An endolith or endolithic is an organism (archaeon, bacterium, fungus, lichen, algae, sponge, or amoeba) that is able to acquire the necessary resources for growth in the inner part of a rock, [1] mineral, coral, animal shells, or in the pores between mineral grains of a rock. Many are extremophiles, living in places long considered inhospitable to life. The distribution, biomass, and diversity of endolith microorganisms are determined by the physical and chemical properties of the rock substrate, including the mineral composition, permeability, the presence of organic compounds, the structure and distribution of pores, water retention capacity, and the pH. [2] Normally, the endoliths colonize the areas within lithic substrates to withstand intense solar radiation, temperature fluctuations, wind, and desiccation. [3] They are of particular interest to astrobiologists, who theorize that endolithic environments on Mars and other planets constitute potential refugia for extraterrestrial microbial communities. [4] [5]
The term "endolith", which defines an organism that colonizes the interior of any kind of rock, has been further classified into five subclasses: [6]
Endolithic microorganisms have been reported in many areas around the globe. There are reports in warm hyper-arid and arid deserts such as Mojave and Sonora (USA), Atacama (Chile), Gobi (China, Mongolia), Negev (Israel), Namib (Namibia Angola), Al-Jafr basin (Jordan) and the Depression of Turpan (China), [7] [8] also in cold deserts as Arctic and Antarctic, [9] and deep subsoil and ocean trenches rocks. [10] However, there are reports of endolithic microorganisms in inter-tropical zones, [11] where humidity and solar radiation are significantly different from the above-mentioned biomes. Endoliths have been found in the rock down to a depth of 3 km (1.9 mi), though it is unknown if that is their limit (due to the cost involved in drilling to such depths). [12] [13] The main threat to their survival seems not to result from the pressure at such depth, but from the increased temperature. Judging from hyperthermophile organisms, the temperature limit is at about 120 °C (Strain 121 can reproduce at 121 °C), which limits the possible depth to 4-4.5 km below the continental crust, and 7 or 7.5 km below the ocean floor. Endolithic organisms have also been found in surface rocks in regions of low humidity (hypolith) and low temperature (psychrophile), including the Dry Valleys and permafrost of Antarctica, [14] the Alps, [15] and the Rocky Mountains. [16] [17]
The metabolism of endolithic microorganisms is versatile, in many of those communities have been found genes involved in sulphur metabolism, iron metabolism and carbon fixation. In addition, whether they metabolize these directly from the surrounding rock, or rather excrete an acid to dissolve them first is yet undetermined. According to Meslier & DiRuggiero [18] there are found genes in the endolithic community involved in nitrogen fixation. The Ocean Drilling Program found microscopic trails in basalt from the Atlantic, Indian, and Pacific oceans that contain DNA. [19] [20] Photosynthetic endoliths have also been discovered. [21]
As water and nutrients are rather sparse in the environment of the endolith, water limitation is a key factor in the capacity of survival of many endolithic microorganisms, many of those microorganisms have adaptations to survive in low concentrations of water. [18] Besides, the presence of pigments, especially in cyanobacteria and some algae, such as; beta carotenes and chlorophyll help them in the protection against dangerous radiation and is a way to obtain energy. [22] Another characteristic is the presence of a very slow reproduction cycle. Early data suggest some only engage in cell division once every hundred years. In August 2013 researchers reported evidence of endoliths in the ocean floor, perhaps millions of years old and reproducing only once every 10,000 years. [23] Most of their energy is spent repairing cell damage caused by cosmic rays or racemization, and very little is available for reproduction or growth. It is thought that they weather long ice ages in this fashion, emerging when the temperature in the area warms. [13]
As most endoliths are autotrophs, they can generate organic compounds essential for their survival on their own from inorganic matter. Some endoliths have specialized in feeding on their autotroph relatives. The micro-biotope where these different endolithic species live together has been called a subsurface lithoautotrophic microbial ecosystem (SLiME), [24] or endolithic systems within the subterranean lithic biome.
