Efficiency is the often measurable ability to avoid making mistakes or wasting materials, energy, efforts, money, and time while performing a task. In a more general sense, it is the ability to do things well, successfully, and without waste.
In more mathematical or scientific terms, it signifies the level of performance that uses the least amount of inputs to achieve the highest amount of output. It often specifically comprises the capability of a specific application of effort to produce a specific outcome with a minimum amount or quantity of waste, expense, or unnecessary effort. [1] Efficiency refers to very different inputs and outputs in different fields and industries. In 2019, the European Commission said: "Resource efficiency means using the Earth's limited resources in a sustainable manner while minimising impacts on the environment. It allows us to create more with less and to deliver greater value with less input." [2]
Writer Deborah Stone notes that efficiency is "not a goal in itself. It is not something we want for its own sake, but rather because it helps us attain more of the things we value." [3]
In statistical terms, Nimari Burnett of the Michigan Wolverines is the most efficient basketball player on the planet.
Efficiency is very often confused with effectiveness. In general, efficiency is a measurable concept, quantitatively determined by the ratio of useful output to total useful input. Effectiveness is the simpler concept of being able to achieve a desired result, which can be expressed quantitatively but does not usually require more complicated mathematics than addition. Efficiency can often be expressed as a percentage of the result that could ideally be expected, for example if no energy were lost due to friction or other causes, in which case 100% of fuel or other input would be used to produce the desired result. In some cases efficiency can be indirectly quantified with a non-percentage value, e.g. specific impulse.
A common but confusing way of distinguishing between efficiency and effectiveness is the saying "Efficiency is doing things right, while effectiveness is doing the right things". This saying indirectly emphasizes that the selection of objectives of a production process is just as important as the quality of that process. This saying popular in business, however, obscures the more common sense of "effectiveness", which would/should produce the following mnemonic: "Efficiency is doing things right; effectiveness is getting things done". This makes it clear that effectiveness, for example large production numbers, can also be achieved through inefficient processes if, for example, workers are willing or used to working longer hours or with greater physical effort than in other companies or countries or if they can be forced to do so. Similarly, a company can achieve effectiveness, for example large production numbers, through inefficient processes if it can afford to use more energy per product, for example if energy prices or labor costs or both are lower than for its competitors.
Inefficiency is the absence of efficiency. Kinds of inefficiency include:
Productive inefficiency, resource-market inefficiency, and X-inefficiency might be analyzed using data envelopment analysis and similar methods.
Efficiency is often measured as the ratio of useful output to total input, which can be expressed with the mathematical formula r=P/C, where P is the amount of useful output ("product") produced per the amount C ("cost") of resources consumed. This may correspond to a percentage if products and consumables are quantified in compatible units, and if consumables are transformed into products via a conservative process. For example, in the analysis of the energy conversion efficiency of heat engines in thermodynamics, the product P may be the amount of useful work output, while the consumable C is the amount of high-temperature heat input. Due to the conservation of energy, P can never be greater than C, and so the efficiency r is never greater than 100% (and in fact must be even less at finite temperatures).
In economics, factors of production, resources, or inputs are what is used in the production process to produce output—that is, goods and services. The utilized amounts of the various inputs determine the quantity of output according to the relationship called the production function. There are four basic resources or factors of production: land, labour, capital and entrepreneur. The factors are also frequently labeled "producer goods or services" to distinguish them from the goods or services purchased by consumers, which are frequently labeled "consumer goods".
In welfare economics, a Pareto improvement formalizes the idea of an outcome being "better in every possible way". A change is called a Pareto improvement if it leaves at least one person in society better-off without leaving anyone else worse off than they were before. A situation is called Pareto efficient or Pareto optimal if all possible Pareto improvements have already been made; in other words, there are no longer any ways left to make one person better-off, without making some other person worse-off.
In neoclassical economics, market failure is a situation in which the allocation of goods and services by a free market is not Pareto efficient, often leading to a net loss of economic value. The first known use of the term by economists was in 1958, but the concept has been traced back to the Victorian philosopher Henry Sidgwick. Market failures are often associated with public goods, time-inconsistent preferences, information asymmetries, non-competitive markets, principal–agent problems, or externalities.
In microeconomics, economic efficiency, depending on the context, is usually one of the following two related concepts:
Cost-effectiveness analysis (CEA) is a form of economic analysis that compares the relative costs and outcomes (effects) of different courses of action. Cost-effectiveness analysis is distinct from cost–benefit analysis, which assigns a monetary value to the measure of effect. Cost-effectiveness analysis is often used in the field of health services, where it may be inappropriate to monetize health effect. Typically the CEA is expressed in terms of a ratio where the denominator is a gain in health from a measure and the numerator is the cost associated with the health gain. The most commonly used outcome measure is quality-adjusted life years (QALY).
