Interspecific competition

Last updated
Subadult male lion and female spotted hyena in the Masai Mara. The two species share the same ecological niche, and are thus in competition with each other. Panthera leo & Crocuta crocuta.jpg
Subadult male lion and female spotted hyena in the Masai Mara. The two species share the same ecological niche, and are thus in competition with each other.

Interspecific competition, in ecology, is a form of competition in which individuals of different species compete for the same resources in an ecosystem (e.g. food or living space). This can be contrasted with mutualism, a type of symbiosis. Competition between members of the same species is called intraspecific competition.

Contents

If a tree species in a dense forest grows taller than surrounding tree species, it is able to absorb more of the incoming sunlight. However, less sunlight is then available for the trees that are shaded by the taller tree, thus interspecific competition. Leopards and lions can also be in interspecific competition, since both species feed on the same prey, and can be negatively impacted by the presence of the other because they will have less food.

Competition is only one of many interacting biotic and abiotic factors that affect community structure. Moreover, competition is not always a straightforward, direct, interaction. Interspecific competition may occur when individuals of two separate species share a limiting resource in the same area. If the resource cannot support both populations, then lowered fecundity, growth, or survival may result in at least one species. Interspecific competition has the potential to alter populations, communities and the evolution of interacting species. On an individual organism level, competition can occur as interference or exploitative competition.

Types

All of the types described here can also apply to intraspecific competition, that is, competition among individuals within a species. Also, any specific example of interspecific competition can be described in terms of both a mechanism (e.g., resource or interference) and an outcome (symmetric or asymmetric).

Based on mechanism

Exploitative competition, also referred to as resource competition, is a form of competition in which one species consumes and either reduces or more efficiently uses a shared limiting resource and therefore depletes the availability of the resource for the other species. [1] Thus, it is an indirect interaction because the competing species interact via a shared resource.

Interference competition is a form of competition in which individuals of one species interacts directly with individuals of another species via antagonistic displays or more aggressive behavior.

In a review and synthesis of experimental evidence regarding interspecific competition, Schoener [2] described six specific types of mechanisms by which competition occurs, including consumptive, preemptive, overgrowth, chemical, territorial, and encounter. Consumption competition is always resource competition, but the others cannot always be regarded as exclusively exploitative or interference.

Separating the effect of resource use from that of interference is not easy. A good example of exploitative competition is found in aphid species competing over the sap in plant phloem. Each aphid species that feeds on host plant sap uses some of the resource, leaving less for competing species. In one study, Fordinae geoica was observed to out-compete F. formicaria to the extent that the latter species exhibited a reduction in survival by 84%. Another example is the one of competition for calling space in amphibians, where the calling activity of a species prevents the other one from calling in an area as wide as it would in allopatry. [3] A last example is driving of bisexual rock lizards of genus Darevskia from their natural habitats by a daughter unisexual form; [4] interference competition can be ruled out in this case, because parthenogenetic forms of the lizards never demonstrate aggressive behavior.

This type of competition can also be observed in forests where large trees dominate the canopy and thus allow little light to reach smaller competitors living below. These interactions have important implications for the population dynamics and distribution of both species.

Based on outcome

Scramble and contest competition refer to the relative success of competitors. Scramble competition is said to occur when each competitor is equal suppressed, either through reduction in survival or birth rates. Contest competition is said to occur when one or a few competitors are unaffected by competition, but all others suffer greatly, either through reduction in survival or birth rates. Sometimes these types of competition are referred to as symmetric (scramble) vs. asymmetric (contest) competition. Scramble and contest competition are two ends of a spectrum, of completely equal or completely unequal effects.

