**Pareto efficiency** or **Pareto optimality** is a situation where no individual or preference criterion can be better off without making at least one individual or preference criterion worse off. The concept is named after Vilfredo Pareto (1848–1923), Italian engineer and economist, who used the concept in his studies of economic efficiency and income distribution. The following three concepts are closely related:

- Overview
- Weak Pareto efficiency
- Constrained Pareto efficiency
- Fractional Pareto efficiency
- Pareto-efficiency and welfare-maximization
- Use in engineering
- Pareto frontier
- Marginal rate of substitution
- Computation
- Use in biology
- Criticism
- See also
- References
- Further reading

- Given an initial situation, a
**Pareto improvement**is a new situation where some agents will gain, and no agents will lose. - A situation is called
**Pareto dominated**if it has a Pareto improvement. - A situation is called
**Pareto optimal**or**Pareto efficient**if no change could lead to improved satisfaction for all parties.

The **Pareto frontier** is the set of all Pareto efficient allocations, conventionally shown graphically. It also is variously known as the **Pareto front** or **Pareto set**.^{ [1] }

"Pareto efficiency" is considered as a minimal notion of efficiency that does not necessarily result in a socially desirable distribution of resources: it makes no statement about equality, or the overall well-being of a society.^{ [2] }^{ [3] }^{:46–49} It is a necessary, but not sufficient, condition of efficiency.

In addition to the context of efficiency in *allocation*, the concept of Pareto efficiency also arises in the context of *efficiency in production* vs. * x-inefficiency *: a set of outputs of goods is Pareto efficient if there is no feasible re-allocation of productive inputs such that output of one product increases while the outputs of all other goods either increase or remain the same.^{ [4] }^{:459}

Besides economics, the notion of Pareto efficiency has been applied to the selection of alternatives in engineering and biology. Each option is first assessed, under multiple criteria, and then a subset of options is ostensibly identified with the property that no other option can categorically outperform the specified option. It is a statement of impossibility of improving one variable without harming other variables in the subject of multi-objective optimization (also termed **Pareto optimization**).

"Pareto optimality" is a formally defined concept used to describe when an allocation is optimal. An allocation is Pareto optimal if there is an alternative allocation where improvements can be made to at least one participant's well-being without reducing any other participant's well-being. If there is a transfer that satisfies this condition, the reallocation is called a "Pareto improvement". When no further Pareto improvements are possible, the allocation is a "Pareto optimum".

The formal presentation of the concept in an economy is as follows: Consider an economy with agents and goods. Then an allocation , where for all *i*, is *Pareto optimal* if there is no other feasible allocation such that, for utility function for each agent , for all with for some .^{ [5] } Here, in this simple economy, "feasibility" refers to an allocation where the total amount of each good that is allocated sums to no more than the total amount of the good in the economy. In a more complex economy with production, an allocation would consist both of consumption vectors and production vectors, and feasibility would require that the total amount of each consumed good is no greater than the initial endowment plus the amount produced.

In principle, a change from a generally inefficient economic allocation to an efficient one is not necessarily considered to be a Pareto improvement. Even when there are overall gains in the economy, if a single agent is disadvantaged by the reallocation, the allocation is not Pareto optimal. For instance, if a change in economic policy eliminates a monopoly and that market subsequently becomes competitive, the gain to others may be large. However, since the monopolist is disadvantaged, this is not a Pareto improvement. In theory, if the gains to the economy are larger than the loss to the monopolist, the monopolist could be compensated for its loss while still leaving a net gain for others in the economy, allowing for a Pareto improvement. Thus, in practice, to ensure that nobody is disadvantaged by a change aimed at achieving Pareto efficiency, compensation of one or more parties may be required. It is acknowledged, in the real world, that such compensations may have unintended consequences leading to incentive distortions over time, as agents supposedly anticipate such compensations and change their actions accordingly.^{ [6] }

Under the idealized conditions of the first welfare theorem, a system of free markets, also called a "competitive equilibrium", leads to a Pareto-efficient outcome. It was first demonstrated mathematically by economists Kenneth Arrow and Gérard Debreu.

