Glacial refugium

Last updated

A glacial refugium (plural glacial refugia) is a geographic region which made possible the survival of flora and fauna during ice ages and allowed for post-glacial re-colonization. [1] [2] Different types of glacial refugia can be distinguished, namely nunatak, peripheral, and lowland. [3] Glacial refugia have been suggested as a major cause of floral and faunal distribution patterns in both temperate and tropical latitudes. [4] [5] [6] With respect to disjunct populations of modern-day species, especially in birds, [7] [8] doubt has been cast on the validity of such inferences, as much of the differentiation between populations observed today may have occurred before or after their restriction to refugia. [9] [10] In contrast, isolated geographic locales that host one or more critically endangered species (regarded as paleoendemics or glacial relicts) are generally uncontested as bona fide glacial refugia. [11]

Contents

Identification

Traditionally, the identification of glacial refugia has occurred through palaeoecological analysis, which examines fossil organisms and their remains to determine the origins of modern taxa. [5]  For example, paleoecological approaches have been used to reconstruct the distributions of pollen in Europe for the 13,000 years since the last glaciation. Researchers in this case ultimately established the spread of forest trees from the mountainous southern fringe of Europe, which suggests that this area served as a glacial refugium during this time. [12]

Types

Four distinct types of glacial refugium have been identified:

Hot spring oases

This type of refugium is created by an influx of hydrothermal waters which maintains a humid and warm microclimate that allowed thermophilous trees like oak (Quercus), linden (Tilia), and common ash (Fraxinus excelsior) to survive the last ice age in Central Europe. [13]

Nunatak

A nunatak is a type of glacial refugium that is located on the snow-free, exposed peaks of mountains, which lie above the ice sheet during glaciations. [3] The identification of ‘diversity hotspots’ in areas, which should have been migration regions during major glacial episodes, is evidence for nunatak glacial refugia. [14] For example, the Monte Rosa mountain ranges, the Avers, and the Engadine and the Bernina are all floristically rich proposed nunatak regions, which are indicative nunatak glacial survival. [14]

Peripheral

Like nunataks, peripheral glacial refugia exist within mountain systems; they differ in that they are located at the borders of mountain systems. [3] Evidence for peripheral refugia can be found along the borders of the Carpathian Mountains, Pyrenees, and European Alps, all of which were once glaciated mountain systems. For example, using the amplified fragment length polymorphism (AFLP) technique, researchers have inferred survival of Phyteuma globulariifolium in peripheral refugia in the European Alps. [15]

Lowland

Peak glacial refuges eastern North America.jpg

Lowland glacial refugia, unlike nunatak and peripheral glacial refugia, are found at low elevations rather than in mountains. [3] Situated beyond the limits of ice shields, lowland refugia have been identified for a number of plant and animal species. In Europe, for example, researchers using allozyme analysis have been able to confirm the continuous distribution of Zygaena exulans in between the foothills of the Pyrenees and the Alps during the last ice age. [16]

In eastern North America, lowland glacial refugia along the Atlantic and Gulf Coasts host endemic plants — some of which are rare, even endangered, and others entail the most southerly disjunct populations of plants that commonly appear only hundreds of miles to the north. Major rivers draining southward from the Appalachian Mountains are associated with a gradation of paleoendemic tree species. These range from the extinct Critchfield spruce near the outlet of the Mississippi River, to extinct-in-the-wild Franklinia along the Altamaha River, to the critically endangered Florida torreya and Florida yew at the downstream end of the Chattahoochee River system. [11] [17] (See illustration at right.)

See also

Related Research Articles

<span class="mw-page-title-main">Beringia</span> Geographical region of Asia and North America currently partly submerged

Beringia is defined today as the land and maritime area bounded on the west by the Lena River in Russia; on the east by the Mackenzie River in Canada; on the north by 72° north latitude in the Chukchi Sea; and on the south by the tip of the Kamchatka Peninsula. It includes the Chukchi Sea, the Bering Sea, the Bering Strait, the Chukchi and Kamchatka Peninsulas in Russia as well as Alaska in the United States and the Yukon in Canada.

