. Large drill bits can have straight shanks narrower than the drill diameter so that they can be fitted in chucks not able to chuck the full diameter. Such a drill bit is called a reduced-shank or blacksmith's drill. For example, this allows a 12-inch (13 mm) bit to be used in a pistol-grip drill's 38-inch (9.5 mm) chuck. One particular type of reduced-shank drill bits are Silver & Deming (S&D) bits, whose sets run from 916-inch (14 mm) to 1+12-inch (38 mm) drill body diameter with a standard 12-inch (13 mm) reduced shank for all. This allows drill presses with 12-inch (13 mm) chucks to run the larger drills. S&D bits are 6 inches (150 mm) long with a 3-inch (76 mm) flute length. The name comes from a company in Salem, Ohio that broke up into other companies circa 1890; bits of this design were popularized by that company.

Hex shank

Hex drill bit shank Drill shank hex.jpg
Hex drill bit shank

The flats of a hex shank can either be machined on a round shank, as in the photograph, or be the natural flats of hex bar stock. A hex shank can be grasped by a 3-jaw drill chuck or held in a chuck specifically for hex shanks. Quarter-inch hex shanks are common for machine screwdriver bits and have spread from that application to be used for drill bits that are compatible with screwdriver machinery.

  • A special 3c or 5c HEX collet must be used.

SDS shank

SDS-plus drill bit shank SDS-Plus.jpg
SDS-plus drill bit shank
SDS-max drill bit shanks SDSmax.jpg
SDS-max drill bit shanks

The diameter of a SDS Plus shank is 10 millimeters. The SDS Max is larger with an 18 mm shank diameter, while the SDS Quick has a smaller 6 mm shank diameter.

The SDS shank is simply pushed into the spring-loaded chuck without tightening. SDS shank and chucks are made to be used for hammer drilling with masonry drills in stone and concrete. The drill bit is not held solidly in the chuck, but can slide back and forth like a piston; it does not slip during rotation due to the non-circular shank cross-section, matching the chuck. The hammer of the drill acts to accelerate only the drill bit itself, and not the large mass of the chuck, which makes hammer drilling with an SDS shank drill bit more productive.

Rotational drive uses the sliding keyways that open to the end of the shank, which mate with keys in the chuck. The smaller indentations that do not open to the end are grasped by the chuck to prevent the drill bit falling out. The hammer of the drill hits the flat end of the shank. The shank must be lubricated with grease to reduce the friction of the sliding action in the chuck.

There are four standard sizes of SDS: SDS Quick, SDS-plus (or SDSplus or SDS+), SDS-Top and SDS-max. SDS-plus is the most common by count of tools manufactured, with masonry drills from 4 mm diameter to 30 mm (and from 5/32" to 1-1/4") diameter ordinarily available. The shortest SDS-plus masonry drill bits are about 110 mm overall length, and the longest 1500 mm. SDS-max is more common for larger rotary hammers and chipping guns, and common sizes start at 12 inch (13 mm) diameter up to 1+34 inches (44 mm) diameter. Standard lengths are 12 to 21 inches (300 to 530 mm). SDS-Top with 14 mm diameter has been largely phased out in North America and is not common except for older tools. Hilti's TE-S system is similar to these SDS systems, but is designed for chipping only (no rotation) in tools for applications larger than could be handled by SDS-Max (e.g. demolition of concrete walls or floors).

The SDS bit was developed by Bosch in 1975 improving on the TE system introduced by Hilti in 1960. Hilti's original 10 mm TE-D and 18 mm TE-F shanks can be used in SDS-plus and SDS-max chucks respectively but not vice versa while the newer TE-C, TE-T and TE-Y are fully compatible.

The SDS name is an acronym of German : Steck – Dreh – Sitzt! ("Insert – Turn – Seated!"). In German-speaking countries the back-formation Spannen durch System ("Clamping System") is used, though Bosch uses "Special Direct System" for international purposes. [1] [2]

Triangle shank

Triangle drill bit shank Drill shank triangle.jpg
Triangle drill bit shank

The triangle shank is almost always made by machining three flats on round bar stock. It is intended as a minor modification of a straight shank, still allowing it to be held in a 3-jaw drill chuck, but allowing higher torque transmission and limited slipping.

Morse taper shank

Morse taper drills, from 13.5mm (with the No. 1 Morse taper shank) through to a 30mm drill (No. 4 morse taper shank) DrillsMorseTaperShank1234.jpg
Morse taper drills, from 13.5mm (with the No. 1 Morse taper shank) through to a 30mm drill (No. 4 morse taper shank)
Morse Taper Drill Bit Shank Drill shank morse.jpg
Morse Taper Drill Bit Shank

The Morse taper twist drill bits pictured right are used in metalworking. The full range of tapers is from 0 to 7.

The Morse taper allows the bit to be mounted directly into the spindle of a drill, lathe tailstock, or (with the use of adapters) into the spindle of milling machines. It is a self-locking (or self holding) taper of approximately 5/8" per foot [3] that allows the torque to be transferred to the drill bit by the friction between the taper shank and the socket. The tang at the end of the taper provides a positive drive of the drill when the taper fails to grip. [4] Many believe that the tang is there for the purpose of ejecting the tool from the taper but as not all tools have a tang (e.g. a centre lathe centre) these can still be ejected despite not having the tang.

