Tool management

Last updated

Tool management is needed in metalworking so that the information regarding the tools on hand can be uniformly organized and integrated. The information is stored in a database and is registered and applied using tool management. Tool data management consists of specific data fields, graphics and parameters that are essential in production, as opposed to managing general production equipment.

Contents

Unlike hand tools, a tool in numerically (digitally) controlled machines is composed of several parts, such as the cutting tool (which may be one piece or comprise a body plus indexable inserts), a collet, and a toolholder with a machine taper. Putting the parts together accurately into an assembly is required to achieve error-free production.

Processing a part with a CNC (computer numerically controlled) machining operation requires several tool assemblies that are documented in a list. Each component, each assembly and each list has an identifier under which the specifications are found. Tool management is divided into documentation (master data) and logistics (transaction data). The documentation includes information needed for a trouble-free and a comprehensible production process. Spare parts, experiences in production and the corresponding data can be managed. Several functions are available to manage, process, print and combine with other applications.

Logistics deals with demand planning, supplies and tool location. This includes, on one hand, the location in the warehouse and the purchasing of individual parts with the corresponding consumption report. It also allows for the planning and coordination of the movements of the assemblies within the shop floor.

In the decades of the 2000s and 2010s, tool management has increasingly moved toward a universal, industry-standard, machine-readable format for encoding tooling information, which makes possible better software, greater automation, and better simulation. ISO 13399 (Cutting tool data representation and exchange) "is an international standard designed to give industry a common language to describe cutting tool products in a digital format." [1]

Master data

Master data describes tools' geometric characteristics, composition and usage. The information is divided into specifications and usage instructions. Master data describes the tool in its qualitative aspects, but does not provide quantities and locations.

Components

Outline sample for chamfer tools Tool-component-outline-FSJ-02.jpg
Outline sample for chamfer tools

The components are individual elements that can be combined into an assembly. Components are purchased as a unit and stored in a tool room. Cutting components (e.g. inserts) wear out during use and therefore must be purchased and replaced periodically. Non-cutting components (e.g. collets) are practically unlimited. They are often acquired together with a new machine. (Clamping equipment is handled like non-cutting components.)

DXF according to ISG/BMG standard FSJ-02-DXF.png
DXF according to ISG/BMG standard

Generally, four types of graphic illustrations are used:

  1. 2D drawings, for example, in DXF format according to the ISG/BMG standard for geometrical information
  2. PDF data of the tool manufacturer as a data sheet with exploded view
  3. 3D data (e.g. STEP or STL) for the use in CAM systems
  4. Photos (e.g. JPG) as graphical information

Tool assemblies

The tool assembly is built using several components. The component at the rear end must connect the machine tool, and the cutting component is found on the other end (ex.: drill or insert). Varying components are used intermediately (ex.: extension, collets) to reach the desired geometry. The assembly documentation describes how the components are assembled, to ensure that the applied geometry in the CAM system matches that of the real tools in the CNC machine.

Tool lists / manufacturing operation

The tool list includes all tool assemblies needed for a machining operation. It is printed as a pick list and is used for commissioning and providing advice for assembly setup. Often instructions and information are not directly related to the tools (e.g. clamping, clamping fixtures, the name of the NC program, etc.) to ensure that all documents for an operation can be viewed together.

Auxiliary tables

Match conditions for tool components Werkzeugdaten-Fuegebedingungen.png
Match conditions for tool components

In addition to the main tool data, auxiliary data tables simplify data acquisition, using values selected from a table. Compared to manual input, this ensures more comfortable and consistent data collection.

Transaction data (logistics)

Tool components in stock Tool-Components-(inserts).jpg
Tool components in stock

Logistics is concerned with inventory, storage areas and purchasing. Within logistics, the components and the assemblies are separate. The components differentiate between internal material flow and purchasing goods from external suppliers (stock control).

Stock control of components

The logistics of components includes primarily inventory management, requirements planning monitoring of minimum stock levels. When reaching the minimum level, tool management triggers a procurement process. The logistics of tool management use a workplace-tuned user interface and interfaces to storage systems and other facilities within the shop floor. The requirement for coordinated component inventory is a central tool organization in which all components of a production unit are stored at one location, and each withdrawal is recorded reliably.

In-house logistics of components

In-house logistics is mainly interested in where a wanted component currently is, and at what cost center it is consumed. This method only consumes wear parts (cutting), the other components (holders, clamping devices) are moved between toolroom, storage places and machine tool. Component booking at the individual cost centers and locations occurs simultaneously when withdrawn/restored to the toolroom. The preparation of tools and resources is triggered by a production order. It refers to a tool list in the master data, that lists required components. Prior to usage in the machine tool, the components are assembled, according to the specifications and work instructions in the tool list. When scheduling production orders, inventory for each component will be checked.

