Centerless grinding

Last updated
A schematic diagram of the centerless grinding process Centerless grinding schematic.svg
A schematic diagram of the centerless grinding process

Centerless grinding is a machining process that uses abrasive cutting to remove material from a workpiece. [1] Centerless grinding differs from centered grinding operations in that no spindle or fixture is used to locate and secure the workpiece; [2] the workpiece is secured between two rotary grinding wheels, and the speed of their rotation relative to each other determines the rate at which material is removed from the workpiece. [1]

Contents

Centerless grinding is typically used in preference to other grinding processes for operations where many parts must be processed in a short time. [1]

Working principle

In centerless grinding, the workpiece is held between two wheels, rotating in the same direction at different speeds, and a work-holding platform. One wheel, known as the grinding wheel (stationary wheel in the diagram), is on a fixed axis and rotates such that the force applied to the workpiece is directed downward, against the work-holding platform. This wheel usually performs the grinding action by having a higher tangential speed than the workpiece at the point of contact. The other wheel, known as the regulating wheel (moving wheel in the diagram), is movable. This wheel is positioned to apply lateral pressure to the workpiece, and usually has either a very rough or rubber-bonded abrasive to trap the workpiece. [1]

The speed of the two wheels relative to each other provides the grinding action and determines the rate at which material is removed from the workpiece. During operation the workpiece turns with the regulating wheel, with the same linear velocity at the point of contact and (ideally) no slipping. The grinding wheel turns faster, slipping past the surface of the workpiece at the point of contact and removing chips of material as it passes. [1]

Types

There are three forms of centerless grinding, differentiated primarily by the method used to feed the workpiece through the machine.

Through-feed

In through-feed centerless grinding, the workpiece is fed through the grinding wheels completely, entering on one side and exiting on the opposite. The regulating wheel in through-feed grinding is canted away from the plane of the grinding wheel in such a way as to provide an axial force component, feeding the workpiece through between the two wheels. Through-feed grinding can be very efficient because it does not require a separate feed mechanism; however, it can only be used for parts with a simple cylindrical shape. [2]

End-feed

In end-feed centerless grinding, the workpiece is fed axially into the machine on one side and comes to rest against an end stop; the grinding operation is performed, and then the workpiece is fed in the opposite direction to exit the machine. [2] End-feed grinding is best for tapered workpieces. [1] [2]

In-feed

In-feed centerless grinding is used to grind workpieces with relatively complex shapes, such as an hourglass shape. Before the process begins, the workpiece is loaded manually into the grinding machine and the regulating wheel is moved into place. The complexity of the part shapes and grinding wheel shapes required to grind them accurately prevent the workpiece from being fed axially through the machine. [2]

Equipment

A centerless grinder Centerless grinder.jpg
A centerless grinder
A close-up of the grinding wheel and back-up wheel Centerless grinder wheels.jpg
A close-up of the grinding wheel and back-up wheel

Centerless grinding uses purpose-built centerless grinding machines. Such a machine will always include the grinding wheel, regulating wheel, and some means of supporting a workpiece. Modern machines may involve computer numerical control to allow automation and improve precision. Grinding wheels are interchangeable, to allow for different grits and shapes. Machines designed to accommodate through-feed grinding operations will allow the angle of the regulating wheel to be adjusted, to accommodate parts of different sizes.

See also

Related Research Articles

<span class="mw-page-title-main">Metalworking</span> Process of making items from metal

Metalworking is the process of shaping and reshaping metals to create useful objects, parts, assemblies, and large scale structures. As a term it covers a wide and diverse range of processes, skills, and tools for producing objects on every scale: from huge ships, buildings, and bridges down to precise engine parts and delicate jewelry.

An abrasive is a material, often a mineral, that is used to shape or finish a workpiece through rubbing which leads to part of the workpiece being worn away by friction. While finishing a material often means polishing it to gain a smooth, reflective surface, the process can also involve roughening as in satin, matte or beaded finishes. In short, the ceramics which are used to cut, grind and polish other softer materials are known as abrasives.

<span class="mw-page-title-main">Machining</span> Material-removal process; Manufacturing process

Machining is a process in which a material is cut to a desired final shape and size by a controlled material-removal process. The processes that have this common theme are collectively called subtractive manufacturing, which utilizes machine tools, in contrast to additive manufacturing, which uses controlled addition of material.

<span class="mw-page-title-main">Grinding machine</span> Machine tool used for grinding

A grinding machine, often shortened to grinder, is a power tool used for grinding. It is a type of machining using an abrasive wheel as the cutting tool. Each grain of abrasive on the wheel's surface cuts a small chip from the workpiece via shear deformation.

<span class="mw-page-title-main">Turning</span> Machining process

Turning is a machining process in which a cutting tool, typically a non-rotary tool bit, describes a helix toolpath by moving more or less linearly while the workpiece rotates.

