This article needs additional citations for verification .(October 2009) |
Computer-aided manufacturing (CAM) also known as computer-aided modeling or computer-aided machining [1] [2] [3] is the use of software to control machine tools in the manufacturing of work pieces. [4] [5] [6] [7] [8] This is not the only definition for CAM, but it is the most common. [4] It may also refer to the use of a computer to assist in all operations of a manufacturing plant, including planning, management, transportation and storage. [9] [10] Its primary purpose is to create a faster production process and components and tooling with more precise dimensions and material consistency, which in some cases, uses only the required amount of raw material (thus minimizing waste), while simultaneously reducing energy consumption.[ citation needed ] CAM is now a system used in schools and lower educational purposes.[ where? ] CAM is a subsequent computer-aided process after computer-aided design (CAD) and sometimes computer-aided engineering (CAE), as the model generated in CAD and verified in CAE can be input into CAM software, which then controls the machine tool. CAM is used in many schools alongside CAD to create objects.
Traditionally, CAM has been numerical control (NC) programming tool, wherein two-dimensional (2-D) or three-dimensional (3-D) models of components are generated in CAD. As with other "computer-aided" technologies, CAM does not eliminate the need for skilled professionals such as manufacturing engineers, NC programmers, or machinists. CAM leverages both the value of the most skilled manufacturing professionals through advanced productivity tools, while building the skills of new professionals through visualization, simulation and optimization tools.
A CAM tool generally converts a model to a language the target machine in question understands, typically G-code. The numerical control can be applied to machining tools, or more recently to 3D printers.
Early commercial applications of CAM were in large companies in the automotive and aerospace industries; for example, Pierre Béziers work developing the CAD/CAM application UNISURF in the 1960s for car body design and tooling at Renault. [11] Alexander Hammer at DeLaval Steam Turbine Company invented a technique to progressively drill turbine blades out of a solid metal block of metal with the drill controlled by a punch card reader in 1950. Boeing first obtained NC machines in 1956, made by companies such as Kearney and Trecker, Stromberg-Carlson and Thompson Ramo Waldridge. [12]
Historically, CAM software was seen to have several shortcomings that necessitated an overly high level of involvement by skilled CNC machinists. Fallows created the first CAD software but this had severe shortcomings and was promptly taken back into the developing stage.[ citation needed ] CAM software would output code for the least capable machine, as each machine tool control added on to the standard G-code set for increased flexibility. In some cases, such as improperly set up CAM software or specific tools, the CNC machine required manual editing before the program will run properly. None of these issues were so insurmountable that a thoughtful engineer or skilled machine operator could not overcome for prototyping or small production runs; G-Code is a simple language. In high production or high precision shops, a different set of problems were encountered where an experienced CNC machinist must both hand-code programs and run CAM software.
The integration of CAD with other components of CAD/CAM/CAE Product lifecycle management (PLM) environment requires an effective CAD data exchange. Usually it had been necessary to force the CAD operator to export the data in one of the common data formats, such as IGES or STL or Parasolid formats that are supported by a wide variety of software. The output from the CAM software is usually a simple text file of G-code/M-codes, sometimes many thousands of commands long, that is then transferred to a machine tool using a direct numerical control (DNC) program or in modern Controllers using a common USB Storage Device.
CAM packages could not, and still cannot, reason as a machinist can. They could not optimize toolpaths to the extent required of mass production. Users would select the type of tool, machining process and paths to be used. While an engineer may have a working knowledge of G-code programming, small optimization and wear issues compound over time. Mass-produced items that require machining are often initially created through casting or some other non-machine method. This enables hand-written, short, and highly optimized G-code that could not be produced in a CAM package.
At least in the United States, there is a shortage of young, skilled machinists entering the workforce able to perform at the extremes of manufacturing; high precision and mass production. [13] [14] As CAM software and machines become more complicated, the skills required of a machinist or machine operator advance to approach that of a computer programmer and engineer rather than eliminating the CNC machinist from the workforce.
Over time, the historical shortcomings of CAM are being attenuated, both by providers of niche solutions and by providers of high-end solutions. This is occurring primarily in three arenas:
Most machining progresses through many stages, [16] each of which is implemented by a variety of basic and sophisticated strategies, depending on the part design, material, and software available.
Computer-aided design (CAD) is the use of computers to aid in the creation, modification, analysis, or optimization of a design. This software is used to increase the productivity of the designer, improve the quality of design, improve communications through documentation, and to create a database for manufacturing. Designs made through CAD software help protect products and inventions when used in patent applications. CAD output is often in the form of electronic files for print, machining, or other manufacturing operations. The terms computer-aided drafting (CAD) and computer-aided design and drafting (CADD) are also used.
Mastercam is a suite of computer-aided manufacturing (CAM) and CAD/CAM software applications developed by CNC Software, LLC. Founded in Massachusetts in 1983, CNC Software are headquartered in Tolland, Connecticut.
