The marginal value theorem (MVT) is an optimality model that usually describes the behavior of an optimally foraging individual in a system where resources (often food) are located in discrete patches separated by areas with no resources. Due to the resource-free space, animals must spend time traveling between patches. The MVT can also be applied to other situations in which organisms face diminishing returns.
The MVT was first proposed by Eric Charnov in 1976. In his original formulation: "The predator should leave the patch it is presently in when the marginal capture rate in the patch drops to the average capture rate for the habitat." [1]
All animals must forage for food in order to meet their energetic needs, but doing so is energetically costly. It is assumed that evolution by natural selection results in animals utilizing the most economic and efficient strategy to balance energy gain and consumption. The Marginal Value Theorem is an optimality model that describes the strategy that maximizes gain per unit time in systems where resources, and thus rate of returns, decrease with time. [2] The model weighs benefits and costs and is used to predict giving up time and giving up density. Giving up time (GUT) is the interval of time between when the animal last feeds and when it leaves the patch. Giving up density (GUD) is the food density within a patch when the animal will choose to move on to other food patches.
When an animal is foraging in a system where food sources are patchily distributed, the MVT can be used to predict how much time an individual will spend searching for a particular patch before moving on to a new one. In general, individuals will stay longer if (1) patches are farther apart or (2) current patches are poor in resources. Both situations increase the ratio of travel cost to foraging benefit.
As animals forage in patchy systems, they balance resource intake, traveling time, and foraging time. Resource intake within a patch diminishes with time, as shown by the solid curve in the graph to the right. The curve follows this pattern because resource intake is initially very fast, but slows as the resource is depleted. Traveling time is shown by the distance from the leftmost vertical dotted line to the y-axis. Optimal foraging time is modeled by connecting this point on the x-axis tangentially to the resource intake curve. Doing so maximizes the ratio between resource intake and time spent foraging and traveling.
At the extremes of the loading curve, animals spend too much time traveling for a small payoff, or they search too long in a given patch for an ineffective load. The MVT identifies the best possible intermediate between these extremes.
A common illustration of the MVT is apple picking in humans. When one first arrives at a new apple tree, the number of apples picked per minute is high, but it rapidly decreases as the lowest-hanging fruits are depleted. Strategies in which too few apples are picked from each tree or where each tree is exhausted are suboptimal because they result, respectively, in time lost travelling among trees or picking the hard to find last few apples from a tree. The optimal time spent picking apples in each tree is thus a compromise between these two strategies, which can be quantitatively found using the MVT.
Great tits are a species of bird found throughout Europe, northern Africa, and Asia. They are known to forage in “patchy” environments, and research has shown that their behavior can be modeled by optimal foraging models, including the MVT. In a 1977 study by R.A. Cowie, [3] birds were deprived of food and then allowed to forage through patches in two different environments (the environments differed only in distance between patches). As predicted, in both cases birds spent more time in one area when the patches were farther away or yielded more benefits, regardless of the environment. In a similar experiment by Naef-Daenzer (1999), [4] great tits were shown to have a foraging efficiency 30% better than random foraging would yield. This is because great tits were specifically spending more time in resource-rich areas, as predicted by the MVT. This data supports the use of the MVT in predicting the foraging behavior of great tits.
Experimental evidence has shown that screaming hairy armadillos and guinea pigs qualitatively follow MVT when foraging. [5] The researchers ran several parallel experiments: one for each animal under consistent patch quality, and one for guinea pigs with varying patch quality. While the qualitative foraging trend was shown to follow MVT in each case, the quantitative analysis indicated that each patch was exploited further than expected.