However, the result only holds under the restrictive assumptions necessary for the proof: markets exist for all possible goods, so there are no externalities; all markets are in full equilibrium; markets are perfectly competitive; transaction costs are negligible; and market participants have perfect information.

In the absence of perfect information or complete markets, outcomes will generally be Pareto inefficient, per the Greenwald-Stiglitz theorem.^{ [7] }

The second welfare theorem is essentially the reverse of the first welfare-theorem. It states that under similar, ideal assumptions, any Pareto optimum can be obtained by some competitive equilibrium, or free market system, although it may also require a lump-sum transfer of wealth.^{ [5] }

**Weak Pareto optimality** is a situation that cannot be strictly improved for *every* individual.^{ [8] }

Formally, a **strong Pareto improvement** is defined as a situation in which all agents are strictly better-off (in contrast to just "Pareto improvement", which requires that one agent is strictly better-off and the other agents are at least as good). A situation is **weak Pareto-optimal** if it has no strong Pareto-improvements.

Any strong Pareto-improvement is also a weak Pareto-improvement. The opposite is not true; for example, consider a resource allocation problem with two resources, which Alice values at 10, 0 and George values at 5, 5. Consider the allocation giving all resources to Alice, where the utility profile is (10,0):

- It is a weak-PO, since no other allocation is strictly better to both agents (there are no strong Pareto improvements).
- But it is not a strong-PO, since the allocation in which George gets the second resource is strictly better for George and weakly better for Alice (it is a weak Pareto improvement) - its utility profile is (10,5).

A market doesn't require local nonsatiation to get to a weak Pareto-optimum.^{ [9] }

**Constrained Pareto optimality** is a weakening of Pareto-optimality, accounting for the fact that a potential planner (e.g., the government) may not be able to improve upon a decentralized market outcome, even if that outcome is inefficient. This will occur if it is limited by the same informational or institutional constraints as are individual agents.^{ [10] }^{:104}

An example is of a setting where individuals have private information (for example, a labor market where the worker's own productivity is known to the worker but not to a potential employer, or a used-car market where the quality of a car is known to the seller but not to the buyer) which results in moral hazard or an adverse selection and a sub-optimal outcome. In such a case, a planner who wishes to improve the situation is unlikely to have access to any information that the participants in the markets do not have. Hence, the planner cannot implement allocation rules which are based on the idiosyncratic characteristics of individuals; for example, "if a person is of type A, they pay price p1, but if of type B, they pay price p2" (see Lindahl prices). Essentially, only anonymous rules are allowed (of the sort "Everyone pays price p") or rules based on observable behavior; "if any person chooses x at price px, then they get a subsidy of ten dollars, and nothing otherwise". If there exists no allowed rule that can successfully improve upon the market outcome, then that outcome is said to be "constrained Pareto-optimal".

The concept of constrained Pareto optimality assumes benevolence on the part of the planner and hence is distinct from the concept of government failure, which occurs when the policy making politicians fail to achieve an optimal outcome simply because they are not necessarily acting in the public's best interest.^{ [11] }^{:99}

**Fractional Pareto optimality** is a strengthening of Pareto-optimality in the context of fair item allocation. An allocation of indivisible items is **fractionally Pareto-optimal (fPO)** if it is not Pareto-dominated even by an allocation in which some items are split between agents. This is in contrast to standard Pareto-optimality, which only considers domination by feasible (discrete) allocations.^{ [12] }

As an example, consider an item allocation problem with two items, which Alice values at 3, 2 and George values at 4, 1. Consider the allocation giving the first item to Alice and the second to George, where the utility profile is (3,1):

- It is Pareto-optimal, since any other discrete allocation (without splitting items) makes someone worse-off.
- However, it is not fractionally-Pareto-optimal, since it is Pareto-dominated by the allocation giving to Alice 1/2 of the first item and the whole second item, and the other 1/2 of the first item to George - its utility profile is (3.5, 2).

