Refugium (population biology)

Last updated
European Last Glacial Maximum refugia, 20 kya Europe20000ya.png
European Last Glacial Maximum refugia, 20 kya

In biology, a refugium (plural: refugia) is a location which supports an isolated or relict population of a once more widespread species. This isolation (allopatry) can be due to climatic changes, geography, or human activities such as deforestation and overhunting.

Contents

Mountain gorilla Oruzogo Mountain Gorilla (6734894191).jpg
Mountain gorilla

Present examples of refugial animal species are the mountain gorilla, isolated to specific mountains in central Africa, and the Australian sea lion, isolated to specific breeding beaches along the south-west coast of Australia, due to humans taking so many of their number as game. This resulting isolation, in many cases, can be seen as only a temporary state; however, some refugia may be longstanding, thereby having many endemic species, not found elsewhere, which survive as relict populations. The Indo-Pacific Warm Pool has been proposed to be a longstanding refugium, based on the discovery of the "living fossil" of a marine dinoflagellate called Dapsilidinium pastielsii, currently found in the Indo-Pacific Warm Pool only. [1]

For plants, anthropogenic climate change propels scientific interest in identifying refugial species that were isolated into small or disjunct ranges during glacial episodes of the Pleistocene, yet whose ability to expand their ranges during the warmth of interglacial periods (such as the Holocene) was apparently limited or precluded by topographic, streamflow, or habitat barriers [2] [3] [4] —or by the extinction of coevolved animal dispersers. [5] The concern is that ongoing warming trends will expose them to extirpation or extinction in the decades ahead. [6] [7]

In anthropology, refugia often refers specifically to Last Glacial Maximum refugia, where some ancestral human populations may have been forced back to glacial refugia (similar small isolated pockets on the face of the continental ice sheets) during the last glacial period. Going from west to east, suggested examples include the Franco-Cantabrian region (in northern Iberia), the Italian and Balkan peninsulas, the Ukrainian LGM refuge, and the Bering Land Bridge. Archaeological and genetic data suggest that the source populations of Paleolithic humans survived the glacial maxima (including the Last Glacial Maximum) in sparsely wooded areas and dispersed through areas of high primary productivity while avoiding dense forest cover. [8] Glacial refugia, where human populations found refuge during the last glacial period, may have played a crucial role in shaping the emergence and diversification of the language families that exist in the world today. [9]

More recently, refugia has been used to refer to areas that could offer relative climate stability in the face of modern climate change. [10]

Speciation

As an example of a locale refugia study, Jürgen Haffer first proposed the concept of refugia to explain the biological diversity of bird populations in the Amazonian river basin. Haffer suggested that climatic change in the late Pleistocene led to reduced reservoirs of habitable forests in which populations become allopatric. Over time, that led to speciation: populations of the same species that found themselves in different refugia evolved differently, creating parapatric sister-species. As the Pleistocene ended, the arid conditions gave way to the present humid rainforest environment, reconnecting the refugia.

Scholars have since expanded the idea of this mode of speciation and used it to explain population patterns in other areas of the world, such as Africa, Eurasia, and North America. Theoretically, current biogeographical patterns can be used to infer past refugia: if several unrelated species follow concurrent range patterns, the area may have been a refugium. Moreover, the current distribution of species with narrow ecological requirements tend to be associated with the spatial position of glacial refugia. [11]

Simple environment examples of temperature

Two slopes with different sunlight exposure; only one is covered with snow Station du mont-dore, puy de sancy et deux versants du col de la croix st Robert 14.jpg
Two slopes with different sunlight exposure; only one is covered with snow

One can provide a simple explanation of refugia involving core temperatures and exposure to sunlight. In the northern hemisphere, north-facing sites on hills or mountains, and places at higher elevations count as cold sites. The reverse are sun- or heat-exposed, lower-elevation, south-facing sites: hot sites. (The opposite directions apply in the southern hemisphere.) Each site becomes a refugium, one as a "cold-surviving refugium" and the other as a "hot-surviving refugium". Canyons with deep hidden areas (the opposite of hillsides, mountains, mesas, etc. or other exposed areas) lead to these separate types of refugia.