Apparent competition

Apparent competition is actually an example of predation that alters the relative abundances of prey on the same trophic level. It occurs when two or more species in a habitat affect shared natural enemies in a higher trophic level. [5] If two species share a common predator, for example, apparent competition can exist between the two prey items in which the presence of each prey species increases the abundance of the shared enemy, and thereby suppresses one or both prey species. [6] This mechanism gets its name from experiments in which one prey species is removed and the second prey species increases in abundance. Investigators sometimes mistakenly attribute the increase in abundance in the second species as evidence for resource competition between prey species. It is "apparently" competition, but is in fact due to a shared predator, parasitoid, parasite, or pathogen. Notably, species competing for resources may often also share predators in nature. Interactions via resource competition and shared predation may thus often influence one another, thus making it difficult to study and predict their outcome by only studying one of them. [7]

Consequences

Many studies, including those cited previously, have shown major impacts on both individuals and populations from interspecific competition. Documentation of these impacts has been found in species from every major branch of organism. The effects of interspecific competition can also reach communities and can even influence the evolution of species as they adapt to avoid competition. This evolution may result in the exclusion of a species in the habitat, niche separation, and local extinction. The changes of these species over time can also change communities as other species must adapt.

Competitive exclusion

The competitive exclusion principle, also called "Gause's law" [8] which arose from mathematical analysis and simple competition models states that two species that use the same limiting resource in the same way in the same space and time cannot coexist and must diverge from each other over time in order for the two species to coexist. One species will often exhibit an advantage in resource use. This superior competitor will out-compete the other with more efficient use of the limiting resource. As a result, the inferior competitor will suffer a decline in population over time. It will be excluded from the area and replaced by the superior competitor.

A well-documented example of competitive exclusion was observed to occur between Dolly Varden charr (Trout)( Salvelinus malma ) and white spotted char (Trout)( S. leucomaenis ) in Japan. Both of these species were morphologically similar but the former species was found primarily at higher elevations than the latter. Although there was a zone of overlap, each species excluded the other from its dominant region by becoming better adapted to its habitat over time. In some such cases, each species gets displaced into an exclusive segment of the original habitat. Because each species suffers from competition, natural selection favors the avoidance of competition in such a way.

Niche differentiation

Niche differentiation is a process by which competitive exclusion leads to differences in resource use. In the previous example, niche differentiation resulted in spatial displacement. In other cases it may result in other changes that also avoid competition. If competition avoidance is achievable, each species will occupy an edge of the niche and will become more specialized to that area thus minimizing competition. This phenomenon often results in the separation of species over time as they become more specialized to their edge of the niche, called niche differentiation. The species do not have to be in separate habitats however to avoid niche overlap. Some species adapt regionally to utilizing different resources than they ordinarily would in order to avoid competition.

There have been several well-documented cases in birds where species that are very similar change their habitat use where they overlap. For example, they may consume different food resources or use different nesting habitat or materials. On the Galapagos Islands, finch species have been observed to change dietary specializations in just a few generations in order to utilize limited resources and minimize competition.

In some cases, third party species interfere to the detriment or benefit of the competing species. In a laboratory study, coexistence between two competing bacterial species was mediated by phage parasites. [9] This type of interaction actually helped to maintain diversity in bacterial communities and has far reaching implications in medical research as well as ecology. Similar effects have been documented for many communities as a result of the action of a keystone predator that preys on a competitively superior species.

Local extinction

Although local extinction of one or more competitors has been less documented than niche separation or competitive exclusion, it does occur. In an experiment involving zooplankton in artificial rock pools, local extinction rates were significantly higher in areas of interspecific competition. [10] In these cases, therefore, the negative effects are not only at the population level but also species richness of communities.

Impacts on communities

Naturalised purple-loosestrife plants growing in the Cooper Marsh Conservation Area, near Cornwall Ontario Cooper Marsh - Purple-loosestrife.jpg
Naturalised purple-loosestrife plants growing in the Cooper Marsh Conservation Area, near Cornwall Ontario

As mentioned previously, interspecific competition has great impact on community composition and structure. Niche separation of species, local extinction and competitive exclusion are only some of the possible effects. In addition to these, interspecific competition can be the source of a cascade of effects that build on each other. An example of such an effect is the introduction of an invasive species to the United States, purple-loosestrife. This plant when introduced to wetland communities often outcompetes much of the native flora and decreases species richness, food and shelter to many other species at higher trophic levels. In this way, one species can influence the populations of many other species as well as through a myriad of other interactions. Because of the complicated web of interactions that make up every ecosystem and habitat, the results of interspecific competition are complex and site-specific.

