Congestion game

Last updated

Congestion games (CG) are a class of games in game theory. They represent situations which commonly occur in roads, communication networks, oligopoly markets and natural habitats. There is a set of resources (e.g. roads or communication links); there are several players who need resources (e.g. drivers or network users); each player chooses a subset of these resources (e.g. a path in the network); the delay in each resource is determined by the number of players choosing a subset that contains this resource. The cost of each player is the sum of delays among all resources he chooses. Naturally, each player wants to minimize his own delay; however, each player's choices impose a negative externality on the other players, which may lead to inefficient outcomes.

Contents

The research of congestion games was initiated by the American economist Robert W. Rosenthal in 1973. [1] He proved that every congestion game has a Nash equilibrium in pure strategies (aka pure Nash equilibrium, PNE). During the proof, he in fact proved that every congestion game is an exact potential game. Later, Monderer and Shapley [2] proved a converse result: any game with an exact potential function is equivalent to some congestion game. Later research focused on questions such as:

Example

The directed graph for a simple congestion game. Congestion-diagram.svg
The directed graph for a simple congestion game.

Consider a traffic net where two players originate at point and need to get to point . Suppose that node is connected to node via two paths: -- and --, where is a little closer than (i.e. is more likely to be chosen by each player), as in the picture at the right.

The roads from both connection points to get easily congested, meaning the more players pass through a point, the greater the delay of each player becomes, so having both players go through the same connection point causes extra delay. Formally, the delay in each of and when players go there is .

Good outcome in this game will be for the two players to "coordinate" and pass through different connection points. Can such outcome be achieved?

The following matrix expresses the costs of the players in terms of delays depending on their choices:

Cost Matrix
p2
p1
OATOBT
OAT(5,5)(2,3)
OBT(3,2)(6,6)

The pure Nash equilibria in this game are (OAT,OBT) and (OBT,OAT): any unilateral change by one of the players increases the cost of this player (note that the values in the table are costs, so players prefer them to be smaller). In this example, the Nash equilibrium is efficient - the players choose different lanes and the sum of costs is minimal.

In contrast, suppose the delay in each of and when players go there is . Then the cost matrix is:

Cost Matrix
p2
p1
OATOBT
OAT(2.6,2.6)(1.8,2.8)
OBT(2.8,1.8)(3.6,3.6)

Now, the only pure Nash equilibrium is (OAT,OAT): any player switching to OBT increases his cost from 2.6 to 2.8. An equilibrium still exists, but it is not effiicent: the sum of costs is 5.2, while the sum of cost in (OAT,OBT) and (OBT,OAT) is 4.6.

Basic result

Notation

The basic definition of a CG has the following components.

Existence of Nash equilibria

Every CG has a Nash equilibrium in pure strategies. This can be shown by constructing a potential function that assigns a value to each outcome. [1] Moreover, this construction will also show that iterated best response finds a Nash equilibrium. Define . Note that this function is not the social welfare , but rather a discrete integral of sorts. The critical property of a potential function for a congestion game is that if one player switches strategy, the change in his delay is equal to the change in the potential function.

Consider the case when player switches from to . Elements that are in both of the strategies remain unaffected, elements that the player leaves (i.e. ) decrease the potential by , and the elements the player joins (i.e. ) increase the potential by . This change in potential is precisely the change in delay for player , so is in fact a potential function.

Now observe that any minimum of is a pure Nash equilibrium. Fixing all but one player, any improvement in strategy by that player corresponds to decreasing , which cannot happen at a minimum. Now since there are a finite number of configurations and each is monotone, there exists an equilibrium.

The existence of a potential function has an additional implication, called the finite improvement property (FIP). If we start with any strategy-vector, pick a player arbitrarily, and let him change his strategy to a better strategy for him, and repeat, then the sequence of improvements must be finite (that is, the sequence will not cycle). This is because each such improvement strictly increases the potential.

Extensions

Below we present various extensions and variations on the basic CG model.

Nonatomic congestion games

A nonatomic (aka continuous) CG is the limit of a standard CG with n players, as . There is a continuum of players, the players are considered "infinitesimally small", and each individual player has a negligible effect on the congestion. Nonatomic CGs were studied by Milchtaich, [3] Friedman [4] and Blonsky. [5] [6]

Existence of equilibria in nonatomic CGs

Strategies are now collections of strategy profiles . For a strategy set of size , the collection of all valid profiles is a compact subset of . We now define the potential function as , replacing the discrete integral with the standard one.