The MVT can be used to model foraging in plants as well as animals. Plants have been shown to preferentially place their roots, which are their foraging organs, in areas of higher resource concentration. Recall that the MVT predicts that animals will forage for longer in patches with higher resource quality. Plants increase root biomass in layers/areas of soil that are rich in nutrients and resources, and decrease root growth into areas of poor-quality soil. Thus, plants grow roots into patches of soil according to their wealth of resources in a manner consistent with the MVT. [6] Additionally, plant roots grow more quickly through low-quality patches of soil than through high-quality patches of soil, just as foraging animals are predicted to spend less time in low-quality areas than high-quality areas.
The MVT can be applied to situations other than foraging in which animals experience diminished returns. Consider, for example, the mating copulation duration of the yellow dung fly. In the dung fly mating system, males gather on fresh cow droppings and wait for females to arrive in smaller groups to lay their eggs. Males must compete with each other for the chance to mate with arriving females—sometimes one male will kick another male off of a female and take over mating with the female mid-copulation. In this instance, the second male fertilizes about 80% of the eggs. [7] Thus, after a male has mated with a female he guards her so that no other males will have the opportunity to mate with her and displace his sperm before she lays her eggs. After the female lays her eggs, the male must take the time to search for another female before he is able to copulate again.
The question, then, is how long the dung fly should spend copulating with each female. On one hand, the longer a male dung fly copulates the more eggs he can fertilize. However, the benefits of extra copulation time diminish quickly, as the male loses the chance to find another female during long copulations. The MVT predicts that the optimal copulation time is just long enough to fertilize about 80% of the eggs; after this time, the rewards are much smaller and are not worth missing out on another mate. [7] This predicted value for copulation time, 40 minutes, is very close to the average observed value, 36 minutes.
In dung flies, the observed values of copulation time and time searching for another mate vary with body weight. Heavier males have shorter search times and shorter copulation times. These shorter search times are likely due to increased cost of travel with increased body weight; shorter copulation times probably reflect that it is easier for heavier males to successfully take over females mid-copulation. Additionally, researchers have taken into account “patch quality,” i.e. the quality of females arriving on the various cowpats. Research also shows that males copulate for longer with the larger females who hold more eggs and have larger reproductive tract dimensions. Thus, males change their copulation time to maximize their fitness, but they are doing so in response to selection imposed by female morphology. Even with these variations, male dung flies do exhibit close-to-optimal copulation time relative to their body size, as predicted by the MVT. [8]
Many studies, such as the examples presented above, have shown good qualitative support for predictions generated by the Marginal Value Theorem. However, in some more quantitative studies, the predictions of the MVT haven’t been as successful, with the observed values substantially deviating from predictions. One proposed explanation for these deviations is that it is difficult to objectively measure payoff rates. For example, an animal in an unpredictable environment may need to spend extra time sampling, making it hard for researchers to determine foraging time. [9]
Beyond this imprecision, some researchers propose that there is something fundamental missing from the model. Namely, animals are probably doing more than just foraging, whether it be dealing with predation risks or searching for mating opportunities. [9] Natural selection is not the only force influencing the evolution of species. Sexual selection, for example, may alter foraging behaviors, making them less consistent with the MVT. These researchers point out that the marginal value theorem is a starting point, but complexity and nuances must be incorporated into models and tests for foraging and patch-use.
One other type of model that has been used in place of MVT in predicting foraging behavior is the state-dependent behavior model. Although state-dependent models have been viewed as a generalization of the MVT, [10] they are unlikely to generate broadly applicable predictions like those from the MVT because they test predictions under a specific set of conditions. While the predictions of these models must be tested under precise conditions, they might offer valuable insights not available from broader models such as MVT. [9]
A herbivore is an animal anatomically and physiologically adapted to eating plant material, for example foliage or marine algae, for the main component of its diet. As a result of their plant diet, herbivorous animals typically have mouthparts adapted to rasping or grinding. Horses and other herbivores have wide flat teeth that are adapted to grinding grass, tree bark, and other tough plant material.
Behavioral ecology, also spelled behavioural ecology, is the study of the evolutionary basis for animal behavior due to ecological pressures. Behavioral ecology emerged from ethology after Niko Tinbergen outlined four questions to address when studying animal behaviors: What are the proximate causes, ontogeny, survival value, and phylogeny of a behavior?