Suppose each agent *i* is assigned a positive weight *a _{i}*. For every allocation

.

Let *x _{a}* be an allocation that maximizes the welfare over all allocations, i.e.:

.

It is easy to show that the allocation *x _{a}* is Pareto-efficient: since all weights are positive, any Pareto-improvement would increase the sum, contradicting the definition of

Japanese neo-Walrasian economist Takashi Negishi proved^{ [13] } that, under certain assumptions, the opposite is also true: for *every* Pareto-efficient allocation *x*, there exists a positive vector *a* such that *x* maximizes *W*_{a}. A shorter proof is provided by Hal Varian.^{ [14] }

The notion of Pareto efficiency has been used in engineering.^{ [15] }^{:111–148} Given a set of choices and a way of valuing them, the **Pareto frontier** or **Pareto set** or **Pareto front** is the set of choices that are Pareto efficient. By restricting attention to the set of choices that are Pareto-efficient, a designer can make tradeoffs within this set, rather than considering the full range of every parameter.^{ [16] }^{:63–65}

For a given system, the **Pareto frontier** or **Pareto set** is the set of parameterizations (allocations) that are all Pareto efficient. Finding Pareto frontiers is particularly useful in engineering. By yielding all of the potentially optimal solutions, a designer can make focused tradeoffs within this constrained set of parameters, rather than needing to consider the full ranges of parameters.^{ [17] }^{:399–412}

The Pareto frontier, *P*(*Y*), may be more formally described as follows. Consider a system with function , where *X* is a compact set of feasible decisions in the metric space , and *Y* is the feasible set of criterion vectors in , such that .

We assume that the preferred directions of criteria values are known. A point is preferred to (strictly dominates) another point , written as . The Pareto frontier is thus written as:

A significant aspect of the Pareto frontier in economics is that, at a Pareto-efficient allocation, the marginal rate of substitution is the same for all consumers. A formal statement can be derived by considering a system with *m* consumers and *n* goods, and a utility function of each consumer as where is the vector of goods, both for all *i*. The feasibility constraint is for . To find the Pareto optimal allocation, we maximize the Lagrangian:

where and are the vectors of multipliers. Taking the partial derivative of the Lagrangian with respect to each good for and and gives the following system of first-order conditions:

where denotes the partial derivative of with respect to . Now, fix any and . The above first-order condition imply that

Thus, in a Pareto-optimal allocation, the marginal rate of substitution must be the same for all consumers.^{[ citation needed ]}

Algorithms for computing the Pareto frontier of a finite set of alternatives have been studied in computer science and power engineering.^{ [18] } They include:

- "The maximum vector problem" or the skyline query.
^{ [19] }^{ [20] }^{ [21] } - "The scalarization algorithm" or the method of weighted sums.
^{ [22] }^{ [23] } - "The -constraints method".
^{ [24] }^{ [25] }

Pareto optimisation has also been studied in biological processes.^{ [26] }^{:87–102} In bacteria, genes were shown to be either inexpensive to make (resource efficient) or easier to read (translation efficient). Natural selection acts to push highly expressed genes towards the Pareto frontier for resource use and translational efficiency.^{ [27] }^{:166–169} Genes near the Pareto frontier were also shown to evolve more slowly (indicating that they are providing a selective advantage).^{ [28] }

It would be incorrect to treat Pareto efficiency as equivalent to societal optimization,^{ [29] }^{:358–364} as the latter is a normative concept that is a matter of interpretation that typically would account for the consequence of degrees of inequality of distribution.^{ [30] }^{:10–15} An example would be the interpretation of one school district with low property tax revenue versus another with much higher revenue as a sign that more equal distribution occurs with the help of government redistribution.^{ [31] }^{:95–132}