As a function of the strategy, is continuous: is continuous by assumption, and is a continuous function of the strategy. Then by the extreme value theorem, attains its global minimum.

The final step is to show that a minimum of is indeed a Nash equilibrium. Assume for contradiction that there exists a collection of that minimize but are not a Nash equilibrium. Then for some type , there exists some improvement over the current choice . That is, . The idea now is to take a small amount of players using strategy and move them to strategy . Now for any , we have increased its load by , so its term in is now . Differentiating the integral, this change is approximately , with error . The equivalent analysis of the change holds when we look at edges in .

Therefore, the change in potential is approximately , which is less than zero. This is a contradiction, as then was not minimized. Therefore, a minimum of must be a Nash equilibrium.

Splittable congestion games

In a splittable CG, as in an atomic CG, there are finitely many players, each of whom has a certain load to transfer. As in nonatomic CGs, each player can split his load into fractional loads going through different paths, like a transportation company choosing a set of paths for mass transportation. In contrast to nonatomic CGs, each player has a non-negligible effect on the congestion.

Splittable CGs were first analyzed by Ariel Orda, Raphael Rom and Nachum Shimkin in 1993, in the context of communication networks. [7] [8] They show that, for a simple network with two nodes and multiple parallel links, the Nash equilibrium is unique under reasonable convexity conditions, and has some interesting monotonicity properties. For general network topologies, more complex conditions are required to guarantee the uniqueness of Nash equilibrium.

Weighted congestion games

In a weightedCG, different players may have different effects on the congestion. For example, in a road network, a truck adds congestion much more than a motorcycle. In general, the weight of a player may depend on the resource (resource-specific weights): for every player i and resource e, there is weight , and the load on the resource e is . An important special case is when the weight depends only on the player (resource-independent weights), that is, each player i has a weight , and .

Weighted singleton CGs with resource-independent weights

Milchtaich [9] considered the special case of weighted CGs in which each strategy is a single resource ("singleton CG"), the weights are resource-independent, and all players have the same strategy set. The following is proved:

Weighted network CGs

Milchtaich considered the special case of weighted CGs in which each strategy is a path in a given undirected graph ("network CG"). He proved that every finite game can be represented as a weighted network congestion game, with nondecreasing (but not necessarily negative) cost-functions. [10] This implies that not every such game has a PNE. Concrete examples of weighted CGs without PNE are given by Libman and Orda, [11] as well as Goemans Mirrokni and Vetta. [12] This raises the quesiton of what conditions guarantee the existence of PNE. [13]

In particular, we say that a certain graph G guarantees a certain property if every weighted network CG in which the underlying network is G has that property. Milchtaich [14] characterized networks that guarantee the existence of PNE, as well as the finite-improvement property, with the additional condition that a player with a lower weight has weakly more allowed strategies (formally, implies ). He proved that:

In the special case in which every player is allowed to use any strategy ("public edges"), there are more networks that guarantee the existence of PNE; a complete characterization of such networks is posed as an open problem. [14]

Mlichtaich [15] analyzes the effect of network topology on the efficiency of PNE:

Milchtaich [16] analyzes the effect of network topology on the uniqueness of the PNE costs:

Holzman and Law-Yone [17] also characterize the networks that guarantee that every atomic CG has a strong PNE, a unique PNE, or a Pareto-efficient PNE.

Richman and Shimkin [18] characterize the networks that guarantee that every splittable CG has a unique PNE.

General weighted CGs

We say that a class C of functions guarantees a certain property if every weighted CG in which all delay functions are elements of C has that property.

Other results

There are many other papers about weighted congestion games. [23] [24] [25]

Player-specific cost functions

The basic CG model can be extended by allowing the delay function of each resource to depend on the player. So for each resource e and player i, there is a delay function . Given a strategy , player experiences delay .

Player-specific costs in singleton CGs (crowding games)

Milchtaich [9] introduced and studied CGs with player-specific costs in the following special case:

This special case of CG is also called a crowding game. [26] [27] It represents a setting in which several people simultaneously choose a place to go to (e.g. a room, a settlement, a restaurant), and their payoff is determined both by the place and by the number of other players choosing the same place.

In a crowding game, given a strategy , player experiences delay . If the player switches to a different strategy , his delay would be ; hence, a strategy vector is a PNE iff for every player i, for all e,f.