Foraging is searching for wild food resources. It affects an animal's fitness because it plays an important role in an animal's ability to survive and reproduce. Foraging theory is a branch of behavioral ecology that studies the foraging behavior of animals in response to the environment where the animal lives.
A herd is a social group of certain animals of the same species, either wild or domestic. The form of collective animal behavior associated with this is referred to as herding.
Dominance hierarchy is a type of social hierarchy that arises when members of a social group interact, to create a ranking system. In social living groups, members are likely to compete for access to limited resources and mating opportunities. Rather than fighting each time they meet, relative rank is established between members of the same sex. Based on repetitive interactions a social order is created that is subject to change each time a dominant animal is challenged by a subordinate one.
Reproductive success is defined as an individual's production of offspring per breeding event or lifetime. This is not limited by the number of offspring produced by one individual, but also the reproductive success of these offspring themselves. Reproductive success is different from fitness in that individual success is not necessarily a determinant for adaptive strength of a genotype since the effects of chance and the environment have no influence on those specific genes. Reproductive success turns into a part of fitness when the offspring are actually recruited into the breeding population. If offspring quantity is not correlated with quality this holds up, but if not then reproductive success must be adjusted by traits that predict juvenile survival in order to be measured effectively. Quality and quantity is about finding the right balance between reproduction and maintenance and the disposable soma theory of aging tells us that a longer lifespan will come at the cost of reproduction and thus longevity is not always correlated with high fecundity. Parental investment is a key factor in reproductive success since taking better care to offspring is what often will give them a fitness advantage later in life. This includes mate choice and sexual selection as an important factor in reproductive success, which is another reason why reproductive success is different from fitness as individual choices and outcomes are more important than genetic differences. As reproductive success is measured over generations, Longitudinal studies are the preferred study type as they follow a population or an individual over a longer period of time in order to monitor the progression of the individual(s). These long term studies are preferable since they negate the effects of the variation in a single year or breeding season.
Optimal foraging theory (OFT) is a behavioral ecology model that helps predict how an animal behaves when searching for food. Although obtaining food provides the animal with energy, searching for and capturing the food require both energy and time. To maximize fitness, an animal adopts a foraging strategy that provides the most benefit (energy) for the lowest cost, maximizing the net energy gained. OFT helps predict the best strategy that an animal can use to achieve this goal.
In ecology, an ideal free distribution (IFD) is a theoretical way in which a population's individuals distribute themselves among several patches of resources within their environment, in order to minimize resource competition and maximize fitness. The theory states that the number of individual animals that will aggregate in various patches is proportional to the amount of resources available in each. For example, if patch A contains twice as many resources as patch B, there will be twice as many individuals foraging in patch A as in patch B.
Sexual conflict or sexual antagonism occurs when the two sexes have conflicting optimal fitness strategies concerning reproduction, particularly over the mode and frequency of mating, potentially leading to an evolutionary arms race between males and females. In one example, males may benefit from multiple matings, while multiple matings may harm or endanger females, due to the anatomical differences of that species.
Metellina segmentata is a spider in the family Tetragnathidae with a Palaearctic distribution. It has also been introduced to Canada.
Sexual cannibalism is when a female cannibalizes her mate prior to, or after copulation. It is a trait observed in many arachnid orders and several insect orders. Several hypotheses to explain this seemingly paradoxical behavior have been proposed. The adaptive foraging hypothesis, aggressive spillover hypothesis and mistaken identity hypothesis are among the proposed hypotheses to explain how sexual cannibalism evolved. This behavior is believed to have evolved as a manifestation of sexual conflict, occurring when the reproductive interests of males and females differ. In many species that exhibit sexual cannibalism, the female consumes the male upon detection. Females of cannibalistic species are generally hostile and unwilling to mate; thus many males of these species have developed adaptive behaviors to counteract female aggression.