Pareto efficiency does not require a totally equitable distribution of wealth.^{ [32] }^{:222} An economy in which a wealthy few hold the vast majority of resources can be Pareto efficient. This possibility is inherent in the definition of Pareto efficiency; often the status quo is Pareto efficient regardless of the degree to which wealth is equitably distributed. A simple example is the distribution of a pie among three people. The most equitable distribution would assign one third to each person. However the assignment of, say, a half section to each of two individuals and none to the third is also Pareto optimal despite not being equitable, because none of the recipients could be made better off without decreasing someone else's share; and there are many other such distribution examples. An example of a Pareto inefficient distribution of the pie would be allocation of a quarter of the pie to each of the three, with the remainder discarded.^{ [33] }^{:18} The origin (and utility value) of the pie is conceived as immaterial in these examples. In such cases, whereby a "windfall" is gained that none of the potential distributees actually produced (e.g., land, inherited wealth, a portion of the broadcast spectrum, or some other resource), the criterion of Pareto efficiency does not determine a unique optimal allocation. Wealth consolidation may exclude others from wealth accumulation because of bars to market entry, etc.

The liberal paradox elaborated by Amartya Sen shows that when people have preferences about what other people do, the goal of Pareto efficiency can come into conflict with the goal of individual liberty.^{ [34] }^{:92–94}

- Admissible decision rule, analog in decision theory
- Arrow's impossibility theorem
- Bayesian efficiency
- Fundamental theorems of welfare economics
- Deadweight loss
- Economic efficiency
- Highest and best use
- Kaldor–Hicks efficiency
- Market failure, when a market result is not Pareto optimal
- Maximal element, concept in order theory
- Maxima of a point set
- Multi-objective optimization
- Pareto-efficient envy-free division
*Social Choice and Individual Values*for the '(weak) Pareto principle'- TOTREP
- Welfare economics

In mathematical optimization, the **method of Lagrange multipliers** is a strategy for finding the local maxima and minima of a function subject to equality constraints. It is named after the mathematician Joseph-Louis Lagrange. The basic idea is to convert a constrained problem into a form such that the derivative test of an unconstrained problem can still be applied. The relationship between the gradient of the function and gradients of the constraints rather naturally leads to a reformulation of the original problem, known as the **Lagrangian function**.

There are two **fundamental theorems of welfare economics**. The **first** states that a market in equilibrium under perfect competition will be Pareto optimal in the sense that no further exchange would make one person better off without making another worse off. The requirements for perfect competition are these:

- There are no externalities and no transaction costs, and each actor has perfect information.
- Firms take prices – ie. behavior is competitive rather than monopolistic.

**Convex optimization** is a subfield of mathematical optimization that studies the problem of minimizing convex functions over convex sets. Many classes of convex optimization problems admit polynomial-time algorithms, whereas mathematical optimization is in general NP-hard.

In game theory, the **core** is the set of feasible allocations that cannot be improved upon by a subset of the economy's agents. A coalition is said to *improve upon* or *block* a feasible allocation if the members of that coalition are better off under another feasible allocation that is identical to the first except that every member of the coalition has a different consumption bundle that is part of an aggregate consumption bundle that can be constructed from publicly available technology and the initial endowments of each consumer in the coalition.

In mathematical optimization, the **Karush–Kuhn–Tucker (KKT) conditions**, also known as the **Kuhn–Tucker conditions**, are first derivative tests for a solution in nonlinear programming to be optimal, provided that some regularity conditions are satisfied.

In evolutionary computation, **differential evolution** (**DE**) is a method that optimizes a problem by iteratively trying to improve a candidate solution with regard to a given measure of quality. Such methods are commonly known as metaheuristics as they make few or no assumptions about the problem being optimized and can search very large spaces of candidate solutions. However, metaheuristics such as DE do not guarantee an optimal solution is ever found.