The arbor of a drill chuck is often a Morse taper and this allows the chuck assembly to be removed and directly replaced with the shank of a Morse taper drill bit. A range of sleeves may be used to bring the size of the smaller Morse tapers up to the size of the drive spindle's larger taper. Sockets are also available to extend the effective length of the drill as well as offering a variety of taper combinations.

The detail image shows a Morse taper shank on a 16 mm diameter drill bit.

Square shank

Square taper drills were also used for large ratchet drills, for drilling large holes, or in thick plate. These bits would fit straight into a ratchet drill, and the ratchet drill would be used against a strong arm, for pressure to push the drill into the work piece.

Threaded shank

Some drills, wire wheels, etc. use a threaded shank. One example is cylindrical wire wheels meant to be pushed into a pipe of some sort to clean the inside of the pipe, but some ordinary, but mostly rather large, wood drills have threaded shanks as well.

Small (about 14 inch or 6.4 millimetres diameter) threaded drill bits and countersinks are common in aircraft metal work. Threaded drill bits may be held in drills meant to reach into very tight spaces, and threaded countersink cutters are widely used (along with finely adjustable depth stops) to create holes which put a matching rivet directly flush with the surface.

Related Research Articles

<span class="mw-page-title-main">Router (woodworking)</span> Woodworking power tool

The router is a power tool with a flat base and a rotating blade extending past the base. The spindle may be driven by an electric motor or by a pneumatic motor. It routs an area in hard material, such as wood or plastic. Routers are used most often in woodworking, especially cabinetry. They may be handheld or affixed to router tables. Some woodworkers consider the router one of the most versatile power tools.

<span class="mw-page-title-main">Lathe</span> Machine tool which rotates the work piece on its axis

A lathe is a machine tool that rotates a workpiece about an axis of rotation to perform various operations such as cutting, sanding, knurling, drilling, deformation, facing, threading and turning, with tools that are applied to the workpiece to create an object with symmetry about that axis.

<span class="mw-page-title-main">Screwdriver</span> Hand tool used for turning screws

A screwdriver is a tool, manual or powered, used for turning screws.

<span class="mw-page-title-main">Drill</span> Tool used to create holes

A drill is a tool used for making round holes or driving fasteners. It is fitted with a bit, either a drill or driver chuck. Hand-operated types are dramatically decreasing in popularity and cordless battery-powered ones proliferating due to increased efficiency and ease of use.

<span class="mw-page-title-main">Tap and die</span> Tools to create screw threads

Taps and dies are tools used to create screw threads, which is called threading. Many are cutting tools; others are forming tools. A tap is used to cut or form the female portion of the mating pair. A die is used to cut or form the male portion of the mating pair. The process of cutting or forming threads using a tap is called tapping, whereas the process using a die is called threading.

<span class="mw-page-title-main">Drill bit</span> Type of cutting tool

A drill bit is a cutting tool used in a drill to remove material to create holes, almost always of circular cross-section. Drill bits come in many sizes and shapes and can create different kinds of holes in many different materials. In order to create holes drill bits are usually attached to a drill, which powers them to cut through the workpiece, typically by rotation. The drill will grasp the upper end of a bit called the shank in the chuck.

<span class="mw-page-title-main">Jackhammer</span> Pneumatic tool

A jackhammer is a pneumatic or electro-mechanical tool that combines a hammer directly with a chisel. It was invented by William McReavy, who then sold the patent to Charles Brady King. Hand-held jackhammers are generally powered by compressed air, but some are also powered by electric motors. Larger jackhammers, such as rig-mounted hammers used on construction machinery, are usually hydraulically powered. These tools are typically used to break up rock, pavement, and concrete.

A reamer is a type of rotary cutting tool used in metalworking. Precision reamers are designed to enlarge the size of a previously formed hole by a small amount but with a high degree of accuracy to leave smooth sides. There are also non-precision reamers which are used for more basic enlargement of holes or for removing burrs. The process of enlarging the hole is called reaming. There are many different types of reamer and they may be designed for use as a hand tool or in a machine tool, such as a milling machine or drill press.

<span class="mw-page-title-main">Mandrel</span> Gently tapered cylinder against which material can be forged or shaped

A mandrel, mandril, or arbor is a tapered tool against which material can be forged, pressed, stretched or shaped, or a flanged or tapered or threaded bar that grips a workpiece to be machined in a lathe. A flanged mandrel is a parallel bar of a specific diameter with an integral flange towards one end, and threaded at the opposite end. Work is gripped between the flange and a nut on the thread. A tapered mandrel has a taper of approximately 0.005 inches per foot and is designed to hold work by being driven into an accurate hole on the work, gripping the work by friction. A threaded mandrel may have a male or female thread, and work which has an opposing thread is screwed onto the mandrel.