In general, CGs with player-specific delays might not admit a potential function. For example, suppose there are three resources x,y,z and two players A and B with the following delay functions:

The following is a cyclic improvement path: . This shows that the finite-improvement property does not hold, so the game cannot have a potential function (not even a generalized-ordinal-potential function). However:

When there are three or more players, even best-response paths might be cyclic. However, every CG still has a PNE. [9] :Thm.2 The proof is constructive and shows an algorithm that finds a Nash equilibrium in at most steps. Moreover, every CG is weakly acyclic: for any initial strategy-vector, at least one best-response path starting at this vector has a length of at most , which terminates at an equilibrium. [9] :Thm.3

Every crowding game is sequentially solvable. [26] This means that, for every ordering of the players, the sequential game in which each player in turn picks a strategy has a subgame-perfect equilibrium in which the players' actions are a PNE in the original simultaneous game. Every crowding game has at least one strong PNE; [28] every strong PNE of a crowding game can be attained as a subgame-perfect equilibrium of a sequential version of the game. [26]

In general, a crowding game might have many different PNE. For example, suppose there are n players and n resources, and the negative effect of congestion on the payoff is much higher than the positive value of the resources. Then there are n! different PNEs: every one-to-one matching of players to resources is a PNE, as no player would move to a resource occupied by another player. However, if a crowding game is replicated m times, then the set of PNEs converges to a single point as m goes to infinity. Moreover, in a "large" (nonatomic) crowding game, there is generically a unique PNE. This PNE has an interesting graph-theoretic property. Let G be a bipartite graph with players on one side and resources on the other side, where each player is adjacent to all the resources that his copies choose in the unique PNE. Then G contains no cycles. [27]

Separable cost functions

A special case of the player-specific delay functions is that the delay functions can be separated into a player-specific factor and a general factor. There are two sub-cases:

When only pure-strategies are considered, these two notions are equivalent, since the logarithm of a product is a sum. Moreover, when players may have resource-specific weights, the setting with resource-specific delay functions can be reduced to the setting with a universal delay function. Games with separable cost functions occur in load-balancing, [30] M/M/1 queueing, [31] and habitat selection. [32] The following is known about weighted singleton CGs with separable costs: [33]

Every weighted singleton CG with separable player-specific preferences is isomorphic to a weighted network CG with player-independent preference. [33] [2]

Network CGs with player-specific costs

Milchtaich considered the special case of CGs with player-specific costs, in which each strategy is a path in a given graph ("network CG"). He proved that every finite game can be represented as an (unweighted) network congestion game with player-specific costs, with nondecreasing (but not necessarily negative) cost-functions. [10] A complete characterization of networks that guarantee the existence of PNE in such CGs is posed as an open problem. [14]

Computing a pure Nash equilibrium

Computing an equilibrium in unweighted CGs

The proof of existence of PNE is constructive: it shows a finite algorithm (an improvement path) that always finds a PNE. This raises the question of how many steps are required to find this PNE? Fabrikant, Papadimitriou and Talwar [38] proved:

Even-Dar, Kesselman and Mansour [30] analyze the number of steps required for convergence to equilibrium in a load-balancing setting.

Caragiannis, Fanelli, Gravin and Skopalik [39] present an algorithm that computes a constant-factor approximation PNE. In particular:

Their algorithm identifies a short sequence of best-response moves, that leads to an approximate equilibrium. They also show that, for more general CGs, attaining any polynomial approximation of PNE is PLS-complete.

Computing an equilibrium in weighted network CGs

Fotakis, Kontogiannis and Spirakis [19] present an algorithm that, in any weighted network CG with linear delay functions, finds a PNE in pseudo-polynomial time (polynomial in the number of players n and the sum of players' weights W). Their algorithm is a greedy best-response algorithm: players enter the game in descending order of their weight, and choose a best-response to existing players' strategies.

Panagopoulou and Spirakis [20] show empirical evidence that the algorithm of Fotakis, Kontogiannis and Spirakis in fact runs in time polynomial in n and log W. They also propose an initial strategy-vector that dramatically speeds this algorithm.

In general, a weighted network CG may not have a PNE. Milchtaich [14] proves that deciding whether a given weighted network CG has a PNE is NP-hard even in the following cases:

The proof is by reduction from the directed edge-disjoint paths problem. [40]

Caragiannis, Fanelli, Gravin and Skopalik [41] present an algorithm that computes a constant-factor approximation PNE in weighted CGs. In particular:

To prove their results, they show that, although weighted CGs may not have a potential function, every weighted CG can be approximated by a certain potential game. This lets them show that every weighted CG has a (d!)-approximate PNE. Their algorithm identifies a short sequence of best-response moves, that leads to such an approximate PNE.