In mathematical optimization theory, **duality** or the **duality principle** is the principle that optimization problems may be viewed from either of two perspectives, the **primal problem** or the **dual problem**. The solution to the dual problem provides a lower bound to the solution of the primal (minimization) problem. However in general the optimal values of the primal and dual problems need not be equal. Their difference is called the duality gap. For convex optimization problems, the duality gap is zero under a constraint qualification condition.

The **envelope theorem** is a result about the differentiability properties of the value function of a parameterized optimization problem. As we change parameters of the objective, the envelope theorem shows that, in a certain sense, changes in the optimizer of the objective do not contribute to the change in the objective function. The envelope theorem is an important tool for comparative statics of optimization models.

**Semidefinite programming** (**SDP**) is a subfield of convex optimization concerned with the optimization of a linear objective function over the intersection of the cone of positive semidefinite matrices with an affine space, i.e., a spectrahedron.

In mathematics, a **quasiconvex function** is a real-valued function defined on an interval or on a convex subset of a real vector space such that the inverse image of any set of the form is a convex set. For a function of a single variable, along any stretch of the curve the highest point is one of the endpoints. The negative of a quasiconvex function is said to be **quasiconcave**.

**Competitive equilibrium** is a concept of economic equilibrium introduced by Kenneth Arrow and Gérard Debreu in 1951 appropriate for the analysis of commodity markets with flexible prices and many traders, and serving as the benchmark of efficiency in economic analysis. It relies crucially on the assumption of a competitive environment where each trader decides upon a quantity that is so small compared to the total quantity traded in the market that their individual transactions have no influence on the prices. Competitive markets are an ideal standard by which other market structures are evaluated.

**Multi-objective optimization** is an area of multiple criteria decision making that is concerned with mathematical optimization problems involving more than one objective function to be optimized simultaneously. Multi-objective optimization has been applied in many fields of science, including engineering, economics and logistics where optimal decisions need to be taken in the presence of trade-offs between two or more conflicting objectives. Minimizing cost while maximizing comfort while buying a car, and maximizing performance whilst minimizing fuel consumption and emission of pollutants of a vehicle are examples of multi-objective optimization problems involving two and three objectives, respectively. In practical problems, there can be more than three objectives.

**Bilevel optimization** is a special kind of optimization where one problem is embedded (nested) within another. The outer optimization task is commonly referred to as the upper-level optimization task, and the inner optimization task is commonly referred to as the lower-level optimization task. These problems involve two kinds of variables, referred to as the upper-level variables and the lower-level variables.

In discrete mathematics, **ideal lattices** are a special class of lattices and a generalization of cyclic lattices. Ideal lattices naturally occur in many parts of number theory, but also in other areas. In particular, they have a significant place in cryptography. Micciancio defined a generalization of cyclic lattices as ideal lattices. They can be used in cryptosystems to decrease by a square root the number of parameters necessary to describe a lattice, making them more efficient. Ideal lattices are a new concept, but similar lattice classes have been used for a long time. For example cyclic lattices, a special case of ideal lattices, are used in NTRUEncrypt and NTRUSign.

Network coding has been shown to optimally use bandwidth in a network, maximizing information flow but the scheme is very inherently vulnerable to pollution attacks by malicious nodes in the network. A node injecting garbage can quickly affect many receivers. The pollution of network packets spreads quickly since the output of honest node is corrupted if at least one of the incoming packets is corrupted. An attacker can easily corrupt a packet even if it is encrypted by either forging the signature or by producing a collision under the hash function. This will give an attacker access to the packets and the ability to corrupt them. Denis Charles, Kamal Jain and Kristin Lauter designed a new homomorphic encryption signature scheme for use with network coding to prevent pollution attacks. The homomorphic property of the signatures allows nodes to sign any linear combination of the incoming packets without contacting the signing authority. In this scheme it is computationally infeasible for a node to sign a linear combination of the packets without disclosing what linear combination was used in the generation of the packet. Furthermore, we can prove that the signature scheme is secure under well known cryptographic assumptions of the hardness of the discrete logarithm problem and the computational Elliptic curve Diffie–Hellman.