Competitive Lotka–Volterra model

The impacts of interspecific competition on populations have been formalized in a mathematical model called the Competitive Lotka–Volterra equations, which creates a theoretical prediction of interactions. It combines the effects of each species on the other. These effects are calculated separately for the first and second population respectively:

In these formulae, N is the population size, t is time, K is the carrying capacity, r is the intrinsic rate of increase and α and β are the relative competition coefficients. [11] The results show the effect that the other species has on the species being calculated. The results can be graphed to show a trend and possible prediction for the future of the species. One problem with this model is that certain assumptions must be made for the calculation to work. These include the lack of migration and constancy of the carrying capacities and competition coefficients of both species. The complex nature of ecology determines that these assumptions are rarely true in the field but the model provides a basis for improved understanding of these important concepts.

An equivalent formulation of these models [12] is:

In these formulae, is the effect that an individual of species 1 has on its own population growth rate. Similarly, is the effect that an individual of species 2 has on the population growth rate of species 1. One can also read this as the effect on species 1 of species 2. In comparing this formulation to the one above, we note that , and .

Coexistence between competitors occurs when and . We can translate this as coexistence occurs when the effect of each species on itself is greater the effect of the competitor.

There are other mathematical representations that model species competition, such as using non-polynomial functions. [13]

Interspecific competition in macroevolution

Interspecific competition is a major factor in macroevolution. [14] Darwin assumed that interspecific competition limits the number of species on Earth, as formulated in his wedge metaphor: "Nature may be compared to a surface covered with ten-thousand sharp wedges ... representing different species, all packed closely together and driven in by incessant blows, . . . sometimes a wedge of one form and sometimes another being struck; the one driven deeply in forcing out others; with the jar and shock often transmitted very far to other wedges in many lines of direction." (From Natural Selection - the "big book" from which Darwin abstracted the Origin). [15] The question whether interspecific competition limits global biodiversity is disputed today, [16] but analytical studies of the global Phanerozoic fossil record are in accordance with the existence of global (although not constant) carrying capacities for marine biodiversity. [17] [18] Interspecific competition is also the basis for Van Valen's Red Queen hypothesis, and it may underlie the positive correlation between origination and extinction rates that is seen in almost all major taxa. [14]

In the previous examples, the macroevolutionary role of interspecific competition is that of a limiting factor of biodiversity, but interspecific competition also promotes niche differentiation and thus speciation and diversification. [19] [20] The impact of interspecific competition may therefore change during phases of diversity build-up, from an initial phase where positive feedback mechanisms dominate to a later phase when niche-peremption limits further increase in the number of species; a possible example for this situation is the re-diversification of marine faunas after the end-Permian mass extinction event. [21]

See also

Related Research Articles

<span class="mw-page-title-main">Theoretical ecology</span>

Theoretical ecology is the scientific discipline devoted to the study of ecological systems using theoretical methods such as simple conceptual models, mathematical models, computational simulations, and advanced data analysis. Effective models improve understanding of the natural world by revealing how the dynamics of species populations are often based on fundamental biological conditions and processes. Further, the field aims to unify a diverse range of empirical observations by assuming that common, mechanistic processes generate observable phenomena across species and ecological environments. Based on biologically realistic assumptions, theoretical ecologists are able to uncover novel, non-intuitive insights about natural processes. Theoretical results are often verified by empirical and observational studies, revealing the power of theoretical methods in both predicting and understanding the noisy, diverse biological world.

<span class="mw-page-title-main">Mutualism (biology)</span> Mutually beneficial interaction between species

Mutualism describes the ecological interaction between two or more species where each species has a net benefit. Mutualism is a common type of ecological interaction, one that can come from a parasitic interaction. Prominent examples include most vascular plants engaged in mutualistic interactions with mycorrhizae, flowering plants being pollinated by animals, vascular plants being dispersed by animals, and corals with zooxanthellae, among many others. Mutualism can be contrasted with interspecific competition, in which each species experiences reduced fitness, and exploitation, or parasitism, in which one species benefits at the expense of the other.