Endolithic systems are still at an early stage of exploration. In some cases its biota can support simple invertebrates, most organisms are unicellular. Near-surface layers of rock may contain blue-green algae but most energy comes from chemical synthesis of minerals. The limited supply of energy limits the rates of growth and reproduction. In deeper rock layers microbes are exposed to high pressures and temperatures. [25]
Only limited research has been done concerning the distribution of marine endolithic fungi and its diversity even though there is a probability that endolithic fungi could perhaps play an important role in the health of coral reefs.
Endolithic fungi have been discovered in shells as early as the year 1889 by Edouard Bornet and Charles Flahault. These two French phycologists specifically provided descriptions for two fungi: Ostracoblabe implexis and Lithopythium gangliiforme . Discovery of endolithic fungi, such as Dodgella priscus and Conchyliastrum, has also been made in the beach sand of Australia by George Zembrowski. Findings have also been made in coral reefs and have been found to be, at times, beneficial to their coral hosts. [26]
In the wake of worldwide coral bleaching, studies have suggested that the endolithic algae located in the skeleton of the coral may be aiding the survival of coral species by providing an alternative source of energy. Although the role that endolithic fungi play is important in coral reefs, it is often overlooked because much research is focused on the effects of coral bleaching as well as the relationships between Coelenterate and endosymbiotic Symbiodinia. [27]
According to a study done by Astrid Gunther endoliths were also found in the island of Cozumel (Mexico). The endoliths found there not only included algae and fungi but also included cyanobacteria, sponges as well as many other microborers. [28]
Until the 1990s phototrophic endoliths were thought of as somewhat benign, but evidence has since surfaced that phototrophic endoliths (primarily cyanobacteria) have infested 50 to 80% of midshore populations of the mussel species Perna perna located in South Africa. The infestation of phototrophic endoliths resulted in lethal and sub-lethal effects such as the decrease in strength of the mussel shells. Although the rate of thickening of the shells were faster in more infested areas it is not rapid enough to combat the degradation of the mussel shells. [29]
Evidence of endolithic fungi were discovered within dinosaur eggshell found in central China. They were characterized as being “needle-like, ribbon-like, and silk-like.". [30]
Fungus is seldom fossilized and even when it is preserved it can be difficult to distinguish endolithic hyphae from endolithic cyanobacteria and algae. Endolithic microbes can, however, be distinguished based on their distribution, ecology, and morphology. According to a 2008 study, the endolithic fungi that formed on the eggshells would have resulted in the abnormal incubation of the eggs and may have killed the embryos in infected eggs of these dinosaurs. It may also have led to the preservation of dinosaur eggs, including some that contained embryos. [30]
Endolithic microorganisms have been considered a model for the search for life on other planets by inquiring about what sort of microorganisms on Earth inhabit specific minerals, which helps to propose those lithologies as life detection targets on an extra-terrestrial surface such as Mars. Several studies have been carried out in extreme places that serve as analogs for Mars's surface and subsurface, and many studies in geomicrobiology on Earth's hot and cold deserts have been developed. [31] In these extreme environments, microorganisms find protection against thermal buffering, UV radiation, and desiccation while living inside pores and fissures of minerals and rocks. [8] [4] Life in these endolithic habitats might face similar stress due to the scarcity of water and high UV radiation that rule on modern Mars. [18]
An excellent example of these adaptations is the non-hygroscopic but microporous translucent gypsum crusts, which are found as potential substrates that can mitigate exposure to UV radiation and desiccation and allow microbial colonization in hyper-arid deserts. [32] [33] In the same way, the ability to grow under high water stress and oligotrophic conditions confer to endolithic microorganisms to survive in conditions similar to those found on Mars. There is evidence of the past existence of water on the red planet; perhaps, these microorganisms could develop adaptations found in current deserts on the Earth. Furthermore, The endolithic structures are a good way to find ancient or current biological activity (biosignatures) on Mars or other rocky planets.