<i>Zelkova</i> Genus of trees

Zelkova is a genus of six species of deciduous trees in the elm family Ulmaceae, native to southern Europe, and southwest and eastern Asia. They vary in size from shrubs to large trees up to 35 m (115 ft) tall. The bark is smooth, dark brown. Unlike the elms, the branchlets are never corky or winged. The leaves are alternate, with serrated margins, and a symmetrical base to the leaf blade. The leaves are in two distinct rows; they have pinnate venation and each vein extends to the leaf margin, where it terminates in a tooth. There are two stipules at each node, though these are caducous, leaving a pair of scars at the leaf base. Zelkova is polygamous. Staminate flowers are clustered in the lower leaf axils of young branchlets; the perianth is campanulate, with four to six lobes, and the stamens are short. Pistillate and hermaphrodite flowers are solitary, or rarely in clusters of two to four, in the upper leaf axils of young branchlets. The fruit is a dry, nut-like drupe with a dorsal keel, produced singly in the leaf axils. The perianth and stigma are persistent.

<span class="mw-page-title-main">Last Glacial Period</span> Period of major glaciations of the Northern Hemisphere (115,000–12,000 years ago)

The Last Glacial Period (LGP), also known as the Last glacial cycle, occurred from the end of the Last Interglacial to the beginning of the Holocene, c. 115,000 – c. 11,700 years ago, and thus corresponds to most of the timespan of the Late Pleistocene.

<span class="mw-page-title-main">Endemism</span> Species unique to a natural location or habitat

Endemism is the state of a species being found only in a single defined geographic location, such as an island, state, nation, country or other defined zone; organisms that are indigenous to a place are not endemic to it if they are also found elsewhere. For example, the Cape sugarbird is found exclusively in southwestern South Africa and is therefore said to be endemic to that particular part of the world. An endemic species can also be referred to as an endemism or, in scientific literature, as an endemite. Similarly, many species found in the Western ghats of India are examples of endemism.

A glacial period is an interval of time within an ice age that is marked by colder temperatures and glacier advances. Interglacials, on the other hand, are periods of warmer climate between glacial periods. The Last Glacial Period ended about 15,000 years ago. The Holocene is the current interglacial. A time with no glaciers on Earth is considered a greenhouse climate state.

<span class="mw-page-title-main">Last Glacial Maximum</span> Circa 24,000–16,000 BCE; most recent era when ice sheets were at their greatest extent

The Last Glacial Maximum (LGM), also referred to as the Last Glacial Coldest Period, was the most recent time during the Last Glacial Period where ice sheets were at their greatest extent between 26,000 and 20,000 years ago. Ice sheets covered much of Northern North America, Northern Europe, and Asia and profoundly affected Earth's climate by causing a major expansion of deserts, along with a large drop in sea levels.

<span class="mw-page-title-main">Cordilleran ice sheet</span> Major ice sheet that periodically covered large parts of North America during glacial periods

The Cordilleran ice sheet was a major ice sheet that periodically covered large parts of North America during glacial periods over the last ~2.6 million years.

<span class="mw-page-title-main">Glacial lake</span> Lake formed by a melted glacier

A glacial lake is a body of water with origins from glacier activity. They are formed when a glacier erodes the land and then melts, filling the depression created by the glacier.

<span class="mw-page-title-main">Refugium (population biology)</span> Ecological concept

In biology, a refugium is a location which supports an isolated or relict population of a once more widespread species. This isolation (allopatry) can be due to climatic changes, geography, or human activities such as deforestation and overhunting.