A machinist is a tradesperson or trained professional who operates machine tools, and has the ability to set up tools such as milling machines, grinders, lathes, and drilling machines.
G-code is the most widely used computer numerical control (CNC) and 3D printing programming language. It is used mainly in computer-aided manufacturing to control automated machine tools, as well as for 3D-printer slicer applications. The G stands for geometry. G-code has many variants.
Tebis is a CAD/CAM software provided by Tebis AG, with headquarters in Martinsried near Munich/Germany. Development locations: Martinsried and Norderstedt, Germany International locations: China, Spain, France, Italy, Portugal, Sweden, United Kingdom, USA.
A Tool and Cutter Grinder is used to sharpen milling cutters and tool bits along with a host of other cutting tools.
A cutter location (CLData) refers to the position which a CNC milling machine has been instructed to hold a milling cutter by the instructions in the program.
Vero Software is a company based in Cheltenham, England, that specialises in CAD CAM.
Surfware, Inc. is a Camarillo, CA-based company involved in the development of CAD/CAM software.
STEP-NC is a machine tool control language that extends the ISO 10303 STEP standards with the machining model in ISO 14649, adding geometric dimension and tolerance data for inspection, and the STEP PDM model for integration into the wider enterprise. The combined result has been standardized as ISO 10303-238.
A computer numerical control (CNC) router is a computer-controlled cutting machine which typically mounts a hand-held router as a spindle which is used for cutting various materials, such as wood, composites, metals, plastics, glass, and foams. CNC routers can perform the tasks of many carpentry shop machines such as the panel saw, the spindle moulder, and the boring machine. They can also cut joinery such as mortises and tenons.
Multiaxis machining is a manufacturing process that involves tools that move in 4 or more directions and are used to manufacture parts out of metal or other materials by milling away excess material, by water jet cutting or by laser cutting. This type of machining was originally performed mechanically on large complex machines. These machines operated on 4, 5, 6, and even 12 axes which were controlled individually via levers that rested on cam plates. The cam plates offered the ability to control the tooling device, the table in which the part is secured, as well as rotating the tooling or part within the machine. Due to the machines size and complexity it took extensive amounts of time to set them up for production. Once computer numerically controlled machining was introduced it provided a faster, more efficient method for machining complex parts.
WorkNC is a computer-aided manufacturing (CAM) software developed by Sescoi for multi-axis machining.
Guitar manufacturing is the use of machines, tools, and labor in the production of electric and acoustic guitars. This phrase may be in reference to handcrafting guitars using traditional methods or assembly line production in large quantities using modern methods. Guitar manufacturing can also be broken into several categories such as body manufacturing and neck manufacturing, among others. Guitar manufacturing includes the production of alto, classical, tenor, and bass tuned guitars.
SmartCAM is a suite of Computer-Aided Manufacturing (CAM) and CAD/CAM software applications that uses toolpath modeling to assist CNC machinists in creating computer-numerically controlled (CNC) programs that direct CNC machine tools.
PowerMill is a 3D CAM solution that runs on Microsoft Windows for the programming of toolpaths for 5-axis CNC milling machines developed by Autodesk Inc. The software is used in a range of different engineering industries to determine optimal tool paths to reduce time and manufacturing costs as well as reduce tool loads and produce smooth surface finishes. More than 15,000 organisations use PowerMILL worldwide.
Vericut, is a software program used for simulating CNC machining. It is used to simulate tool motion and the material removal process, detecting errors or areas of inefficiency in NC programs. It was developed by CGTech Inc. and first released in 1988.
In manufacturing, freeform surface machining refers to the machining of complex surfaces that are not uniformly planar. The industries which most often manufactures free-form surfaces are basically aerospace, automotive, die mold industries, biomedical and power sector for turbine blades manufacturing. Generally 3- or 5-axis CNC milling machines are used for this purpose. The manufacturing process of freeform surfaces is not an easy job, as the tool path generation in present CAM technology is generally based on geometric computation so tool path are not optimum. The geometry can also be not described explicitly so errors and discontinuities occurrence in the solid structure cannot be avoided. Free-form surfaces are machined with the help of different tool path generation method like adaptive iso-planar tool path generation, constant scallop tool path generation, adaptive iso-parametric method, iso-curvature, isophote and by other methods. The different methods are chosen based on the parameters which is needed to be optimized.
Autodesk Fusion is a commercial computer-aided design (CAD), computer-aided manufacturing (CAM), computer-aided engineering (CAE) and printed circuit board (PCB) design software application, developed by Autodesk. It is available for Windows, macOS and web browsers, with simplified applications available for Android and iOS. Fusion is licensed as a paid subscription, with a free limited home-based, non-commercial personal edition available.
NCSIMUL is a software program developed by the company SPRING Technologies, that is used for simulating, verifying, and optimizing CNC machining in a 3-step process. It reads the post-processed G-code to identify the tool path, and replicates the material removal process of the machine by cutting volumes. It then identifies all syntax errors in the code, crashes in the machining environment, and deviations from the modeled CAD part.