Scathophaga stercoraria, commonly known as the yellow dung fly or the golden dung fly, is one of the most familiar and abundant flies in many parts of the Northern Hemisphere. As its common name suggests, it is often found on the feces of large mammals, such as horses, cattle, sheep, deer, and wild boar, where it goes to breed. The distribution of S. stercoraria is likely influenced by human agriculture, especially in northern Europe and North America. The Scathophaga are integral in the animal kingdom due to their role in the natural decomposition of dung in fields. They are also very important in the scientific world due to their short life cycles and susceptibility to experimental manipulations; thus, they have contributed significant knowledge about animal behavior.
Bateman's principle, in evolutionary biology, is that in most species, variability in reproductive success is greater in males than in females. It was first proposed by Angus John Bateman (1919–1996), an English geneticist. Bateman suggested that, since males are capable of producing millions of sperm cells with little effort, while females invest much higher levels of energy in order to nurture a relatively small number of eggs, the female plays a significantly larger role in their offspring's reproductive success. Bateman’s paradigm thus views females as the limiting factor of parental investment, over which males will compete in order to copulate successfully.
Anthidium manicatum, commonly called the European wool carder bee is a species of bee in the family Megachilidae, the leaf-cutter bees or mason bees.
Anthidium maculosum is a species of bee in the family Megachilidae, the leaf-cutter, carder, or mason bees. It is a solitary bee where the males are territorial and the females take part in polyandry. The males of A. maculosum differ from most other males of bee species because the males are significantly larger than females. In addition, subordinate males that act as satellites are smaller than territory-owning males. This species can be found predominately in Mexico and the United States.
A nuptial gift is a nutritional gift given by one partner in some animals' sexual reproduction practices.
In biology, optimality models are a tool used to evaluate the costs and benefits of different organismal features, traits, and characteristics, including behavior, in the natural world. This evaluation allows researchers to make predictions about an organisms's optimal behavior or other aspects of its phenotype. Optimality modeling is the modeling aspect of optimization theory. It allows for the calculation and visualization of the costs and benefits that influence the outcome of a decision, and contributes to an understanding of adaptations. The approach based on optimality models in biology is sometimes called optimality theory.
Sexual selection in birds concerns how birds have evolved a variety of mating behaviors, with the peacock tail being perhaps the most famous example of sexual selection and the Fisherian runaway. Commonly occurring sexual dimorphisms such as size and color differences are energetically costly attributes that signal competitive breeding situations. Many types of avian sexual selection have been identified; intersexual selection, also known as female choice; and intrasexual competition, where individuals of the more abundant sex compete with each other for the privilege to mate. Sexually selected traits often evolve to become more pronounced in competitive breeding situations until the trait begins to limit the individual's fitness. Conflicts between an individual fitness and signaling adaptations ensure that sexually selected ornaments such as plumage coloration and courtship behavior are “honest” traits. Signals must be costly to ensure that only good-quality individuals can present these exaggerated sexual ornaments and behaviors.
In behavioral ecology, polyandry is a class of mating system where one female mates with several males in a breeding season. Polyandry is often compared to the polygyny system based on the cost and benefits incurred by members of each sex. Polygyny is where one male mates with several females in a breeding season . A common example of polyandrous mating can be found in the field cricket of the invertebrate order Orthoptera. Polyandrous behavior is also prominent in many other insect species, including the red flour beetle and the species of spider Stegodyphus lineatus. Polyandry also occurs in some primates such as marmosets, mammal groups, the marsupial genus' Antechinus and bandicoots, around 1% of all bird species, such as jacanas and dunnocks, insects such as honeybees, and fish such as pipefish.
In life history theory, the cost of reproduction hypothesis is the idea that reproduction is costly in terms of future survival and reproduction. This is mediated by various mechanisms, with the two most prominent being hormonal regulation and differential allocation of internal resources.