**Efficient cake-cutting** is a problem in economics and computer science. It involves a *heterogeneous* resource, such as a cake with different toppings or a land with different coverings, that is assumed to be *divisible* - it is possible to cut arbitrarily small pieces of it without destroying their value. The resource has to be divided among several partners who have different preferences over different parts of the cake, i.e., some people prefer the chocolate toppings, some prefer the cherries, some just want as large a piece as possible, etc. The allocation should be *economically efficient*. Several notions of efficiency have been studied:

Efficiency and fairness are two major goals of welfare economics. Given a set of resources and a set of agents, the goal is to divide the resources among the agents in a way that is both Pareto efficient (PE) and envy-free (EF). The goal was first defined by David Schmeidler and Menahem Yaari. Later, the existence of such allocations has been proved under various conditions.

**Utilitarian cake-cutting** is a rule for dividing a heterogeneous resource, such as a cake or a land-estate, among several partners with different cardinal utility functions, such that the *sum* of the utilities of the partners is as large as possible. It is inspired by the utilitarian philosophy. Utilitarian cake-cutting is often not "fair"; hence, utilitarianism is in conflict with fair cake-cutting.

**Envy-free item allocation** is a fair item allocation problem, in which the fairness criterion is envy-freeness - each agent should receive a bundle that they believe to be at least as good as the bundle of any other agent.

Mathematical optimization deals with finding the best solution to a problem from a set of possible solutions. Mostly, the optimization problem is formulated as a minimization problem, where one tries to minimize an error which depends on the solution: the optimal solution has the minimal error. Different optimization techniques are applied in various fields such as mechanics, economics and engineering, and as the complexity and amount of data involved rise, more efficient ways of solving optimization problems are needed. The power of quantum computing may allow solving problems which are not practically feasible on classical computers, or suggest a considerable speed up with respect to the best known classical algorithm. Among other quantum algorithms, there are **quantum optimization algorithms** which might suggest improvement in solving optimization problems.

