Latent extinction risk

Last updated

In conservation biology, latent extinction risk is a measure of the potential for a species to become threatened.

Contents

Latent risk can most easily be described as the difference, or discrepancy, between the current observed extinction risk of a species (typically as quantified by the IUCN Red List) and the theoretical extinction risk of a species predicted by its biological or life history characteristics. [1]

Calculation

Because latent risk is the discrepancy between current and predicted risks, estimates of both of these values are required (See population modeling and population dynamics). Once these values are known, the latent extinction risk can be calculated as Predicted Risk - Current Risk = Latent Extinction Risk.

When the latent extinction risk is a positive value, it indicates that a species is currently less threatened than its biology would suggest it ought to be. For example, a species may have several of the characteristics often found in threatened species, such as large body size, small geographic distribution, or low reproductive rate, but still be rated as "least concern" in the IUCN Red List. This may be because it has not yet been exposed to serious threatening processes such as habitat degradation.

Conversely, negative values of latent risk indicate that a species is already more threatened than its biology would indicate, probably because it inhabits a part of the world where it has been exposed to extreme endangering processes. Species with severely low negative values are usually listed as an endangered species and have associated recovery and conservation plans. [1]

Limits

One of the issues associated with latent extinction risk is its difficulty to calculate because of the limited availability of data for predicting extinction risk across large numbers of species. Hence, the only study of latent risk to date [1] has focused on mammals, which are one of the best-studied groups of organisms.

Effects on conservation

A study of latent extinction risk in mammals identified a number of "hotspots" where the average value of latent risk for mammal species was unusually high. [1] This study suggested that these areas represented an opportunity for proactive conservation efforts, because these could become the "future battlegrounds of mammal conservation" if levels of human impact increase. Unexpectedly, the hotspots of mammal latent risk include large areas of Arctic America, where overall mammal diversity is not high, but where many species have the kind of biological traits (such as large body size and slow reproductive rate) that could render them extinction-prone. Another notable region of high latent risk for mammals is the island chain of Indonesia and Melanesia, where there are large numbers of restricted-range endemic species.

Because it is much more cost-effective to prevent species declines before they happen than to attempt to rescue species from the brink of extinction, latent risk hotspots could form part of a global scheme to prioritize areas for conservation effort, together with other kinds of priority areas such as biodiversity hotspots.

[2] [3]

Related Research Articles

Small populations can behave differently from larger populations. They are often the result of population bottlenecks from larger populations, leading to loss of heterozygosity and reduced genetic diversity and loss or fixation of alleles and shifts in allele frequencies. A small population is then more susceptible to demographic and genetic stochastic events, which can impact the long-term survival of the population. Therefore, small populations are often considered at risk of endangerment or extinction, and are often of conservation concern.

<span class="mw-page-title-main">IUCN Red List</span> Inventory of the global conservation status of biological species

The International Union for Conservation of Nature (IUCN) Red List of Threatened Species, also known as the IUCN Red List or Red Data Book, founded in 1964, is an inventory of the global conservation status and extinction risk of biological species. A series of Regional Red Lists, which assess the risk of extinction to species within a political management unit, are also produced by countries and organizations.

<span class="mw-page-title-main">Conservation biology</span> Study of threats to biological diversity

Conservation biology is the study of the conservation of nature and of Earth's biodiversity with the aim of protecting species, their habitats, and ecosystems from excessive rates of extinction and the erosion of biotic interactions. It is an interdisciplinary subject drawing on natural and social sciences, and the practice of natural resource management.

<span class="mw-page-title-main">Habitat conservation</span> Management practice for protecting types of environments

Habitat conservation is a management practice that seeks to conserve, protect and restore habitats and prevent species extinction, fragmentation or reduction in range. It is a priority of many groups that cannot be easily characterized in terms of any one ideology.

<span class="mw-page-title-main">Vaquita</span> Species of porpoise

The vaquita is a species of porpoise endemic to the northern end of the Gulf of California in Baja California, Mexico. Reaching a maximum body length of 150 cm (4.9 ft) (females) or 140 cm (4.6 ft) (males), it is the smallest of all living cetaceans.