A concept not often referenced is that of "sweepstakes colonization": [12] [13] when a dramatic ecological event occurs, for example a meteor strike, and global, multiyear effects occur. The sweepstake-winning species happens to already be living in a fortunate site, and their environment is rendered even more advantageous, as opposed to the "losing" species, which immediately fails to reproduce. [12] [13]

Past climate change refugia

Ecological understanding and geographic identification of climate refugia that remained significant strongholds for plant and animal survival during the extremes of past cooling and warming episodes largely pertain to the Quaternary glaciation cycles during the past several million years, especially in the Northern Hemisphere. A number of defining characteristics of past refugia are prevalent, including "an area where distinct genetic lineages have persisted through a series of Tertiary or Quaternary climate fluctuations owing to special, buffering environmental characteristics", "a geographical region that a species inhabits during the period of a glacial/interglacial cycle that represents the species' maximum contraction in geographical range," and "areas where local populations of a species can persist through periods of unfavorable regional climate." [14]

Future climate change refugia

In systematic conservation planning, the term refugium has been used to define areas that could be used in protected area development to protect species from climate change. [10] The term has been used alternatively to refer to areas with stable habitats or stable climates. [10] More specifically, the term in situ refugium is used to refer to areas that will allow species that exist in an area to remain there even as conditions change, whereas ex situ refugium refers to an area into which species distributions can move to in response to climate change. [10] Sites that offer in situ refugia are also called resilient sites in which species will continue to have what they need to survive even as climate changes. [15]

One study found with downscaled climate models that areas near the coast are predicted to experience overall less warming than areas toward the interior of the US State of Washington. [16] Other research has found that old-growth forests are particularly insulated from climatic changes due to evaporative cooling effects from evapotranspiration and their ability to retain moisture. [17] The same study found that such effects in the Pacific Northwest would create important refugia for bird species. A review of refugia-focused conservation strategy in the Klamath-Siskiyou Ecoregion found that, in addition to old-growth forest, the northern aspects of hillslopes and deep gorges would provide relatively cool areas for wildlife and seeps or bogs surrounded by mature and old-growth forests would continue to supply moisture even as water availability decreases. [18]

The Lake Pedder area had high geodiversity before it was flooded. Lake Pedder & Environs - 18.jpg
The Lake Pedder area had high geodiversity before it was flooded.

Beginning in 2010 the concept of geodiversity (a term used previously in efforts to preserve scientifically important geological features) entered into the literature of conservation biologists as a potential way to identify climate change refugia and as a surrogate (in other words, a proxy used when planning for protected areas) for biodiversity. [19] [20] [21] While the language to describe this mode of conservation planning hadn't fully developed until recently, the use of geophysical diversity in conservation planning goes back at least as far as the work by Hunter and others in 1988, [22] and Richard Cowling and his colleagues in South Africa also used "spatial features" as surrogates for ecological processes in establishing conservation areas in the late 1990s and early 2000s. [23] [24] The most recent efforts have used the idea of land facets (also referred to as geophysical settings, enduring features, or geophysical stages [15] ), which are unique combinations of topographical features (such as slope steepness, slope direction, and elevation) and soil composition, to quantify physical features. [20] The density of these facets, in turn, is used as a measure of geodiversity. [21] [15] Because geodiversity has been shown to be correlated with biodiversity, [2] even as species move in response to climate change, protected areas with high geodiversity may continue to protect biodiversity as niches get filled by the influx of species from neighboring areas. [15] Highly geodiverse protected areas may also allow for the movement of species within the area from one land facet or elevation to another. [15]

Conservation scientists, however, emphasize that the use of refugia to plan for climate change is not a substitute for fine-scale (more localized) and traditional approaches to conservation, as individual species and ecosystems will need to be protected where they exist in the present. [2] [25] They also emphasize that responding to climate change in conservation is not a substitute for actually limiting the causes of climate change. [2]