- ↑ proximedia. "Pareto Front".
*www.cenaero.be*. Retrieved October 8, 2018. - ↑ Sen, A. (October 1993). "Markets and freedom: Achievements and limitations of the market mechanism in promoting individual freedoms" (PDF).
*Oxford Economic Papers*.**45**(4): 519–541. doi:10.1093/oxfordjournals.oep.a042106. JSTOR 2663703. - ↑ Barr, N. (2012). "3.2.2 The relevance of efficiency to different theories of society".
*Economics of the Welfare State*(5th ed.). Oxford University Press. pp. 46–49. ISBN 978-0-19-929781-8. - ↑ Black, J. D., Hashimzade, N., & Myles, G., eds.,
*A Dictionary of Economics*, 5th ed. (Oxford: Oxford University Press, 2017), p. 459. - 1 2 Mas-Colell, A.; Whinston, Michael D.; Green, Jerry R. (1995), "Chapter 16: Equilibrium and its Basic Welfare Properties",
*Microeconomic Theory*, Oxford University Press, ISBN 978-0-19-510268-0 - ↑ See Ricardian equivalence
- ↑ Greenwald, B.; Stiglitz, J. E. (1986). "Externalities in economies with imperfect information and incomplete markets".
*Quarterly Journal of Economics*.**101**(2): 229–64. doi:10.2307/1891114. JSTOR 1891114. - ↑ Mock, William B T. (2011). "Pareto Optimality".
*Encyclopedia of Global Justice*. pp. 808–809. doi:10.1007/978-1-4020-9160-5_341. ISBN 978-1-4020-9159-9. - ↑ Markey‐Towler, Brendan and John Foster. "Why economic theory has little to say about the causes and effects of inequality", School of Economics, University of Queensland, Australia, 21 February 2013, RePEc:qld:uq2004:476
- ↑ Magill, M., & Quinzii, M.,
*Theory of Incomplete Markets*, MIT Press, 2002, p. 104. - ↑ Wilkerson, T.,
*Advanced Economic Theory*(Waltham Abbey: Edtech Press, 20180), p. 99. - ↑ Barman, S., Krishnamurthy, S. K., & Vaish, R., "Finding Fair and Efficient Allocations",
*EC '18: Proceedings of the 2018 ACM Conference on Economics and Computation*, June 2018. - ↑ Negishi, Takashi (1960). "Welfare Economics and Existence of an Equilibrium for a Competitive Economy".
*Metroeconomica*.**12**(2–3): 92–97. doi:10.1111/j.1467-999X.1960.tb00275.x. - ↑ Varian, Hal R. (1976). "Two problems in the theory of fairness".
*Journal of Public Economics*.**5**(3–4): 249–260. doi:10.1016/0047-2727(76)90018-9. hdl: 1721.1/64180 . - ↑ Goodarzi, E., Ziaei, M., & Hosseinipour, E. Z.,
*Introduction to Optimization Analysis in Hydrosystem Engineering*(Berlin/Heidelberg: Springer, 2014), pp. 111–148. - ↑ Jahan, A., Edwards, K. L., & Bahraminasab, M.,
*Multi-criteria Decision Analysis*, 2nd ed. (Amsterdam: Elsevier, 2013), pp. 63–65. - ↑ Costa, N. R., & Lourenço, J. A., "Exploring Pareto Frontiers in the Response Surface Methodology", in G.-C. Yang, S.-I. Ao, & L. Gelman, eds.,
*Transactions on Engineering Technologies: World Congress on Engineering 2014*(Berlin/Heidelberg: Springer, 2015), pp. 399–412. - ↑ Tomoiagă, Bogdan; Chindriş, Mircea; Sumper, Andreas; Sudria-Andreu, Antoni; Villafafila-Robles, Roberto (2013). "Pareto Optimal Reconfiguration of Power Distribution Systems Using a Genetic Algorithm Based on NSGA-II".
*Energies*.**6**(3): 1439–55. doi: 10.3390/en6031439 . - ↑ Nielsen, Frank (1996). "Output-sensitive peeling of convex and maximal layers".
*Information Processing Letters*.**59**(5): 255–9. CiteSeerX 10.1.1.259.1042 . doi:10.1016/0020-0190(96)00116-0. - ↑ Kung, H. T.; Luccio, F.; Preparata, F.P. (1975). "On finding the maxima of a set of vectors".
*Journal of the ACM*.**22**(4): 469–76. doi:10.1145/321906.321910. S2CID 2698043. - ↑ Godfrey, P.; Shipley, R.; Gryz, J. (2006). "Algorithms and Analyses for Maximal Vector Computation".
*VLDB Journal*.**16**: 5–28. CiteSeerX 10.1.1.73.6344 . doi:10.1007/s00778-006-0029-7. S2CID 7374749. - ↑ Kim, I. Y.; de Weck, O. L. (2005). "Adaptive weighted sum method for multiobjective optimization: a new method for Pareto front generation".
*Structural and Multidisciplinary Optimization*.**31**(2): 105–116. doi:10.1007/s00158-005-0557-6. ISSN 1615-147X. S2CID 18237050. - ↑ Marler, R. Timothy; Arora, Jasbir S. (2009). "The weighted sum method for multi-objective optimization: new insights".
*Structural and Multidisciplinary Optimization*.**41**(6): 853–862. doi:10.1007/s00158-009-0460-7. ISSN 1615-147X. S2CID 122325484. - ↑ "On a Bicriterion Formulation of the Problems of Integrated System Identification and System Optimization".
*IEEE Transactions on Systems, Man, and Cybernetics*. SMC-1 (3): 296–297. 1971. doi:10.1109/TSMC.1971.4308298. ISSN 0018-9472. - ↑ Mavrotas, George (2009). "Effective implementation of the ε-constraint method in Multi-Objective Mathematical Programming problems".
*Applied Mathematics and Computation*.**213**(2): 455–465. doi:10.1016/j.amc.2009.03.037. ISSN 0096-3003. - ↑ Moore, J. H., Hill, D. P., Sulovari, A., & Kidd, L. C., "Genetic Analysis of Prostate Cancer Using Computational Evolution, Pareto-Optimization and Post-processing", in R. Riolo, E. Vladislavleva, M. D. Ritchie, & J. H. Moore, eds.,
*Genetic Programming Theory and Practice X*(Berlin/Heidelberg: Springer, 2013), pp. 87–102. - ↑ Eiben, A. E., & Smith, J. E.,
*Introduction to Evolutionary Computing*(Berlin/Heidelberg: Springer, 2003), pp. 166–169. - ↑ Seward, E. A., & Kelly, S., "Selection-driven cost-efficiency optimization of transcripts modulates gene evolutionary rate in bacteria",
*Genome Biology*, Vol. 19, 2018. - ↑ Drèze, J.,
*Essays on Economic Decisions Under Uncertainty*(Cambridge: Cambridge University Press, 1987), pp. 358–364 - ↑ Backhaus, J. G.,
*The Elgar Companion to Law and Economics*(Cheltenham, UK / Northampton, MA: Edward Elgar, 2005), pp. 10–15. - ↑ Paulsen, M. B., "The Economics of the Public Sector: The Nature and Role of Public Policy in the Finance of Higher Education", in M. B. Paulsen, J. C. Smart, eds.
*The Finance of Higher Education: Theory, Research, Policy, and Practice*(New York: Agathon Press, 2001), pp. 95–132. - ↑ Bhushi, K., ed.,
*Farm to Fingers: The Culture and Politics of Food in Contemporary India*(Cambridge: Cambridge University Press, 2018), p. 222. - ↑ Wittman, D.,
*Economic Foundations of Law and Organization*(Cambridge: Cambridge University Press, 2006), p. 18. - ↑ Sen, A.,
*Rationality and Freedom*(Cambridge, MA / London: Belknep Press, 2004), pp. 92–94.