Summary of congestion game classifications

In summary, CGs can be classified according to various parameters:

See also

Related Research Articles

In game theory, the Nash equilibrium, named after the mathematician John Nash, is the most common way to define the solution of a non-cooperative game involving two or more players. In a Nash equilibrium, each player is assumed to know the equilibrium strategies of the other players, and no one has anything to gain by changing only one's own strategy. The principle of Nash equilibrium dates back to the time of Cournot, who in 1838 applied it to competing firms choosing outputs.

In the mathematical areas of order and lattice theory, the Knaster–Tarski theorem, named after Bronisław Knaster and Alfred Tarski, states the following:

In game theory, the best response is the strategy which produces the most favorable outcome for a player, taking other players' strategies as given. The concept of a best response is central to John Nash's best-known contribution, the Nash equilibrium, the point at which each player in a game has selected the best response to the other players' strategies.

In game theory, the centipede game, first introduced by Robert Rosenthal in 1981, is an extensive form game in which two players take turns choosing either to take a slightly larger share of an increasing pot, or to pass the pot to the other player. The payoffs are arranged so that if one passes the pot to one's opponent and the opponent takes the pot on the next round, one receives slightly less than if one had taken the pot on this round, but after an additional switch the potential payoff will be higher. Therefore, although at each round a player has an incentive to take the pot, it would be better for them to wait. Although the traditional centipede game had a limit of 100 rounds, any game with this structure but a different number of rounds is called a centipede game.

In game theory, a Bayesian game is a strategic decision-making model which assumes players have incomplete information. Players hold private information relevant to the game, meaning that the payoffs are not common knowledge. Bayesian games model the outcome of player interactions using aspects of Bayesian probability. They are notable because they allowed, for the first time in game theory, for the specification of the solutions to games with incomplete information.

In game theory, trembling hand perfect equilibrium is a type of refinement of a Nash equilibrium that was first proposed by Reinhard Selten. A trembling hand perfect equilibrium is an equilibrium that takes the possibility of off-the-equilibrium play into account by assuming that the players, through a "slip of the hand" or tremble, may choose unintended strategies, albeit with negligible probability.

In game theory, folk theorems are a class of theorems describing an abundance of Nash equilibrium payoff profiles in repeated games. The original Folk Theorem concerned the payoffs of all the Nash equilibria of an infinitely repeated game. This result was called the Folk Theorem because it was widely known among game theorists in the 1950s, even though no one had published it. Friedman's (1971) Theorem concerns the payoffs of certain subgame-perfect Nash equilibria (SPE) of an infinitely repeated game, and so strengthens the original Folk Theorem by using a stronger equilibrium concept: subgame-perfect Nash equilibria rather than Nash equilibria.

In game theory, a repeated game is an extensive form game that consists of a number of repetitions of some base game. The stage game is usually one of the well-studied 2-person games. Repeated games capture the idea that a player will have to take into account the impact of their current action on the future actions of other players; this impact is sometimes called their reputation. Single stage game or single shot game are names for non-repeated games.

In game theory, the war of attrition is a dynamic timing game in which players choose a time to stop, and fundamentally trade off the strategic gains from outlasting other players and the real costs expended with the passage of time. Its precise opposite is the pre-emption game, in which players elect a time to stop, and fundamentally trade off the strategic costs from outlasting other players and the real gains occasioned by the passage of time. The model was originally formulated by John Maynard Smith; a mixed evolutionarily stable strategy (ESS) was determined by Bishop & Cannings. An example is a second price all-pay auction, in which the prize goes to the player with the highest bid and each player pays the loser's low bid.

In game theory, a correlated equilibrium is a solution concept that is more general than the well known Nash equilibrium. It was first discussed by mathematician Robert Aumann in 1974. The idea is that each player chooses their action according to their private observation of the value of the same public signal. A strategy assigns an action to every possible observation a player can make. If no player would want to deviate from their strategy, the distribution from which the signals are drawn is called a correlated equilibrium.

In computational complexity theory, Polynomial Local Search (PLS) is a complexity class that models the difficulty of finding a locally optimal solution to an optimization problem. The main characteristics of problems that lie in PLS are that the cost of a solution can be calculated in polynomial time and the neighborhood of a solution can be searched in polynomial time. Therefore it is possible to verify whether or not a solution is a local optimum in polynomial time. Furthermore, depending on the problem and the algorithm that is used for solving the problem, it might be faster to find a local optimum instead of a global optimum.