See also

Notes

  1. Mertens KN, Takano Y, Head MJ, Matsuoka K (2014). "Living fossils in the Indo-Pacific warm pool: A refuge for thermophilic dinoflagellates during glaciations" (PDF). Geology. 42 (6): 531–534. Bibcode:2014Geo....42..531M. doi:10.1130/G35456.1. S2CID   131220626. Archived from the original (PDF) on 2020-02-15.
  2. 1 2 3 4 Davis, Margaret B (October 1989). "Lags in vegetation response to greenhouse warming" (PDF). Climatic Change. 15 (1–2): 75–82. Bibcode:1989ClCh...15...75D. doi:10.1007/bf00138846. S2CID   154368627.
  3. Davis, Margaret B; Shaw, Ruth B (27 April 2001). "Special Reviews: Range shifts and adaptive responses to Quaternary climate change". Science. 292 (5517): 673–679. doi:10.1126/science.292.5517.673. PMID   11326089.
  4. Petit, Remy J; et al. (August 2004). "Review: Ecology and genetics of tree invasions: from recent introductions to Quaternary migrations". Forest Ecology and Management. 197 (1–3): 113–137. doi:10.1016/j.foreco.2004.05.009.
  5. Svenning, Jens-Christian; Skov, Flemming (2007). "Ice age legacies in the geographical distribution of tree species richness in Europe". Global Ecology and Biogeography. 16 (2): 234–235. Bibcode:2007GloEB..16..234S. doi:10.1111/j.1466-8238.2006.00280.x.
  6. Seliger, Benjamin J; McGill, Brian J; Svenning, Jens-Christian; Gill, Jacqueline L (November 2020). "Widespread underfilling of the potential ranges of North American trees". Journal of Biogeography. 48 (2): 359–371. doi:10.1111/jbi.14001. S2CID   228929332.
  7. Manes, Stella; et al. (2021). "Endemism increases species' climate change risk in areas of global biodiversity importance". Biological Conservation. 257: 109070. Bibcode:2021BCons.25709070M. doi:10.1016/j.biocon.2021.109070. S2CID   234841035.
  8. Gavashelishvili A, Tarkhnishvili D (2016). "Biomes and human distribution during the last ice age". Global Ecology and Biogeography. 25 (5): 563–574. Bibcode:2016GloEB..25..563G. doi:10.1111/geb.12437.
  9. Gavashelishvili, A; et al. (2023), "The time and place of origin of South Caucasian languages: insights into past human societies, ecosystems and human population genetics", Scientific Reports, 13 (21133), doi:10.1038/s41598-023-45500-w, PMC   10689496
  10. 1 2 3 4 Ashcroft MB (2010). "Identifying refugia from climate change". Journal of Biogeography. 37 (8): 1407–1413. Bibcode:2010JBiog..37.1407A. doi: 10.1111/j.1365-2699.2010.02300.x . S2CID   55909358.
  11. Tarkhnishvili D (2011). "Palaeoclimatic models help to understand current distribution of Caucasian forest species". Biological Journal of the Linnean Society. 105: 231–248. doi: 10.1111/j.1095-8312.2011.01788.x .
  12. 1 2 Petit RJ, Hu FS, Dick CW (June 2008). "Forests of the past: a window to future changes" (PDF). Science. 320 (5882): 1450–2. Bibcode:2008Sci...320.1450P. doi:10.1126/science.1155457. hdl: 2027.42/83298 . PMID   18556547. S2CID   13971431.
  13. 1 2 Penny ND, Penny FR (10 April 2001). "Gulf of Guinea Islands Biodiversity Project". California Academy of Sciences. Retrieved 26 April 2016.