<span class="mw-page-title-main">Ecological niche</span> Fit of a species living under specific environmental conditions

In ecology, a niche is the match of a species to a specific environmental condition. It describes how an organism or population responds to the distribution of resources and competitors and how it in turn alters those same factors. "The type and number of variables comprising the dimensions of an environmental niche vary from one species to another [and] the relative importance of particular environmental variables for a species may vary according to the geographic and biotic contexts".

<span class="mw-page-title-main">Biological interaction</span> Effect that organisms have on other organisms

In ecology, a biological interaction is the effect that a pair of organisms living together in a community have on each other. They can be either of the same species, or of different species. These effects may be short-term, or long-term, both often strongly influence the adaptation and evolution of the species involved. Biological interactions range from mutualism, beneficial to both partners, to competition, harmful to both partners. Interactions can be direct when physical contact is established or indirect, through intermediaries such as shared resources, territories, ecological services, metabolic waste, toxins or growth inhibitors. This type of relationship can be shown by net effect based on individual effects on both organisms arising out of relationship.

This glossary of ecology is a list of definitions of terms and concepts in ecology and related fields. For more specific definitions from other glossaries related to ecology, see Glossary of biology, Glossary of evolutionary biology, and Glossary of environmental science.

<span class="mw-page-title-main">Competitive exclusion principle</span> Ecology proposition

In ecology, the competitive exclusion principle, sometimes referred to as Gause's law, is a proposition that two species which compete for the same limited resource cannot coexist at constant population values. When one species has even the slightest advantage over another, the one with the advantage will dominate in the long term. This leads either to the extinction of the weaker competitor or to an evolutionary or behavioral shift toward a different ecological niche. The principle has been paraphrased in the maxim "complete competitors cannot coexist".

The Lotka–Volterra equations, also known as the Lotka–Volterra predator–prey model, are a pair of first-order nonlinear differential equations, frequently used to describe the dynamics of biological systems in which two species interact, one as a predator and the other as prey. The populations change through time according to the pair of equations:

<span class="mw-page-title-main">Metapopulation</span> Group of separated yet interacting ecological populations

A metapopulation consists of a group of spatially separated populations of the same species which interact at some level. The term metapopulation was coined by Richard Levins in 1969 to describe a model of population dynamics of insect pests in agricultural fields, but the idea has been most broadly applied to species in naturally or artificially fragmented habitats. In Levins' own words, it consists of "a population of populations".

The competitive Lotka–Volterra equations are a simple model of the population dynamics of species competing for some common resource. They can be further generalised to the Generalized Lotka–Volterra equation to include trophic interactions.

Spatial ecology studies the ultimate distributional or spatial unit occupied by a species. In a particular habitat shared by several species, each of the species is usually confined to its own microhabitat or spatial niche because two species in the same general territory cannot usually occupy the same ecological niche for any significant length of time.

The paradox of enrichment is a term from population ecology coined by Michael Rosenzweig in 1971. He described an effect in six predator–prey models where increasing the food available to the prey caused the predator's population to destabilize. A common example is that if the food supply of a prey such as a rabbit is overabundant, its population will grow unbounded and cause the predator population to grow unsustainably large. That may result in a crash in the population of the predators and possibly lead to local eradication or even species extinction.

<span class="mw-page-title-main">Competition (biology)</span> Interaction where the fitness of one organism is lowered by the presence of another organism

Competition is an interaction between organisms or species in which both require a resource that is in limited supply. Competition lowers the fitness of both organisms involved since the presence of one of the organisms always reduces the amount of the resource available to the other.

<span class="mw-page-title-main">Community (ecology)</span> Associated populations of species in a given area

In ecology, a community is a group or association of populations of two or more different species occupying the same geographical area at the same time, also known as a biocoenosis, biotic community, biological community, ecological community, or life assemblage. The term community has a variety of uses. In its simplest form it refers to groups of organisms in a specific place or time, for example, "the fish community of Lake Ontario before industrialization".