<span class="mw-page-title-main">Mammoth steppe</span> Prehistoric biome

The mammoth steppe, also known as steppe-tundra, was once the Earth's most extensive biome. During glacial periods in the later Pleistocene it stretched east-to-west, from the Iberian Peninsula in the west of Europe, then across Eurasia and through Beringia and into the Yukon in northwest Canada; from north-to-south, the steppe reached from the Arctic southward to southern Europe, Central Asia and northern China. The mammoth steppe was cold and dry, and relatively featureless, though climate, topography, and geography varied considerably throughout. Certain areas of the biome—such as coastal areas—had wetter and milder climates than others. Some areas featured rivers which, through erosion, naturally created gorges, gulleys, or small glens. The continual glacial recession and advancement over millennia contributed more to the formation of larger valleys and different geographical features. Overall, however, the steppe is known to be flat and expansive grassland. The vegetation was dominated by palatable, high-productivity grasses, herbs and willow shrubs.

<span class="mw-page-title-main">Oldest Dryas</span> Abrupt climatic cooling event during the last glacial retreat

The Oldest Dryas is a biostratigraphic subdivision layer corresponding to a relatively abrupt climatic cooling event, or stadial, which occurred during the last glacial retreat. The time period to which the layer corresponds is poorly defined and varies between regions, but it is generally dated as starting at 18.5–17 thousand years (ka) before present (BP) and ending 15–14 ka BP. As with the Younger and Older Dryas events, the stratigraphic layer is marked by abundance of the pollen and other remains of Dryas octopetala, an indicator species that colonizes arctic-alpine regions. The termination of the Oldest Dryas is marked by an abrupt oxygen isotope excursion, which has been observed at many sites in the Alps that correspond to this interval of time.

<span class="mw-page-title-main">Glacier morphology</span> Geomorphology of glaciers

Glacier morphology, or the form a glacier takes, is influenced by temperature, precipitation, topography, and other factors. The goal of glacial morphology is to gain a better understanding of glaciated landscapes and the way they are shaped. Types of glaciers can range from massive ice sheets, such as the Greenland ice sheet, to small cirque glaciers found perched on mountain tops. Glaciers can be grouped into two main categories:

<span class="mw-page-title-main">Last Glacial Maximum refugia</span> Places of survival during glaciation

Last Glacial Maximum refugia were places (refugia) in which humans and other species survived during the Last Glacial Period, around 25,000 to 18,000 years ago. Glacial refugia are areas that climate changes were not as severe, and where species could recolonize after deglaciation.

<span class="mw-page-title-main">Montane ecosystems</span> Ecosystems found in mountains

Montane ecosystems are found on the slopes of mountains. The alpine climate in these regions strongly affects the ecosystem because temperatures fall as elevation increases, causing the ecosystem to stratify. This stratification is a crucial factor in shaping plant community, biodiversity, metabolic processes and ecosystem dynamics for montane ecosystems. Dense montane forests are common at moderate elevations, due to moderate temperatures and high rainfall. At higher elevations, the climate is harsher, with lower temperatures and higher winds, preventing the growth of trees and causing the plant community to transition to montane grasslands and shrublands or alpine tundra. Due to the unique climate conditions of montane ecosystems, they contain increased numbers of endemic species. Montane ecosystems also exhibit variation in ecosystem services, which include carbon storage and water supply.

<span class="mw-page-title-main">Paleoendemism</span>

Paleoendemism along with neoendemism is a possible subcategory of endemism. Paleoendemism refers to species that were formerly widespread but are now restricted to a smaller area. Neoendemism refers to species that have recently arisen, such as through divergence and reproductive isolation or through hybridization and polyploidy in plants.

The northern and southern hemispheres of the earth have a dynamic history of advancing and retreating ice sheets. The glacial and interglacial periods are linked to regular eccentricities in the Earth's orbit and correspond to approximately 100 kyr cycles. The advancing, or glacial periods can cause a massive displacement of flora and fauna as it drives them away from the poles, with the most recent glacial maximum having occurred about 20,000 years ago.,

<span class="mw-page-title-main">Llanquihue glaciation</span> Last glacial period in southern Chile

The last glacial period and its associated glaciation is known in southern Chile as the Llanquihue glaciation. Its type area lies west of Llanquihue Lake where various drifts or end moraine systems belonging to the last glacial period have been identified. The glaciation is the last episode of existence of the Patagonian Ice Sheet. Around Nahuel Huapi Lake the equivalent glaciation is known as the Nahuel Huapi Drift.