In-house logistics of assemblies

Tool assemblies loaded Tool-Assemblies-Loaded.jpg
Tool assemblies loaded

Assemblies are built from components, and after usage usually disassembled into components and restored again. From one assembly, multiple copies can be assembled simultaneously, if the components are available in sufficient numbers. The logistics of assemblies refers to the condition and location of these copies.

Each copy of an assembly can typically be in one of three states:

When scheduling a production order, the relevant tools, for the work are known, based on the tool list. Also, known is which assemblies, required for the machining process, are already located on the machine tool. Necessary, but not yet available assemblies are calculated and printed in a net loading list. They either have to be assembled or removed from the intermediate storage. With a coordinated logistic of the assemblies, it is possible to reduce the time required for providing and replacement of assemblies at the machine.

Integration of tool data

Tool management guarantees efficient and faultless order processing. Existing knowledge is made generally available and the guidelines stated in the master data are noticed. The integration of tool data enables other applications to use the tool data which is maintained with tool management. Applications either fall back on the tool management database, or the data will be replaced by the interfaces. Especially in CNC manufacturing where several persons are involved in the production process, integration avoids faults, delays and duplicate data recording.

PDM (documentation)

In product data management (PDM) systems every product's work plan is saved which comprises CAD Models, the description of working steps and a list of needed equipment. The detailed description of the equipment takes place in tool management because the PDM system does not offer functions and data fields do describe them in detail. It typically offers links to external data. Production orders are generated with the ERP system which links to the work plan in the PDM system. Needed resources such as NC programs, tools, and instructions are requested in production from tool management. Integration guarantees availability of the information in tool management. The basic objective for integration is a systematic numbering of documents and resources.

ERP (purchasing)

The ERP system plans raw material, consumable items and other resources. It closely connects with PDM and assumes the tasks of materials management and logistics. Related to the tools, this concerns the consumable components. If the component inventory is conducted with tool management, purchase orders will be transmitted as purchase requisitions to the ERP system which issues the actual order. This requires that the products be registered in both systems with the same number. Additionally all internal stock movements of tool components for the costing can be handed to the ERP system with the integration.

CAM

CAM systems generate the G-Code commands (NC program) for the CNC machine. Geometry, description and cutting conditions are selected and received directly from tool management. This ensures that all tools used are documented and consistent with the reality in the workshop. From the CAM system, all tools used in an NC program are automatically saved as tool lists in tool management. This ensures the correct use of the tools during the preparation of the work process.

Storage systems

Besides conventional tool cabinets, storage systems that provide the operator with the shelf containing the desired product are often used. The relationship between the item number and the storage location is saved in tool management. When booking a tool removal in the logistics area of tool management the storage system is operated automatically. Alternatively, assignment of storage locations can be configured in the storage system. The removal is then performed on the storage system and the inventory change is transmitted to tool management.

Presetting

Pre-setter Lycee Albert-Claveille 10.jpg
Pre-setter

At the processing to the tools' positioning the CNC machine needs their exact measurements. Therefore, the length and diameter of the complete tools must be entered when connecting them to the machine. These settings of the tools can be measured with an external pre-setter. Convenient pre-setters assume the nominal values, tolerances and designation from tool management and pass the measured values directly to the CNC machine. The integration of tool management with the pre-setters takes place in the exchange format of the respective equipment manufacturers and includes graphics and information about the measurement method.

Tool catalogues

To reduce the cost of initial data acquisition of the components in tool management, tool manufacturers provide the data and graphics in an appropriately conditioned form. For technical data, the DIN 4000 and the ISO 13399 exchange formats are currently used. Where required, 2D graphics are provided in accordance with the ISG / BMG DXF standard. For 3D graphics, no standard is defined. Normally, STL and STEP format are offered and axis position is chosen according to the application on the machine.

Motivation for tool management

Greater ROI

The bottom-line motivation for tool management, as with all manufacturing technologies, is greater return on investment through higher efficiency. This is achieved as follows:

Utilization of new technologies

Rising demands in design and quality, combined with time and cost pressures, force companies to regularly invest in more efficient equipment and procedures. Modern CNC-Machines (i.e. Mill-Turn-Machines) are highly productive, however they demand rigorous preparation and application. A prerequisite for their successful use is therefore the simultaneous adaptation of the organization together with the management of necessary operational information. The knowledge can subsequently be included in operational procedures and made available for each necessary task. This avoids the flawed or incomplete information that can interrupt production.