  14. Tang, Cindy Q (2018). "Identifying long-term stable refugia for relict plant species in East Asia" (PDF). Nature Communications. 9 (4488): 4488. Bibcode:2018NatCo...9.4488T. doi:10.1038/s41467-018-06837-3. PMC   6203703 . PMID   30367062.
  15. 1 2 3 4 5 "Climate Change Resilience in the Pacific Northwest". conservationgateway.org. Retrieved 2019-03-19.
  16. "Washington Wildlife Habitat Connectivity Working Group" . Retrieved 2019-03-19.
  17. Betts MG, Phalan B, Frey SJ, Rousseau JS, Yang Z (April 2018). "Old-growth forests buffer climate-sensitive bird populations from warming". Diversity and Distributions. 24 (4): 439–447. doi: 10.1111/ddi.12688 .
  18. Olson D, DellaSala DA, Noss RF, Strittholt JR, Kass J, Koopman ME, Allnutt TF (January 2012). "Climate Change Refugia for Biodiversity in the Klamath-Siskiyou Ecoregion". Natural Areas Journal. 32 (1): 65–74. doi:10.3375/043.032.0108. S2CID   59069490.
  19. Anderson MG, Ferree CE (July 2010). "Conserving the stage: climate change and the geophysical underpinnings of species diversity". PLOS ONE. 5 (7): e11554. Bibcode:2010PLoSO...511554A. doi: 10.1371/journal.pone.0011554 . PMC   2904386 . PMID   20644646.
  20. 1 2 Beier P, Brost B (June 2010). "Use of land facets to plan for climate change: conserving the arenas, not the actors". Conservation Biology. 24 (3): 701–10. Bibcode:2010ConBi..24..701B. doi:10.1111/j.1523-1739.2009.01422.x. PMID   20067491. S2CID   11964364.
  21. 1 2 Anderson MG, Comer PJ, Beier P, Lawler JJ, Schloss CA, Buttrick S, Albano CM, Faith DP (June 2015). "Case studies of conservation plans that incorporate geodiversity". Conservation Biology. 29 (3): 680–91. Bibcode:2015ConBi..29..680A. doi:10.1111/cobi.12503. PMID   25924074. S2CID   5065593.
  22. Hunter ML, Jacobson GL, Webb TH (December 1988). "Paleoecology and the Coarse-Filter Approach to Maintaining Biological Diversity". Conservation Biology. 2 (4): 375–385. Bibcode:1988ConBi...2..375H. doi: 10.1111/j.1523-1739.1988.tb00202.x .
  23. Cowling RM, Pressey RL, Lombard AT, Desmet PG, Ellis AG (January 1999). "From representation to persistence: requirements for a sustainable system of conservation areas in the species-rich mediterranean-climate desert of southern Africa". Diversity and Distributions. 5 (1–2): 51–71. doi: 10.1046/j.1472-4642.1999.00038.x . S2CID   86287053.
  24. Cowling RM, Pressey RL, Rouget M, Lombard AT (July 2003). "A conservation plan for a global biodiversity hotspot—the Cape Floristic Region, South Africa" (PDF). Biological Conservation. 112 (1–2): 191–216. Bibcode:2003BCons.112..191C. doi:10.1016/S0006-3207(02)00425-1.
  25. Heller NE, Zavaleta ES (January 2009). "Biodiversity management in the face of climate change: A review of 22 years of recommendations". Biological Conservation. 142 (1): 14–32. Bibcode:2009BCons.142...14H. doi:10.1016/j.biocon.2008.10.006. S2CID   3797951.
  26. "Unepscs.org". Refugia.unepscs.org. Retrieved 2012-03-12.