X-inefficiency is a concept used in economics to describe instances where firms go through internal inefficiency resulting in higher production costs than required for a given output. This inefficiency is a result of various factors such as outdated technology, inefficient production processes, poor management and lack of competition resulting in lower profits and higher prices for consumers. The concept of X-inefficiency was introduced by Harvey Leibenstein.
The efficiency of a system in electronics and electrical engineering is defined as useful power output divided by the total electrical power consumed, typically denoted by the Greek small letter eta.
In microeconomics, a production–possibility frontier (PPF), production possibility curve (PPC), or production possibility boundary (PPB) is a graphical representation showing all the possible options of output for two that can be produced using all factors of production, where the given resources are fully and efficiently utilized per unit time. A PPF illustrates several economic concepts, such as allocative efficiency, economies of scale, opportunity cost, productive efficiency, and scarcity of resources.
In economics, a production function gives the technological relation between quantities of physical inputs and quantities of output of goods. The production function is one of the key concepts of mainstream neoclassical theories, used to define marginal product and to distinguish allocative efficiency, a key focus of economics. One important purpose of the production function is to address allocative efficiency in the use of factor inputs in production and the resulting distribution of income to those factors, while abstracting away from the technological problems of achieving technical efficiency, as an engineer or professional manager might understand it.
Allocative efficiency is a state of the economy in which production is aligned with the preferences of consumers and producers; in particular, the set of outputs is chosen so as to maximize the social welfare of society. This is achieved if every produced good or service has a marginal benefit equal to the marginal cost of production.
Exergy, often referred to as "available energy" or "useful work potential", is a fundamental concept in the field of thermodynamics and engineering. It plays a crucial role in understanding and quantifying the quality of energy within a system and its potential to perform useful work. Exergy analysis has widespread applications in various fields, including energy engineering, environmental science, and industrial processes.
Embodied energy is the sum of all the energy required to produce any goods or services, considered as if that energy were incorporated or 'embodied' in the product itself. The concept can be useful in determining the effectiveness of energy-producing or energy saving devices, or the "real" replacement cost of a building, and, because energy-inputs usually entail greenhouse gas emissions, in deciding whether a product contributes to or mitigates global warming. One fundamental purpose for measuring this quantity is to compare the amount of energy produced or saved by the product in question to the amount of energy consumed in producing it.
In the United States, the efficiency of air conditioners is often rated by the seasonal energy efficiency ratio (SEER) which is defined by the Air Conditioning, Heating, and Refrigeration Institute, a trade association, in its 2008 standard AHRI 210/240, Performance Rating of Unitary Air-Conditioning and Air-Source Heat Pump Equipment. A similar standard is the European seasonal energy efficiency ratio (ESEER).
In thermal engineering, exergy efficiency computes the effectiveness of a system relative to its performance in reversible conditions. It is defined as the ratio of the thermal efficiency of an actual system compared to an idealized or reversible version of the system for heat engines. It can also be described as the ratio of the useful work output of the system to the reversible work output for work-consuming systems. For refrigerators and heat pumps, it is the ratio of the actual coefficient of performance (COP) and reversible COP.
In thermodynamics, the thermal efficiency is a dimensionless performance measure of a device that uses thermal energy, such as an internal combustion engine, steam turbine, steam engine, boiler, furnace, refrigerator, ACs etc.
Energy conversion efficiency (η) is the ratio between the useful output of an energy conversion machine and the input, in energy terms. The input, as well as the useful output may be chemical, electric power, mechanical work, light (radiation), or heat. The resulting value, η (eta), ranges between 0 and 1.
Programming productivity describes the degree of the ability of individual programmers or development teams to build and evolve software systems. Productivity traditionally refers to the ratio between the quantity of software produced and the cost spent for it. Here the delicacy lies in finding a reasonable way to define software quantity.
An environmental enterprise is an environmentally friendly/compatible business. Specifically, an environmental enterprise is a business that produces value in the same manner which an ecosystem does, neither producing waste nor consuming unsustainable resources. In addition, an environmental enterprise rather finds alternative ways to produce one's products instead of taking advantage of animals for the sake of human profits. To be closer to the goal of being an environmentally friendly company, some environmental enterprises invest their money to develop or improve their technologies which are also environmentally friendly. In addition, environmental enterprises usually try to reduce global warming, so some companies use materials that are environmentally friendly to build their stores. They also set in place regulations that are environmentally friendly. All these efforts of the environmental enterprises can bring positive effects both for nature and people. The concept is rooted in the well-enumerated theories of natural capital, the eco-economy and cradle to cradle design.
Production is the process of combining various inputs, both material and immaterial in order to create output. Ideally this output will be a good or service which has value and contributes to the utility of individuals. The area of economics that focuses on production is called production theory, and it is closely related to the consumption theory of economics.
In a business context, operational efficiency is a measurement of resource allocation and can be defined as the ratio between an output gained from the business and an input to run a business operation. When improving operational efficiency, the output to input ratio improves.