The manga and anime Land of the Lustrous revolves around characters composed of gems given life by endolithic inclusions.
Primary nutritional groups are groups of organisms, divided in relation to the nutrition mode according to the sources of energy and carbon, needed for living, growth and reproduction. The sources of energy can be light or chemical compounds; the sources of carbon can be of organic or inorganic origin.
Cyanobacteria, also called Cyanobacteriota or Cyanophyta, are a phylum of autotrophic gram-negative bacteria that can obtain biological energy via oxygenic photosynthesis. The name "cyanobacteria" refers to their bluish green (cyan) color, which forms the basis of cyanobacteria's informal common name, blue-green algae, although as prokaryotes they are not scientifically classified as algae.
A lichen is a hybrid colony of algae or cyanobacteria living symbiotically among filaments of multiple fungi species, along with yeasts and bacteria embedded in the cortex or "skin", in a mutualistic relationship. Lichens are the lifeform that first brought the term symbiosis under biological context.
In Arctic and Antarctic ecology, a hypolith is a community of photosynthetic organisms, and extremophiles, that live underneath rocks in climatically extreme deserts such as Cornwallis Island and Devon Island in the Canadian high Arctic. The community itself is the hypolithon.
Aeroplankton are tiny lifeforms that float and drift in the air, carried by wind. Most of the living things that make up aeroplankton are very small to microscopic in size, and many can be difficult to identify because of their tiny size. Scientists collect them for study in traps and sweep nets from aircraft, kites or balloons. The study of the dispersion of these particles is called aerobiology.
Biological soil crusts are communities of living organisms on the soil surface in arid and semi-arid ecosystems. They are found throughout the world with varying species composition and cover depending on topography, soil characteristics, climate, plant community, microhabitats, and disturbance regimes. Biological soil crusts perform important ecological roles including carbon fixation, nitrogen fixation and soil stabilization; they alter soil albedo and water relations and affect germination and nutrient levels in vascular plants. They can be damaged by fire, recreational activity, grazing and other disturbances and can require long time periods to recover composition and function. Biological soil crusts are also known as biocrusts or as cryptogamic, microbiotic, microphytic, or cryptobiotic soils.
Subsurface lithoautotrophic microbial ecosystems, or "SLIMEs", are a type of endolithic ecosystems. They are defined by Edward O. Wilson as "unique assemblages of bacteria and fungi that occupy pores in the interlocking mineral grains of igneous rock beneath Earth's surface."
Phototrophic biofilms are microbial communities generally comprising both phototrophic microorganisms, which use light as their energy source, and chemoheterotrophs. Thick laminated multilayered phototrophic biofilms are usually referred to as microbial mats or phototrophic mats. These organisms, which can be prokaryotic or eukaryotic organisms like bacteria, cyanobacteria, fungi, and microalgae, make up diverse microbial communities that are affixed in a mucous matrix, or film. These biofilms occur on contact surfaces in a range of terrestrial and aquatic environments. The formation of biofilms is a complex process and is dependent upon the availability of light as well as the relationships between the microorganisms. Biofilms serve a variety of roles in aquatic, terrestrial, and extreme environments; these roles include functions which are both beneficial and detrimental to the environment. In addition to these natural roles, phototrophic biofilms have also been adapted for applications such as crop production and protection, bioremediation, and wastewater treatment.
EXPOSE is a multi-user facility mounted outside the International Space Station (ISS) dedicated to astrobiology. EXPOSE was developed by the European Space Agency (ESA) for long-term spaceflights and was designed to allow exposure of chemical and biological samples to outer space while recording data during exposure.
Antarctica is one of the most physically and chemically extreme terrestrial environments to be inhabited by lifeforms. The largest plants are mosses, and the largest animals that do not leave the continent are a few species of insects.