The storage effect is a coexistence mechanism proposed in the ecological theory of species coexistence, which tries to explain how such a wide variety of similar species are able to coexist within the same ecological community or guild. The storage effect was originally proposed in the 1980s to explain coexistence in diverse communities of coral reef fish, however it has since been generalized to cover a variety of ecological communities. The theory proposes one way for multiple species to coexist: in a changing environment, no species can be the best under all conditions. Instead, each species must have a unique response to varying environmental conditions, and a way of buffering against the effects of bad years. The storage effect gets its name because each population "stores" the gains in good years or microhabitats (patches) to help it survive population losses in bad years or patches. One strength of this theory is that, unlike most coexistence mechanisms, the storage effect can be measured and quantified, with units of per-capita growth rate.

A population model is a type of mathematical model that is applied to the study of population dynamics.

Ecological extinction is "the reduction of a species to such low abundance that, although it is still present in the community, it no longer interacts significantly with other species".

Relative species abundance is a component of biodiversity and is a measure of how common or rare a species is relative to other species in a defined location or community. Relative abundance is the percent composition of an organism of a particular kind relative to the total number of organisms in the area. Relative species abundances tend to conform to specific patterns that are among the best-known and most-studied patterns in macroecology. Different populations in a community exist in relative proportions; this idea is known as relative abundance.

Limiting similarity is a concept in theoretical ecology and community ecology that proposes the existence of a maximum level of niche overlap between two given species that will allow continued coexistence.

<span class="mw-page-title-main">Intraguild predation</span> Killing and sometimes eating of potential competitors

Intraguild predation, or IGP, is the killing and sometimes eating of a potential competitor of a different species. This interaction represents a combination of predation and competition, because both species rely on the same prey resources and also benefit from preying upon one another. Intraguild predation is common in nature and can be asymmetrical, in which one species feeds upon the other, or symmetrical, in which both species prey upon each other. Because the dominant intraguild predator gains the dual benefits of feeding and eliminating a potential competitor, IGP interactions can have considerable effects on the structure of ecological communities.

<span class="mw-page-title-main">Coexistence theory</span> Framework explaining how competitor traits can maintain species diversity

Coexistence theory is a framework to understand how competitor traits can maintain species diversity and stave-off competitive exclusion even among similar species living in ecologically similar environments. Coexistence theory explains the stable coexistence of species as an interaction between two opposing forces: fitness differences between species, which should drive the best-adapted species to exclude others within a particular ecological niche, and stabilizing mechanisms, which maintains diversity via niche differentiation. For many species to be stabilized in a community, population growth must be negative density-dependent, i.e. all participating species have a tendency to increase in density as their populations decline. In such communities, any species that becomes rare will experience positive growth, pushing its population to recover and making local extinction unlikely. As the population of one species declines, individuals of that species tend to compete predominantly with individuals of other species. Thus, the tendency of a population to recover as it declines in density reflects reduced intraspecific competition (within-species) relative to interspecific competition (between-species), the signature of niche differentiation.