<span class="mw-page-title-main">Glacial survival hypothesis</span>

According to the northern cryptic glacial refugial hypothesis, during the last ice age cold tolerant plant and animal species persisted in ice-free microrefugia north of the Alps in Europe. The alternative hypothesis of no persistence and postglacial immigration of plants and animals from southern refugia in Europe is sometimes also called the tabula rasa hypothesis.

<span class="mw-page-title-main">Penultimate Glacial Period</span> Glacial age that occurred before the Last Glacial Period

The Penultimate Glacial Period (PGP) is the glacial period that occurred before the Last Glacial Period. The penultimate glacial period is officially unnamed just like the Last Glacial Period. The PGP lasted from ~194,000 years ago, to ~135,000 years ago, and was succeeded by the Last Interglacial. The PGP also occurred during Marine Isotope Stage 6 (MIS6). At the glacial ages' height, it is known to be the most extensive expansion of glaciers in the last 400,000 years over Eurasia, and could be the second or third coolest glacial period over the last 1,000,000 years, as shown by ice cores. Due to this, the global sea level dropped to between 92 and 150 metres below modern-day global mean sea level. The penultimate glacial period expanded ice sheets and shifted temperature zones worldwide, which had a variety of effects on the world's environment, and the organisms that lived in it. At its height, the penultimate glacial period was a more severe glaciation than the Last Glacial Maximum. The PGP covers the last period of the Saalian glaciation in Europe, called the Wolstonian Stage in Britain, and is equivalent to the Illinoian in North America.

<span class="mw-page-title-main">Glacial relict</span> Population of a cold-adapted species remaining after its glacier habitat has receded

A glacial relict is a population of a species that was common in the Northern Hemisphere prior to the onset of glaciation in the late Tertiary that was forced by climate change to retreat into refugia when continental ice sheets advanced. They are typically cold-adapted species with a distribution restricted to regions and microhabitats that allow them to survive despite climatic changes.