In game theory, a game is said to be a potential game if the incentive of all players to change their strategy can be expressed using a single global function called the potential function. The concept originated in a 1996 paper by Dov Monderer and Lloyd Shapley.

In game theory, an epsilon-equilibrium, or near-Nash equilibrium, is a strategy profile that approximately satisfies the condition of Nash equilibrium. In a Nash equilibrium, no player has an incentive to change his behavior. In an approximate Nash equilibrium, this requirement is weakened to allow the possibility that a player may have a small incentive to do something different. This may still be considered an adequate solution concept, assuming for example status quo bias. This solution concept may be preferred to Nash equilibrium due to being easier to compute, or alternatively due to the possibility that in games of more than 2 players, the probabilities involved in an exact Nash equilibrium need not be rational numbers.

The Price of Anarchy (PoA) is a concept in economics and game theory that measures how the efficiency of a system degrades due to selfish behavior of its agents. It is a general notion that can be extended to diverse systems and notions of efficiency. For example, consider the system of transportation of a city and many agents trying to go from some initial location to a destination. Here, efficiency means the average time for an agent to reach the destination. In the 'centralized' solution, a central authority can tell each agent which path to take in order to minimize the average travel time. In the 'decentralized' version, each agent chooses its own path. The Price of Anarchy measures the ratio between average travel time in the two cases.

In game theory, the price of stability (PoS) of a game is the ratio between the best objective function value of one of its equilibria and that of an optimal outcome. The PoS is relevant for games in which there is some objective authority that can influence the players a bit, and maybe help them converge to a good Nash equilibrium. When measuring how efficient a Nash equilibrium is in a specific game we often also talk about the price of anarchy (PoA), which is the ratio between the worst objective function value of one of its equilibria and that of an optimal outcome.

In algorithmic game theory, a succinct game or a succinctly representable game is a game which may be represented in a size much smaller than its normal form representation. Without placing constraints on player utilities, describing a game of players, each facing strategies, requires listing utility values. Even trivial algorithms are capable of finding a Nash equilibrium in a time polynomial in the length of such a large input. A succinct game is of polynomial type if in a game represented by a string of length n the number of players, as well as the number of strategies of each player, is bounded by a polynomial in n.

<span class="mw-page-title-main">Jean-François Mertens</span> Belgian game theorist (1946–2012)

Jean-François Mertens was a Belgian game theorist and mathematical economist.

In game theory, Mertens stability is a solution concept used to predict the outcome of a non-cooperative game. A tentative definition of stability was proposed by Elon Kohlberg and Jean-François Mertens for games with finite numbers of players and strategies. Later, Mertens proposed a stronger definition that was elaborated further by Srihari Govindan and Mertens. This solution concept is now called Mertens stability, or just stability.

The Berge equilibrium is a game theory solution concept named after the mathematician Claude Berge. It is similar to the standard Nash equilibrium, except that it aims to capture a type of altruism rather than purely non-cooperative play. Whereas a Nash equilibrium is a situation in which each player of a strategic game ensures that they personally will receive the highest payoff given other players' strategies, in a Berge equilibrium every player ensures that all other players will receive the highest payoff possible. Although Berge introduced the intuition for this equilibrium notion in 1957, it was only formally defined by Vladislav Iosifovich Zhukovskii in 1985, and it was not in widespread use until half a century after Berge originally developed it.

The Price of Anarchy (PoA) is a concept in game theory and mechanism design that measures how the social welfare of a system degrades due to selfish behavior of its agents. It has been studied extensively in various contexts, particularly in congestion games (CG).