<span class="mw-page-title-main">Collet</span> Type of chuck

A collet is a segmented sleeve, band or collar. One of the two radial surfaces of a collet is usually tapered and the other is cylindrical. The term collet commonly refers to a type of chuck that uses collets to hold either a workpiece or a tool, but collets have other mechanical applications.

<span class="mw-page-title-main">Chuck (engineering)</span> Clamp used to hold an object with radial symmetry, especially a cylinder

A chuck is a specialized type of clamp used to hold an object with radial symmetry, especially a cylinder. In a drill, a mill and a transmission, a chuck holds the rotating tool; in a lathe, it holds the rotating workpiece.

<span class="mw-page-title-main">Machine taper</span> System for securing cutting tools or toolholders in a spindle

A machine taper is a system for securing cutting tools or toolholders in the spindle of a machine tool or power tool. A male member of conical form fits into the female socket, which has a matching taper of equal angle.

<span class="mw-page-title-main">Turning</span> Machining process

Turning is a machining process in which a cutting tool, typically a non-rotary tool bit, describes a helix toolpath by moving more or less linearly while the workpiece rotates.

Drill bits are the cutting tools of drilling machines. They can be made in any size to order, but standards organizations have defined sets of sizes that are produced routinely by drill bit manufacturers and stocked by distributors.

<span class="mw-page-title-main">Metal lathe</span> Machine tool used to remove material from a rotating workpiece

In machining, a metal lathe or metalworking lathe is a large class of lathes designed for precisely machining relatively hard materials. They were originally designed to machine metals; however, with the advent of plastics and other materials, and with their inherent versatility, they are used in a wide range of applications, and a broad range of materials. In machining jargon, where the larger context is already understood, they are usually simply called lathes, or else referred to by more-specific subtype names. These rigid machine tools remove material from a rotating workpiece via the movements of various cutting tools, such as tool bits and drill bits.

<span class="mw-page-title-main">Boring (manufacturing)</span> Process of enlarging an already-drilled hole with a single-point cutting tool

In machining, boring is the process of enlarging a hole that has already been drilled by means of a single-point cutting tool, such as in boring a gun barrel or an engine cylinder. Boring is used to achieve greater accuracy of the diameter of a hole, and can be used to cut a tapered hole. Boring can be viewed as the internal-diameter counterpart to turning, which cuts external diameters.

<span class="mw-page-title-main">Bar stock</span> Bar of raw metal to be processed and manufactured

Bar stock, also (colloquially) known as blank, slug or billet, is a common form of raw purified metal, used by industry to manufacture metal parts and products. Bar stock is available in a variety of extrusion shapes and lengths. The most common shapes are round, rectangular, square and hexagonal. A bar is characterised by an "enclosed invariant convex cross-section", meaning that pipes, angle stock and objects with varying diameter are not considered bar stock.

<span class="mw-page-title-main">Screw</span> Type of fastener characterized by a thread wrapped around a cylinder core

A screw is an externally helical threaded fastener capable of being tightened or released by a twisting force (torque) to the head. The most common uses of screws are to hold objects together and there are many forms for a variety of materials. Screws might be inserted into holes in assembled parts or a screw may form its own thread. The difference between a screw and a bolt is that the latter is designed to be tightened or released by torquing a nut.

<span class="mw-page-title-main">Rotary hammer</span>

A rotary hammer, also called rotary hammer drill is a power tool that can perform heavy-duty tasks such as drilling and chiseling hard materials. It is similar to a hammer drill in that it also pounds the drill bit in and out while it is spinning. However, rotary hammers use a piston mechanism instead of a special clutch. This causes them to deliver a much more powerful hammer blow, making it possible to drill bigger holes much faster. Most rotary hammers have three settings: drill mode, hammer drill or just hammer, so they can act as a mini jackhammer.

<span class="mw-page-title-main">Bolt (fastener)</span> Threaded fastener with an external male thread requiring a matching female thread

A bolt is an externally helical threaded fastener that fastens objects with unthreaded holes together. This is done by applying a twisting force (torque) to a matching nut. The bolt has an external male thread requiring a matching nut with a pre-formed female thread. Unlike a screw, which holds objects together by the restricting motion parallel to the axis of the screw via the normal and frictional forces between the screw's external threads and the internal threads in the objects to be fastened, a bolt prevents that linear motion via the frictional and normal forces between the bolt's external threads and the internal threads of the matching nut, which can be tightened by applying a torque which moves the nut linearly along the axis of the bolt and compresses the objects to be fastened.

References

  1. "SDS-plus tool insertion system". Encyclopedia of technical terms (A-Z). Archived from the original on 2007-09-18. Retrieved 2010-04-11.
  2. "SDS". Lexikon der Elektrowerkzeuge. Archived from the original on 2007-08-16. Retrieved 2010-04-11. (German language)
  3. "Standard Dimensions of Sherline Tools". Sherline.com. Sherline Products Inc. Retrieved 30 April 2014.
  4. Judge, Arther W (1947). Engineering Workshop Practice (New and Revised ed.). The Caxton Publishing Company Ltd. pp. Vol i 137.