Supplying the right information

Newly purchased equipment is supplied with specific usage information (i.e. cutting data with tools). This information is found in supplier specific documentation (i.e. the maximum allowed diameter of a fine boring tool). Before the new acquisition can be used, the data must be integrated in the company-specific task format. (i.e. The exact setup values for a required fine boring tool). Furthermore, this information must be made available to all participating work areas. (i.e. the exact adjusted diameter must be made known to the NC programming and tool store departments). Processed company information is then made available as part data instructions (i.e. appropriate cutting values for a particular tools usage with a specified material) and must be managed and integrated within workflows to prevent production capacity loss or shortening tool life.

Make information more easily available

Tool and production data is managed within a company database and in a specific format. For this purpose a software application provides accessed across all departments and used without registering duplicate data. Such data can be utilized by other software applications (i.e. CAM-Systems, tool pre-setters, shop floor logistics). Suitable interfaces are integrated to secure smooth, seamless workflows. Central data management reduces errors and production stoppages.

Value

The importance of exchanging information between operational areas varies according to the type of company. Generally it can be said that missing or unclear information is the source of errors that cost capacity and generate delays and inefficient workflow. Manual interfaces and information passed by word of mouth are potential error sources and obstacles. Especially important are binding specifications that are involved in complex work situations to reduce the chance of machine damage as well as the risks involved with defective deliveries.

Related Research Articles

<span class="mw-page-title-main">Computer-aided design</span> Constructing a product by means of computer

Computer-Aided Design (CAD) is the use of computers to aid in the creation, modification, analysis, or optimization of a design. This software is used to increase the productivity of the designer, improve the quality of design, improve communications through documentation, and to create a database for manufacturing. Designs made through CAD software help protect products and inventions when used in patent applications. CAD output is often in the form of electronic files for print, machining, or other manufacturing operations. The terms computer-aided drafting (CAD) and computer-aided design and drafting (CADD) are also used.

<span class="mw-page-title-main">Computer-aided manufacturing</span> Use of software to control industrial processes

Computer-aided manufacturing (CAM) also known as computer-aided modeling or computer-aided machining is the use of software to control machine tools in the manufacturing of work pieces. This is not the only definition for CAM, but it is the most common. It may also refer to the use of a computer to assist in all operations of a manufacturing plant, including planning, management, transportation and storage. Its primary purpose is to create a faster production process and components and tooling with more precise dimensions and material consistency, which in some cases, uses only the required amount of raw material, while simultaneously reducing energy consumption. CAM is now a system used in schools and lower educational purposes. CAM is a subsequent computer-aided process after computer-aided design (CAD) and sometimes computer-aided engineering (CAE), as the model generated in CAD and verified in CAE can be input into CAM software, which then controls the machine tool. CAM is used in many schools alongside CAD to create objects.

<span class="mw-page-title-main">Machinist</span> Technician

A machinist is a tradesperson or trained professional who operates machine tools, and has the ability to set up tools such as milling machines, grinders, lathes, and drilling machines.

<span class="mw-page-title-main">Product lifecycle</span> Duration of processing of products from inception, to engineering, design & manufacture

In industry, product lifecycle management (PLM) is the process of managing the entire lifecycle of a product from its inception through the engineering, design and manufacture, as well as the service and disposal of manufactured products. PLM integrates people, data, processes, and business systems and provides a product information backbone for companies and their extended enterprises.

<span class="mw-page-title-main">Numerical control</span> Computer control of machine tools

In machining, numerical control, also called computer numerical control (CNC), is the automated control of tools by means of a computer. It is used to operate tools such as drills, lathes, mills, grinders, routers and 3D printers. CNC transforms a piece of material into a specified shape by following coded programmed instructions and without a manual operator directly controlling the machining operation.

<span class="mw-page-title-main">Tool and cutter grinder</span>

A Tool and Cutter Grinder is used to sharpen milling cutters and tool bits along with a host of other cutting tools.

Integrated logistics support (ILS) is a technology in the system engineering to lower a product life cycle cost and decrease demand for logistics by the maintenance system optimization to ease the product support. Although originally developed for military purposes, it is also widely used in commercial customer service organisations.

Collaborative product development (CPD) is a business strategy, work process and collection of software applications that facilitates different organizations to work together on the development of a product. It is also known as collaborative product definition management (cPDM).