References

  1. 1 2 Rosenthal, Robert W. (1973), "A class of games possessing pure-strategy Nash equilibria", International Journal of Game Theory, 2: 65–67, doi:10.1007/BF01737559, MR   0319584, S2CID   121904640 .
  2. 1 2 Monderer, Dov; Shapley, Lloyd S. (1996-05-01). "Potential Games". Games and Economic Behavior. 14 (1): 124–143. doi:10.1006/game.1996.0044. ISSN   0899-8256.
  3. 1 2 Milchtaich, Igal (1996). "Congestion Models of Competition". The American Naturalist. 147 (5): 760–783. doi:10.1086/285878. ISSN   0003-0147. JSTOR   2463089. S2CID   55004212.
  4. Friedman, Eric J. (1996-09-01). "Dynamics and Rationality in Ordered Externality Games". Games and Economic Behavior. 16 (1): 65–76. doi:10.1006/game.1996.0074. ISSN   0899-8256.
  5. Blonski, Matthias (1999-08-01). "Anonymous Games with Binary Actions". Games and Economic Behavior. 28 (2): 171–180. doi:10.1006/game.1998.0699. ISSN   0899-8256.
  6. Roughgarden, Tim; Tardos, Éva (2004-05-01). "Bounding the inefficiency of equilibria in nonatomic congestion games". Games and Economic Behavior. 47 (2): 389–403. doi:10.1016/j.geb.2003.06.004. ISSN   0899-8256. S2CID   10778635.
  7. Orda, A.; Rom, R.; Shimkin, N. (1993-10-01). "Competitive routing in multiuser communication networks". IEEE/ACM Transactions on Networking. 1 (5): 510–521. doi:10.1109/90.251910. ISSN   1558-2566. S2CID   1184436.
  8. Roughgarden, Tim; Schoppmann, Florian (2015-03-01). "Local smoothness and the price of anarchy in splittable congestion games". Journal of Economic Theory. Computer Science and Economic Theory. 156: 317–342. doi:10.1016/j.jet.2014.04.005. ISSN   0022-0531.
  9. 1 2 3 4 5 6 Milchtaich, Igal (1996-03-01). "Congestion Games with Player-Specific Payoff Functions". Games and Economic Behavior. 13 (1): 111–124. doi:10.1006/game.1996.0027. ISSN   0899-8256.
  10. 1 2 Milchtaich, Igal (2013-11-01). "Representation of finite games as network congestion games". International Journal of Game Theory. 42 (4): 1085–1096. doi:10.1007/s00182-012-0363-5. ISSN   1432-1270. S2CID   253713700.
  11. Libman, Lavy; Orda, Ariel (2001-08-01). "Atomic Resource Sharing in Noncooperative Networks". Telecommunication Systems. 17 (4): 385–409. doi:10.1023/A:1016770831869. ISSN   1572-9451.
  12. Goemans, M.; Mirrokni, Vahab; Vetta, A. (2005-10-01). "Sink Equilibria and Convergence". 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05). pp. 142–151. doi:10.1109/SFCS.2005.68. ISBN   0-7695-2468-0. S2CID   17850062.
  13. Milchtaich, Igal (2006). "The Equilibrium Existence Problem in Finite Network Congestion Games". In Spirakis, Paul; Mavronicolas, Marios; Kontogiannis, Spyros (eds.). Internet and Network Economics. Lecture Notes in Computer Science. Vol. 4286. Berlin, Heidelberg: Springer. pp. 87–98. doi:10.1007/11944874_9. ISBN   978-3-540-68141-0.
  14. 1 2 3 4 Milchtaich, Igal (2015-08-01). "Network topology and equilibrium existence in weighted network congestion games". International Journal of Game Theory. 44 (3): 515–541. doi:10.1007/s00182-014-0443-9. ISSN   1432-1270. S2CID   253723798.
  15. Milchtaich, Igal (2006-11-01). "Network topology and the efficiency of equilibrium". Games and Economic Behavior. 57 (2): 321–346. doi:10.1016/j.geb.2005.09.005. hdl: 10419/259308 . ISSN   0899-8256.
  16. Milchtaich, Igal (2005-02-01). "Topological Conditions for Uniqueness of Equilibrium in Networks". Mathematics of Operations Research . 30 (1): 225–244. doi:10.1287/moor.1040.0122. ISSN   0364-765X.
  17. Holzman, Ron; Law-Yone, Nissan (1997-10-01). "Strong Equilibrium in Congestion Games". Games and Economic Behavior. 21 (1): 85–101. doi:10.1006/game.1997.0592. ISSN   0899-8256.