Related Research Articles

Phylogeography is the study of the historical processes that may be responsible for the past to present geographic distributions of genealogical lineages. This is accomplished by considering the geographic distribution of individuals in light of genetics, particularly population genetics.

Allopatric speciation – also referred to as geographic speciation, vicariant speciation, or its earlier name the dumbbell model – is a mode of speciation that occurs when biological populations become geographically isolated from each other to an extent that prevents or interferes with gene flow.

<span class="mw-page-title-main">Prickly forest skink</span> Species of reptile

The prickly skink, or prickly forest skink, is a morphologically and genetically distinctive species of skink endemic to rainforests of the Wet Tropics of Queensland World Heritage Area, in north-eastern Australia. Unlike most small skinks, which have smooth scales, this species has rough, ridged and pointed scales. These keeled scales may be an adaptation to its high-rainfall habitat, to its microhabitat in rotting logs, or to camouflage it when moving through forest leaf-litter.

<span class="mw-page-title-main">Sky island</span> Geographic or environmental feature

Sky islands are isolated mountains surrounded by radically different lowland environments. The term originally referred to those found on the Mexican Plateau and has extended to similarly isolated high-elevation forests. The isolation has significant implications for these natural habitats. The American Southwest region began warming up between c. 20,000 and 10,000 years BP and atmospheric temperatures increased substantially, resulting in the formation of vast deserts that isolated the sky islands. Endemism, altitudinal migration, and relict populations are some of the natural phenomena to be found on sky islands.

<span class="mw-page-title-main">Sundaland</span> Biogeographic region of Southeast Asia

Sundaland is a biogeographical region of Southeast Asia corresponding to a larger landmass that was exposed throughout the last 2.6 million years during periods when sea levels were lower. It includes Bali, Borneo, Java, and Sumatra in Indonesia, and their surrounding small islands, as well as the Malay Peninsula on the Asian mainland.

<span class="mw-page-title-main">Endemism</span> Species unique to a natural location or habitat

Endemism is the state of a species only being found in a single defined geographic location, such as an island, state, nation, country or other defined zone; organisms that are indigenous to a place are not endemic to it if they are also found elsewhere. For example, the Cape sugarbird is found exclusively in southwestern South Africa and is therefore said to be endemic to that particular part of the world. An endemic species can also be referred to as an endemism or, in scientific literature, as an endemite.

Insular biogeography or island biogeography is a field within biogeography that examines the factors that affect the species richness and diversification of isolated natural communities. The theory was originally developed to explain the pattern of the species–area relationship occurring in oceanic islands. Under either name it is now used in reference to any ecosystem that is isolated due to being surrounded by unlike ecosystems, and has been extended to mountain peaks, seamounts, oases, fragmented forests, and even natural habitats isolated by human land development. The field was started in the 1960s by the ecologists Robert H. MacArthur and E. O. Wilson, who coined the term island biogeography in their inaugural contribution to Princeton's Monograph in Population Biology series, which attempted to predict the number of species that would exist on a newly created island.

<span class="mw-page-title-main">Holarctic realm</span> Biogeographic realm

The Holarctic realm is a biogeographic realm that comprises the majority of habitats found throughout the continents in the Northern Hemisphere. It corresponds to the floristic Boreal Kingdom. It includes both the Nearctic zoogeographical region, and Alfred Wallace's Palearctic zoogeographical region.

The Lower Guinean forests also known as the Lower Guinean-Congolian forests, are a region of coastal tropical moist broadleaf forest in West Africa, extending along the eastern coast of the Gulf of Guinea from eastern Benin through Nigeria and Cameroon.

<span class="mw-page-title-main">Last Glacial Maximum refugia</span> Places of survival during glaciation

Last Glacial Maximum refugia were places (refugia) in which humans and other species survived during the Last Glacial Period, around 25,000 to 18,000 years ago. Glacial refugia are areas that climate changes were not as severe, and where species could recolonize after deglaciation.