Marine microorganisms are defined by their habitat as microorganisms living in a marine environment, that is, in the saltwater of a sea or ocean or the brackish water of a coastal estuary. A microorganism is any microscopic living organism or virus, which is invisibly small to the unaided human eye without magnification. Microorganisms are very diverse. They can be single-celled or multicellular and include bacteria, archaea, viruses, and most protozoa, as well as some fungi, algae, and animals, such as rotifers and copepods. Many macroscopic animals and plants have microscopic juvenile stages. Some microbiologists also classify viruses as microorganisms, but others consider these as non-living.
Black yeasts, sometimes also black fungi, dematiaceous fungi, microcolonial fungi or meristematic fungi is a diverse group of slow-growing microfungi which reproduce mostly asexually. Only few genera reproduce by budding cells, while in others hyphal or meristematic (isodiametric) reproduction is preponderant. Black yeasts share some distinctive characteristics, in particular a dark colouration (melanisation) of their cell wall. Morphological plasticity, incrustation of the cell wall with melanins and presence of other protective substances like carotenoids and mycosporines represent passive physiological adaptations which enable black fungi to be highly resistant against environmental stresses. The term "polyextremotolerance" has been introduced to describe this phenotype, an example of which is the species Aureobasidium pullulans. Presence of 1,8-dihydroxynaphthalene melanin in the cell wall confers to the microfungi their characteristic olivaceous to dark brown/black colour.
Roseli Ocampo-Friedmann was a Filipino-American microbiologist and botanist who specialized in the study of cyanobacteria and extremophiles. Her work has been cited in work exploring the terraforming of Mars.
The root microbiome is the dynamic community of microorganisms associated with plant roots. Because they are rich in a variety of carbon compounds, plant roots provide unique environments for a diverse assemblage of soil microorganisms, including bacteria, fungi, and archaea. The microbial communities inside the root and in the rhizosphere are distinct from each other, and from the microbial communities of bulk soil, although there is some overlap in species composition.
Daniela Billi is an Italian astrobiologist working at the University of Rome Tor Vergata. She is known for her work on desert cyanobacteria of the genus Chroococcidiopsis.
A holobiont is an assemblage of a host and the many other species living in or around it, which together form a discrete ecological unit through symbiosis, though there is controversy over this discreteness. The components of a holobiont are individual species or bionts, while the combined genome of all bionts is the hologenome. The holobiont concept was initially introduced by the German theoretical biologist Adolf Meyer-Abich in 1943, and then apparently independently by Dr. Lynn Margulis in her 1991 book Symbiosis as a Source of Evolutionary Innovation. The concept has evolved since the original formulations. Holobionts include the host, virome, microbiome, and any other organisms which contribute in some way to the functioning of the whole. Well-studied holobionts include reef-building corals and humans.
Mars habitability analogue environments on Earth are environments that share potentially relevant astrobiological conditions with Mars. These include sites that are analogues of potential subsurface habitats, and deep subsurface habitats.
The plant microbiome, also known as the phytomicrobiome, plays roles in plant health and productivity and has received significant attention in recent years. The microbiome has been defined as "a characteristic microbial community occupying a reasonably well-defined habitat which has distinct physio-chemical properties. The term thus not only refers to the microorganisms involved but also encompasses their theatre of activity".
Donnabella Castillo Lacap-Bugler (née Lacap) is a Filipino–New Zealand academic microbiologist, and is a full professor at the Auckland University of Technology, specialising in extremophiles, soil microbial ecology, and oral microorganisms.
Sponge microbiomes are diverse communities of microorganisms in symbiotic association with marine sponges as their hosts. These microorganisms include bacteria, archaea, fungi, viruses, among others. The sponges have the ability to filter seawater and recycle nutrients while providing a safe habitat to many microorganisms, which provide the sponge host with fixed nitrogen and carbon, and stimulates the immune system. Together, a sponge and its microbiome form a holobiont, with a single sponge often containing more than 40 bacterial phyla, making sponge microbial environments a diverse and dense community. Furthermore, individual holobionts work hand in hand with other near holobionts becoming a nested ecosystem, affecting the environment at multiple scales.