  18. Richman, Oran; Shimkin, Nahum (2007-02-01). "Topological Uniqueness of the Nash Equilibrium for Selfish Routing with Atomic Users". Mathematics of Operations Research . 32 (1): 215–232. doi:10.1287/moor.1060.0229. ISSN   0364-765X.
  19. 1 2 Fotakis, Dimitris; Kontogiannis, Spyros; Spirakis, Paul (2005-12-08). "Selfish unsplittable flows". Theoretical Computer Science. Automata, Languages and Programming: Algorithms and Complexity (ICALP-A 2004). 348 (2): 226–239. doi:10.1016/j.tcs.2005.09.024. ISSN   0304-3975.
  20. 1 2 Panagopoulou, Panagiota N.; Spirakis, Paul G. (2007-02-09). "Algorithms for pure Nash equilibria in weighted congestion games". ACM Journal of Experimental Algorithmics. 11: 2.7–es. doi:10.1145/1187436.1216584. ISSN   1084-6654. S2CID   17903962.
  21. Harks, Tobias; Klimm, Max; Möhring, Rolf H. (2011-07-01). "Characterizing the Existence of Potential Functions in Weighted Congestion Games". Theory of Computing Systems. 49 (1): 46–70. doi:10.1007/s00224-011-9315-x. ISSN   1433-0490. S2CID   912932.
  22. Harks, Tobias; Klimm, Max (2012-08-01). "On the Existence of Pure Nash Equilibria in Weighted Congestion Games". Mathematics of Operations Research . 37 (3): 419–436. doi:10.1287/moor.1120.0543. ISSN   0364-765X.
  23. Kollias, Konstantinos; Roughgarden, Tim (2011). "Restoring Pure Equilibria to Weighted Congestion Games". In Aceto, Luca; Henzinger, Monika; Sgall, Jiří (eds.). Automata, Languages and Programming. Lecture Notes in Computer Science. Vol. 6756. Berlin, Heidelberg: Springer. pp. 539–551. doi:10.1007/978-3-642-22012-8_43. ISBN   978-3-642-22012-8.
  24. Ackermann, Heiner; Röglin, Heiko; Vöcking, Berthold (2009-04-06). "Pure Nash equilibria in player-specific and weighted congestion games". Theoretical Computer Science. Internet and Network Economics. 410 (17): 1552–1563. doi: 10.1016/j.tcs.2008.12.035 . ISSN   0304-3975.
  25. Panagopoulou, Panagiota N.; Spirakis, Paul G. (2007-02-09). "Algorithms for pure Nash equilibria in weighted congestion games". ACM Journal of Experimental Algorithmics. 11: 2.7–es. doi:10.1145/1187436.1216584. ISSN   1084-6654. S2CID   17903962.
  26. 1 2 3 Milchtaich, Igal (1998-12-01). "Crowding games are sequentially solvable". International Journal of Game Theory. 27 (4): 501–509. doi:10.1007/s001820050086. ISSN   1432-1270. S2CID   125221.
  27. 1 2 Milchtaich, Igal (2000). "Generic Uniqueness of Equilibrium in Large Crowding Games". Mathematics of Operations Research . 25 (3): 349–364. doi:10.1287/moor.25.3.349.12220. ISSN   0364-765X. JSTOR   3690472.
  28. Konishi, Hideo; Le Breton, Michel; Weber, Shlomo (1997-01-01). "Equilibria in a Model with Partial Rivalry". Journal of Economic Theory. 72 (1): 225–237. doi:10.1006/jeth.1996.2203. ISSN   0022-0531.
  29. 1 2 Konishi, Hideo; Le Breton, Michel; Weber, Shlomo (1997-10-01). "Pure Strategy Nash Equilibrium in a Group Formation Game with Positive Externalities". Games and Economic Behavior. 21 (1): 161–182. doi:10.1006/game.1997.0542. ISSN   0899-8256.
  30. 1 2 3 Even-Dar, Eyal; Kesselman, Alex; Mansour, Yishay (2003). "Convergence Time to Nash Equilibria". In Baeten, Jos C. M.; Lenstra, Jan Karel; Parrow, Joachim; Woeginger, Gerhard J. (eds.). Automata, Languages and Programming. Lecture Notes in Computer Science. Vol. 2719. Berlin, Heidelberg: Springer. pp. 502–513. doi:10.1007/3-540-45061-0_41. ISBN   978-3-540-45061-0.
  31. 1 2 Libman, Lavy; Orda, Ariel (2001-08-01). "Atomic Resource Sharing in Noncooperative Networks". Telecommunication Systems. 17 (4): 385–409. doi:10.1023/A:1016770831869. ISSN   1572-9451.
  32. Brown, Joel S. (1990). "Habitat Selection as an Evolutionary Game". Evolution. 44 (3): 732–746. doi:10.2307/2409448. ISSN   0014-3820. JSTOR   2409448. PMID   28567976.