Direct numerical control (DNC), also known as distributed numerical control, is a common manufacturing term for networking CNC machine tools. On some CNC machine controllers, the available memory is too small to contain the machining program, so in this case the program is stored in a separate computer and sent directly to the machine, one block at a time. If the computer is connected to a number of machines it can distribute programs to different machines as required. Usually, the manufacturer of the control provides suitable DNC software. However, if this provision is not possible, some software companies provide DNC applications that fulfill the purpose. DNC networking or DNC communication is always required when CAM programs are to run on some CNC machine control.

<span class="mw-page-title-main">Machine shop</span> Room, building or company where machining is done

A machine shop or engineering workshop is a room, building, or company where machining, a form of subtractive manufacturing, is done. In a machine shop, machinists use machine tools and cutting tools to make parts, usually of metal or plastic. A machine shop can be a small business or a portion of a factory, whether a toolroom or a production area for manufacturing. The building construction and the layout of the place and equipment vary, and are specific to the shop; for instance, the flooring in one shop may be concrete, or even compacted dirt, and another shop may have asphalt floors. A shop may be air-conditioned or not; but in other shops it may be necessary to maintain a controlled climate. Each shop has its own tools and machinery which differ from other shops in quantity, capability and focus of expertise.

<span class="mw-page-title-main">Vero Software</span> CAD CAM company

Vero Software is a company based in Cheltenham, England, that specialises in CAD CAM.

<span class="mw-page-title-main">STEP-NC</span> Machine tool control language

STEP-NC is a machine tool control language that extends the ISO 10303 STEP standards with the machining model in ISO 14649, adding geometric dimension and tolerance data for inspection, and the STEP PDM model for integration into the wider enterprise. The combined result has been standardized as ISO 10303-238.

<span class="mw-page-title-main">Multiaxis machining</span> Manufacturing processes using tools that can move in 4 or more directions

Multiaxis machining is a manufacturing process that involves tools that move in 4 or more directions and are used to manufacture parts out of metal or other materials by milling away excess material, by water jet cutting or by laser cutting. This type of machining was originally performed mechanically on large complex machines. These machines operated on 4, 5, 6, and even 12 axes which were controlled individually via levers that rested on cam plates. The cam plates offered the ability to control the tooling device, the table in which the part is secured, as well as rotating the tooling or part within the machine. Due to the machines size and complexity it took extensive amounts of time to set them up for production. Once computer numerically controlled machining was introduced it provided a faster, more efficient method for machining complex parts.

<span class="mw-page-title-main">WorkNC</span>

WorkNC is a Computer aided manufacturing (CAM) software developed by Sescoi for multi-axis machining.

<span class="mw-page-title-main">Guitar manufacturing</span>

Guitar manufacturing is the use of machines, tools, and labor in the production of electric and acoustic guitars. This phrase may be in reference to handcrafting guitars using traditional methods or assembly line production in large quantities using modern methods. Guitar manufacturing can also be broken into several categories such as body manufacturing and neck manufacturing, among others. Guitar manufacturing includes the production of alto, classical, tenor, and bass tuned guitars.

<span class="mw-page-title-main">Automatic lathe</span>

In metalworking and woodworking, an automatic lathe is a lathe with an automatically controlled cutting process. Automatic lathes were first developed in the 1870s and were mechanically controlled. From the advent of NC and CNC in the 1950s, the term automatic lathe has generally been used for only mechanically controlled lathes, although some manufacturers market Swiss-type CNC lathes as 'automatic'.

The history of numerical control (NC) began when the automation of machine tools first incorporated concepts of abstractly programmable logic, and it continues today with the ongoing evolution of computer numerical control (CNC) technology.

Industrial and production engineering (IPE) is an interdisciplinary engineering discipline that includes manufacturing technology, engineering sciences, management science, and optimization of complex processes, systems, or organizations. It is concerned with the understanding and application of engineering procedures in manufacturing processes and production methods. Industrial engineering dates back all the way to the industrial revolution, initiated in 1700s by Sir Adam Smith, Henry Ford, Eli Whitney, Frank Gilbreth and Lilian Gilbreth, Henry Gantt, F.W. Taylor, etc. After the 1970s, industrial and production engineering developed worldwide and started to widely use automation and robotics. Industrial and production engineering includes three areas: Mechanical engineering, industrial engineering, and management science.

<span class="mw-page-title-main">EXAPT</span>

EXAPT is a production-oriented programming language that allows users to generate NC programs with control information for machining tools and facilitates decision-making for production-related issues that may arise during various machining processes.

References

  1. Albert, Mark (2016-01-01), "Standard tool classification for better data communication", Modern Machine Shop .