- Fudenberg, Drew; Tirole, Jean (1991).
*Game theory*. Cambridge, Massachusetts: MIT Press. pp. 18–23. ISBN 9780262061414. Book preview. - Bendor, Jonathan; Mookherjee, Dilip (April 2008). "Communitarian versus Universalistic norms".
*Quarterly Journal of Political Science*.**3**(1): 33–61. doi:10.1561/100.00007028.CS1 maint: ref=harv (link) - Kanbur, Ravi (January–June 2005). "Pareto's revenge" (PDF).
*Journal of Social and Economic Development*.**7**(1): 1–11.CS1 maint: ref=harv (link) - Ng, Yew-Kwang (2004).
*Welfare economics towards a more complete analysis*. Basingstoke, Hampshire New York: Palgrave Macmillan. ISBN 9780333971215. - Rubinstein, Ariel; Osborne, Martin J. (1994), "Introduction", in Rubinstein, Ariel; Osborne, Martin J. (eds.),
*A course in game theory*, Cambridge, Massachusetts: MIT Press, pp. 6–7, ISBN 9780262650403 Book preview. - Mathur, Vijay K. (Spring 1991). "How well do we know Pareto optimality?".
*The Journal of Economic Education*.**22**(2): 172–178. doi:10.2307/1182422. JSTOR 1182422.CS1 maint: ref=harv (link) - Newbery, David M.G.; Stiglitz, Joseph E. (January 1984). "Pareto inferior trade".
*The Review of Economic Studies*.**51**(1): 1–12. doi:10.2307/2297701. JSTOR 2297701.CS1 maint: ref=harv (link)

This page is based on this Wikipedia article

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.