References

  1. Tilman, D. (1982). Resource Competition and Community Structure. Princeton, NJ: Princeton University Press.
  2. Schoener T. W. (1983). "Field experiments on interspecific competition". The American Naturalist. 122 (2): 240–285. doi:10.1086/284133. S2CID   85191738.
  3. Borzée, Amaël; Kim, Jun Young; Jang, Yikweon (7 Sep 2016). "Asymmetric competition over calling sites in two closely related treefrog species". Scientific Reports. 6: 32569. Bibcode:2016NatSR...632569B. doi:10.1038/srep32569. PMC   5013533 . PMID   27599461.
  4. Tarkhnishvili David (2010). "Unisexual rock lizard might be outcompeting its bisexual progenitors in the Caucasus". Biological Journal of the Linnean Society. 101 (2): 447–460. doi: 10.1111/j.1095-8312.2010.01498.x .
  5. Holt R. D., Lawton J. H. (1994). "The ecological consequences of shared natural enemies". Annual Review of Ecology and Systematics. 25: 495–520. doi:10.1146/annurev.ecolsys.25.1.495.
  6. Holt, Robert D. (1977). "Predation, apparent competition, and the structure of prey communities". Theoretical Population Biology. 12 (2): 197–229. doi:10.1016/0040-5809(77)90042-9. PMID   929457.
  7. Roesti, M., Groh, J.S., Blain, S.A., Huss, M., Rassias, P. & Bolnick, D.I. et al. (2023) Species divergence under competition and shared predation. Ecology Letters, 26, 111–123. Available from: https://doi.org/10.1111/ele.14138
  8. Iannelli, Mimmo; Pugliese, Andrea (2014-01-01). Competition among species. UNITEXT. Springer International Publishing. pp. 175–208. doi:10.1007/978-3-319-03026-5_7. ISBN   978-3-319-03025-8.
  9. Brockhurst, Michael A.; Fenton, Andrew; Roulston, Barrie; Rainey, Paul B. (2006). "The impact of phages on interspecific competition in experimental populations of bacteria". BMC Ecology. 6: 19. doi: 10.1186/1472-6785-6-19 . PMC   1764007 . PMID   17166259.
  10. Bengtsson J (1989). "Interspecific competition increases local extinction rate in a metapopulation system". Nature. 340 (6236): 713–715. Bibcode:1989Natur.340..713B. doi:10.1038/340713a0. S2CID   4347836.
  11. Gotelli, N.J. 2008. A Primer of Ecology, 4th ed. Sinauer Associates, Sunderland, MA, USA.
  12. Stevens, M. H. H. (2009). A Primer of Ecology with R. (R. Gentleman, Hornik K., & G. Parmigiani, Eds.). Springer.
  13. Rabajante JF, Talaue CO (April 2015). "Equilibrium switching and mathematical properties of nonlinear interaction networks with concurrent antagonism and self-stimulation". Chaos, Solitons & Fractals. 73: 166–182. Bibcode:2015CSF....73..166R. doi:10.1016/j.chaos.2015.01.018.
  14. 1 2 Hautmann, Michael (2020). "What is macroevolution?". Palaeontology. 63 (1): 1–11. doi:10.1111/pala.12465. ISSN   0031-0239.
  15. Gould, Stephen Jay (1985). "The paradox of the first tier: an agenda for paleobiology". Paleobiology. 11 (1): 2–12. doi:10.1017/s0094837300011350. ISSN   0094-8373. S2CID   125843295.
  16. Benton, Michael J. (2001). "Biodiversity on land and in the sea". Geological Journal. 36 (3–4): 211–230. doi:10.1002/gj.877. ISSN   0072-1050. S2CID   140675489.
  17. Sepkoski, J. John (1984). "A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions". Paleobiology. 10 (2): 246–267. doi:10.1017/S0094837300008186. ISSN   0094-8373. S2CID   85595559.
  18. Alroy, J.; Aberhan, M.; Bottjer, D. J.; Foote, M.; Fursich, F. T.; Harries, P. J.; Hendy, A. J. W.; Holland, S. M.; Ivany, L. C.; Kiessling, W.; Kosnik, M. A. (2008-07-04). "Phanerozoic Trends in the Global Diversity of Marine Invertebrates". Science. 321 (5885): 97–100. Bibcode:2008Sci...321...97A. doi:10.1126/science.1156963. ISSN   0036-8075. PMID   18599780. S2CID   35793274.
  19. Emerson, Brent C.; Kolm, Niclas (2005). "Species diversity can drive speciation". Nature. 434 (7036): 1015–1017. Bibcode:2005Natur.434.1015E. doi:10.1038/nature03450. ISSN   0028-0836. PMID   15846345. S2CID   3195603.
  20. Calcagno, Vincent; Jarne, Philippe; Loreau, Michel; Mouquet, Nicolas; David, Patrice (2017-06-09). "Diversity spurs diversification in ecological communities". Nature Communications. 8 (1): 15810. Bibcode:2017NatCo...815810C. doi:10.1038/ncomms15810. ISSN   2041-1723. PMC   5494188 . PMID   28598423.
  21. Hautmann, Michael; Bagherpour, Borhan; Brosse, Morgane; Frisk, Åsa; Hofmann, Richard; Baud, Aymon; Nützel, Alexander; Goudemand, Nicolas; Bucher, Hugo (2015). Brayard, Arnaud (ed.). "Competition in slow motion: the unusual case of benthic marine communities in the wake of the end-Permian mass extinction". Palaeontology. 58 (5): 871–901. doi: 10.1111/pala.12186 . S2CID   140688908.

Further reading