  33. 1 2 3 Milchtaich, Igal (2009-11-01). "Weighted congestion games with separable preferences". Games and Economic Behavior. 67 (2): 750–757. doi:10.1016/j.geb.2009.03.009. hdl: 10419/96071 . ISSN   0899-8256.
  34. Fabrikant, Alex; Papadimitriou, Christos; Talwar, Kunal (2004-06-13). "The complexity of pure Nash equilibria". Proceedings of the thirty-sixth annual ACM symposium on Theory of computing. STOC '04. New York, NY, USA: Association for Computing Machinery. pp. 604–612. doi:10.1145/1007352.1007445. ISBN   978-1-58113-852-8. S2CID   1037326.
  35. 1 2 Facchini, Giovanni; van Megen, Freek; Borm, Peter; Tijs, Stef (1997-03-01). "CONGESTION MODELS AND WEIGHTED BAYESIAN POTENTIAL GAMES". Theory and Decision. 42 (2): 193–206. doi:10.1023/A:1004991825894. ISSN   1573-7187. S2CID   123623707.
  36. 1 2 Mavronicolas, Marios; Milchtaich, Igal; Monien, Burkhard; Tiemann, Karsten (2007). "Congestion Games with Player-Specific Constants". In Kučera, Luděk; Kučera, Antonín (eds.). Mathematical Foundations of Computer Science 2007. Lecture Notes in Computer Science. Vol. 4708. Berlin, Heidelberg: Springer. pp. 633–644. doi:10.1007/978-3-540-74456-6_56. ISBN   978-3-540-74456-6.
  37. Gairing, Martin; Monien, Burkhard; Tiemann, Karsten (2006). "Routing (Un-) Splittable Flow in Games with Player-Specific Linear Latency Functions". In Bugliesi, Michele; Preneel, Bart; Sassone, Vladimiro; Wegener, Ingo (eds.). Automata, Languages and Programming. Lecture Notes in Computer Science. Vol. 4051. Berlin, Heidelberg: Springer. pp. 501–512. doi:10.1007/11786986_44. ISBN   978-3-540-35905-0.
  38. Fabrikant, Alex; Papadimitriou, Christos; Talwar, Kunal (2004-06-13). "The complexity of pure Nash equilibria". Proceedings of the thirty-sixth annual ACM symposium on Theory of computing. STOC '04. New York, NY, USA: Association for Computing Machinery. pp. 604–612. doi:10.1145/1007352.1007445. ISBN   978-1-58113-852-8. S2CID   1037326.
  39. Caragiannis, Ioannis; Fanelli, Angelo; Gravin, Nick; Skopalik, Alexander (2011-10-01). "Efficient Computation of Approximate Pure Nash Equilibria in Congestion Games". 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science. pp. 532–541. arXiv: 1104.2690 . doi:10.1109/FOCS.2011.50. ISBN   978-0-7695-4571-4. S2CID   14879292.
  40. Fortune, Steven; Hopcroft, John; Wyllie, James (1980-02-01). "The directed subgraph homeomorphism problem". Theoretical Computer Science. 10 (2): 111–121. doi: 10.1016/0304-3975(80)90009-2 . ISSN   0304-3975.
  41. Caragiannis, Ioannis; Fanelli, Angelo; Gravin, Nick; Skopalik, Alexander (2015-03-27). "Approximate Pure Nash Equilibria in Weighted Congestion Games: Existence, Efficient Computation, and Structure". ACM Transactions on Economics and Computation. 3 (1): 2:1–2:32. doi:10.1145/2614687. ISSN   2167-8375. S2CID   5581666.
  42. Kukushkin, N. S.; Men'Shikov, I. S.; Men'Shikova, O. R.; Morozov, V. V. (1990). "Resource allocation games". Computational Mathematics and Modeling. 1 (4): 433. doi:10.1007/BF01128293. S2CID   120639586.
  43. Fotakis, Dimitris; Kontogiannis, Spyros; Spirakis, Paul (2006). "Atomic Congestion Games Among Coalitions". In Bugliesi, Michele; Preneel, Bart; Sassone, Vladimiro; Wegener, Ingo (eds.). Automata, Languages and Programming. Lecture Notes in Computer Science. Vol. 4051. Berlin, Heidelberg: Springer. pp. 572–583. doi:10.1007/11786986_50. ISBN   978-3-540-35905-0.
  44. Milinski, Manfred (2010-04-26). "An Evolutionarily Stable Feeding Strategy in Sticklebacks". Zeitschrift für Tierpsychologie. 51 (1): 36–40. doi:10.1111/j.1439-0310.1979.tb00669.x.