Tropical ecology is the study of the relationships between the biotic and abiotic components of the tropics, or the area of the Earth that lies between the Tropic of Cancer and the Tropic of Capricorn. The tropical climate experiences hot, humid weather and rainfall year-round. While many might associate the region solely with the rainforests, the tropics are home to a wide variety of ecosystems that boast a great wealth of biodiversity, from exotic animal species to seldom-found flora. Tropical ecology began with the work of early English naturalists and eventually saw the establishment of research stations throughout the tropics devoted to exploring and documenting these exotic landscapes. The burgeoning ecological study of the tropics has led to increased conservation education and programs devoted to the climate. Tropical ecology provides a wealth of natural resources to humans, this includes contributing to the carbon cycle, with the ability to store 50% of carbon emissions as well as turnover 40% of global oxygen. However, despite the natural services provided by tropical ecology, deforestation is a threat of tropical rainforests. Any plant of interest can be exploited for commercial reasons and extraction of these specific plant species can be at a rapid rate without time for healthy regeneration. Most of the global plant biodiversity is hosted in tropical areas, however studies in this area is mostly covered by scientist from Northern countries. Inclusion of scientist from countries where rainforest is present is heavily encouraged because it extends global knowledge and research which advances scientific contributions, benefiting tropical ecology.

<span class="mw-page-title-main">Effects of climate change on plant biodiversity</span>

There is an ongoing decline in plant biodiversity, just like there is ongoing biodiversity loss for many other life forms. One of the causes for this decline is climate change. Environmental conditions play a key role in defining the function and geographic distributions of plants. Therefore, when environmental conditions change, this can result in changes to biodiversity. The effects of climate change on plant biodiversity can be predicted by using various models, for example bioclimatic models.

<span class="mw-page-title-main">Forest migration</span>

Forest migration is the movement of large seed plant dominated communities in geographical space over time.

In paleoecology and ecological forecasting, a no-analog community or climate is one that is compositionally different from a baseline for measurement. Alternative naming conventions to describe no-analog communities and climates may include novel, emerging, mosaic, disharmonious and intermingled.

The geographical limits to the distribution of a species are determined by biotic or abiotic factors. Core populations are those occurring within the centre of the range, and marginal populations are found at the boundary of the range.

In biogeography and paleontology, a relict is a population or taxon of organisms that was more widespread or more diverse in the past. A relictual population is a population currently inhabiting a restricted area whose range was far wider during a previous geologic epoch. Similarly, a relictual taxon is a taxon which is the sole surviving representative of a formerly diverse group.

A glacial refugium is a geographic region which made possible the survival of flora and fauna during ice ages and allowed for post-glacial re-colonization. Different types of glacial refugia can be distinguished, namely nunatak, peripheral, and lowland. Glacial refugia have been suggested as a major cause of floral and faunal distribution patterns in both temperate and tropical latitudes. With respect to disjunct populations of modern-day species, especially in birds, doubt has been cast on the validity of such inferences, as much of the differentiation between populations observed today may have occurred before or after their restriction to refugia. In contrast, isolated geographic locales that host one or more critically endangered species are generally uncontested as bona fide glacial refugia.

<span class="mw-page-title-main">Biodiversity loss</span> Extinction of species or loss of species in a given habitat

Biodiversity loss happens when plant or animal species disappear completely from Earth (extinction) or when there is a decrease or disappearance of species in a specific area. Biodiversity loss means that there is a reduction in biological diversity in a given area. The decrease can be temporary or permanent. It is temporary if the damage that led to the loss is reversible in time, for example through ecological restoration. If this is not possible, then the decrease is permanent. The cause of most of the biodiversity loss is, generally speaking, human activities that push the planetary boundaries too far. These activities include habitat destruction and land use intensification. Further problem areas are air and water pollution, over-exploitation, invasive species and climate change.

<span class="mw-page-title-main">Glacial survival hypothesis</span>

According to the northern cryptic glacial refugial hypothesis, during the last ice age cold tolerant plant and animal species persisted in ice-free microrefugia north of the Alps in Europe. The alternative hypothesis of no persistence and postglacial immigration of plants and animals from southern refugia in Europe is sometimes also called the tabula rasa hypothesis.

A glacial relict is a population of a species previously common during a glacial period that retreated into refugia during interglacial periods. They are typically cold-adapted species with a distribution restricted to regions and microhabitats that allow them to survive despite climatic changes.

References