References

  1. Horsák, Michal; Limondin-Lozouet, Nicole; Juřičková, Lucie; Granai, Salomé; Horáčková, Jitka; Legentil, Claude; Ložek, Vojen (15 June 2019). "Holocene succession patterns of land snails across temperate Europe: East to west variation related to glacial refugia, climate and human impact". Palaeogeography, Palaeoclimatology, Palaeoecology . 524: 13–24. Bibcode:2019PPP...524...13H. doi:10.1016/j.palaeo.2019.03.028. S2CID   134640979 . Retrieved 14 November 2022.
  2. The encyclopedia of earth, http://www.eoearth.org/view/article/155685/
  3. 1 2 3 4 Holderegger, R., Thiel-Egenter, C. (2009): A discussion of different types of glacial refugia used in mountain biogeography and phytogeography. Journal of Biogeography 36, 476-480.
  4. Petit, Rémy J.; Aguinagalde, Itziar; Beaulieu, Jacques-Louis de; Bittkau, Christiane; Brewer, Simon; Cheddadi, Rachid; Ennos, Richard; Fineschi, Silvia; Grivet, Delphine (2003-06-06). "Glacial Refugia: Hotspots But Not Melting Pots of Genetic Diversity". Science. 300 (5625): 1563–1565. Bibcode:2003Sci...300.1563P. doi:10.1126/science.1083264. ISSN   0036-8075. PMID   12791991. S2CID   34876930.
  5. 1 2 PROVAN, J; BENNETT, K (2008-10-01). "Phylogeographic insights into cryptic glacial refugia". Trends in Ecology & Evolution. 23 (10): 564–571. Bibcode:2008TEcoE..23..564P. doi:10.1016/j.tree.2008.06.010. ISSN   0169-5347. PMID   18722689.
  6. Rull, Valentí (2011-10-01). "Neotropical biodiversity: timing and potential drivers". Trends in Ecology & Evolution. 26 (10): 508–513. Bibcode:2011TEcoE..26..508R. doi:10.1016/j.tree.2011.05.011. ISSN   0169-5347. PMID   21703715.
  7. Brumfield, Robb T. (2012-07-01). "Inferring the Origins of Lowland Neotropical Birds". The Auk. 129 (3): 367–376. doi: 10.1525/auk.2012.129.3.367 . ISSN   0004-8038. S2CID   83697136.
  8. Bermingham, E.; Rohwer, S.; Freeman, S.; Wood, C. (1992-07-15). "Vicariance biogeography in the Pleistocene and speciation in North American wood warblers: a test of Mengel's model". Proceedings of the National Academy of Sciences. 89 (14): 6624–6628. Bibcode:1992PNAS...89.6624B. doi: 10.1073/pnas.89.14.6624 . ISSN   0027-8424. PMC   49554 . PMID   11607307.
  9. Klicka, John; Zink, Robert M. (1997-09-12). "The Importance of Recent Ice Ages in Speciation: A Failed Paradigm". Science. 277 (5332): 1666–1669. doi:10.1126/science.277.5332.1666. ISSN   0036-8075.
  10. Colinvaux, P. A.; De Oliveira, P. E.; Bush, M. B. (2000-01-01). "Amazonian and neotropical plant communities on glacial time-scales: The failure of the aridity and refuge hypotheses". Quaternary Science Reviews. 19 (1–5): 141–169. Bibcode:2000QSRv...19..141C. doi:10.1016/S0277-3791(99)00059-1.
  11. 1 2 Delcourt, Hazel R; Delcourt, Paul A (October 1975). "The Blufflands: Pleistocene Pathways into the Tunica Hills". American Midland Naturalist. 94 (2): 385–400. doi:10.2307/2424434. JSTOR   2424434.
  12. Munaut, André-V. (May 1986). "An Atlas of past and present pollen maps of Europe: 0–13,000 years ago". Review of Palaeobotany and Palynology. 47 (3–4): 411–412. doi:10.1016/0034-6667(86)90044-8. ISSN   0034-6667.
  13. Hosek, Jan; et al. (31 May 2024). "Hot spring oases in the periglacial desert as the Last Glacial Maximum refugia for temperate trees in Central Europe". Science Advances. 10 (22): eado6611. Bibcode:2024SciA...10O6611H. doi:10.1126/sciadv.ado6611. PMC   11141633 . PMID   38820152.
  14. 1 2 Stehlik, Ivana (2000-06-01). Nunataks and peripheral refugia for alpine plants during quaternary glaciation in the middle part of the Alps. Birkhäuser. OCLC   753524599.
  15. Schönswetter, P.; Tribsch, A.; Barfuss, M.; Niklfeld, H. (December 2002). "Several Pleistocene refugia detected in the high alpine plant Phyteuma globulariifolium Sternb. & Hoppe (Campanulaceae) in the European Alps". Molecular Ecology. 11 (12): 2637–2647. Bibcode:2002MolEc..11.2637S. doi:10.1046/j.1365-294x.2002.01651.x. ISSN   0962-1083. PMID   12453246. S2CID   14302480.
  16. Schmitt, Thomas; Hewitt, Godfrey M. (2004-05-07). "Molecular biogeography of the arctic-alpine disjunct burnet moth species Zygaena exulans (Zygaenidae, Lepidoptera) in the Pyrenees and Alps". Journal of Biogeography. 31 (6): 885–893. Bibcode:2004JBiog..31..885S. doi:10.1111/j.1365-2699.2004.01079.x. ISSN   0305-0270. S2CID   86301042.
  17. Barlow, Connie. "Paleoecology and the Assisted Migration Debate: Why a Deep-Time Perspective Is Vital (Torreya taxifolia as exemplar)". Torreya Guardians. Retrieved 23 June 2022.