<span class="mw-page-title-main">Boring (manufacturing)</span> Process of enlarging an already-drilled hole with a single-point cutting tool

In machining, boring is the process of enlarging a hole that has already been drilled by means of a single-point cutting tool, such as in boring a gun barrel or an engine cylinder. Boring is used to achieve greater accuracy of the diameter of a hole, and can be used to cut a tapered hole. Boring can be viewed as the internal-diameter counterpart to turning, which cuts external diameters.

In the context of machining, a cutting tool or cutter is typically a hardened metal tool that is used to cut, shape, and remove material from a workpiece by means of machining tools as well as abrasive tools by way of shear deformation. The majority of these tools are designed exclusively for metals.

A pulverizer or grinder is a mechanical device for the grinding of many different types of materials. For example, a pulverizer mill is used to pulverize coal for combustion in the steam-generating furnaces of coal power plants.

Superfinishing, also known as micromachining, microfinishing, and short-stroke honing, is a metalworking process that improves surface finish and workpiece geometry. This is achieved by removing just the thin amorphous surface layer left by the last process with an abrasive stone or tape; this layer is usually about 1 μm in magnitude. Superfinishing, unlike polishing which produces a mirror finish, creates a cross-hatch pattern on the workpiece.

Belt grinding is an abrasive machining process used on metals and other materials. It is typically used as a finishing process in industry. A belt, coated in abrasive material, is run over the surface to be processed in order to remove material or produce the desired finish.

Abrasive flow machining (AFM), also known as abrasive flow deburring or extrude honing, is an interior surface finishing process characterized by flowing an abrasive-laden fluid through a workpiece. This fluid is typically very viscous, having the consistency of putty, or dough. AFM smooths and finishes rough surfaces, and is specifically used to remove burrs, polish surfaces, form radii, and even remove material. The nature of AFM makes it ideal for interior surfaces, slots, holes, cavities, and other areas that may be difficult to reach with other polishing or grinding processes. Due to its low material removal rate, AFM is not typically used for large stock-removal operations, although it can be.

<span class="mw-page-title-main">Cylindrical grinder</span> Grinding machine

The cylindrical grinder is a type of grinding machine used to shape the outside of an object. The cylindrical grinder can work on a variety of shapes, however the object must have a central axis of rotation. This includes but is not limited to such shapes as a cylinder, an ellipse, a cam, or a crankshaft.

<span class="mw-page-title-main">Grinding (abrasive cutting)</span> Machining process using a grinding wheel

Grinding is a type of abrasive machining process which uses a grinding wheel as cutting tool.

<span class="mw-page-title-main">Honing (metalworking)</span> Production of a precise surface on a metal workpiece

Honing is an abrasive machining process that produces a precision surface on a metal workpiece by scrubbing an abrasive grinding stone or grinding wheel against it along a controlled path. Honing is primarily used to improve the geometric form of a surface, but can also improve the surface finish.

<span class="mw-page-title-main">Race (bearing)</span> Track in a bearing along which the rolling elements ride

The rolling-elements of a rolling-element bearing ride on races. The large race that goes into a bore is called the outer race, and the small race that the shaft rides in is called the inner race.

In manufacturing, threading is the process of creating a screw thread. More screw threads are produced each year than any other machine element. There are many methods of generating threads, including subtractive methods ; deformative or transformative methods ; additive methods ; or combinations thereof.

Electrochemical grinding is a process that removes electrically conductive material by grinding with a negatively charged abrasive grinding wheel, an electrolyte fluid, and a positively charged workpiece. Materials removed from the workpiece stay in the electrolyte fluid. Electrochemical grinding is similar to electrochemical machining but uses a wheel instead of a tool shaped like the contour of the workpiece.

Surface grinding is done on flat surfaces to produce a smooth finish.

<span class="mw-page-title-main">Flat honing</span> Metalworking grinding process

Flat honing is a metalworking grinding process used to provide high quality flat surfaces. It combines the speed of grinding or honing with the precision of lapping. It has also been known under the terms high speed lapping and high precision grinding.

Grinding wheel wear is an important measured factor of grinding in the manufacturing process of engineered parts and tools. Grinding involves the removal process of material and modifying the surface of a workpiece to some desired finish which might otherwise be unachievable through conventional machining processes. The grinding process itself has been compared to machining operations which employ multipoint cutting tools. The abrasive grains which make up the entire geometry of wheel act as independent small cutting tools. The quality, characteristics, and rate of grinding wheel wear can be affected by contributions of the characteristics of the material of the workpiece, the temperature increase of the workpiece, and the rate of wear of the grinding wheel itself. Moderate wear rate allows for more consistent material size. Maintaining stable grinding forces is preferred rather than high wheel wear rate which can decrease the effectiveness of material removal from the workpiece.

References

  1. 1 2 3 4 5 6 Todd, Robert H.; Allen, Dell K.; Alting, Leo (1994). Manufacturing Processes Reference Guide (Illustrated ed.). Industrial Press, Inc. pp. 21–27. ISBN   0831130490 . Retrieved 2013-01-31.
  2. 1 2 3 4 5 "Centerless Grinding". Processes: Machining. eFunda, Inc. Retrieved 2013-01-31.