<span class="mw-page-title-main">Atlantic Forest</span> South American forest

The Atlantic Forest is a South American forest that extends along the Atlantic coast of Brazil from Rio Grande do Norte state in the northeast to Rio Grande do Sul state in the south and inland as far as Paraguay and the Misiones Province of Argentina, where the region is known as Selva Misionera.

Population viability analysis (PVA) is a species-specific method of risk assessment frequently used in conservation biology. It is traditionally defined as the process that determines the probability that a population will go extinct within a given number of years. More recently, PVA has been described as a marriage of ecology and statistics that brings together species characteristics and environmental variability to forecast population health and extinction risk. Each PVA is individually developed for a target population or species, and consequently, each PVA is unique. The larger goal in mind when conducting a PVA is to ensure that the population of a species is self-sustaining over the long term.

<span class="mw-page-title-main">Endemism</span> Species unique to a natural location or habitat

Endemism is the state of a species only being found in a single defined geographic location, such as an island, state, nation, country or other defined zone; organisms that are indigenous to a place are not endemic to it if they are also found elsewhere. For example, the Cape sugarbird is found exclusively in southwestern South Africa and is therefore said to be endemic to that particular part of the world. An endemic species can also be referred to as an endemism or, in scientific literature, as an endemite. Similarly many species found in the Western ghats of India are examples of endemism.

Coextinction and cothreatened refer to the phenomenon of the loss or decline of a host species resulting in the loss or endangerment of another species that depends on it, potentially leading to cascading effects across trophic levels. The term was originated by the authors Stork and Lyal (1993) and was originally used to explain the extinction of parasitic insects following the loss of their specific hosts. The term is now used to describe the loss of any interacting species, including competition with their counterpart, and specialist herbivores with their food source. Coextinction is especially common when a keystone species goes extinct.

<span class="mw-page-title-main">Wildlife conservation</span> Practice of protecting wild plant and animal species and their habitats

Wildlife conservation refers to the practice of protecting wild species and their habitats in order to maintain healthy wildlife species or populations and to restore, protect or enhance natural ecosystems. Major threats to wildlife include habitat destruction, degradation, fragmentation, overexploitation, poaching, pollution, climate change, and the illegal wildlife trade. The IUCN estimates that 42,100 species of the ones assessed are at risk for extinction. Expanding to all existing species, a 2019 UN report on biodiversity put this estimate even higher at a million species. It is also being acknowledged that an increasing number of ecosystems on Earth containing endangered species are disappearing. To address these issues, there have been both national and international governmental efforts to preserve Earth's wildlife. Prominent conservation agreements include the 1973 Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) and the 1992 Convention on Biological Diversity (CBD). There are also numerous nongovernmental organizations (NGO's) dedicated to conservation such as the Nature Conservancy, World Wildlife Fund, and Conservation International.

<span class="mw-page-title-main">Long-tailed mouse</span> Species of rodent

The long-tailed mouse is a native Australian mammal in the Order Rodentia and the Family Muridae. It is found only on the island of Tasmania. The long-tailed mouse is an omnivore that feeds on insects and a range of plants. It is found in forested areas, particularly in sub-alpine scree, and may live in burrows.

<span class="mw-page-title-main">Extinction risk from climate change</span> Risk of plant or animal species becoming extinct due to climate change

There are several plausible pathways that could lead to an increased extinction risk from climate change. Every plant and animal species has evolved to exist within a certain ecological niche. But climate change leads to changes of temperature and average weather patterns. These changes can push climatic conditions outside of the species' niche, and ultimately render it extinct. Normally, species faced with changing conditions can either adapt in place through microevolution or move to another habitat with suitable conditions. However, the speed of recent climate change is very fast. Due to this rapid change, for example cold-blooded animals may struggle to find a suitable habitat within 50 km of their current location at the end of this century.

<i>Threatened Species Protection Act 1995</i> Act of the Parliament of Tasmania, Australia

The Threatened Species Protection Act 1995, is an act of the Parliament of Tasmania that provides the statute relating to conservation of flora and fauna. Its long title is An Act to provide for the protection and management of threatened native flora and fauna and to enable and promote the conservation of native flora and fauna. It received the royal assent on 14 November 1995.

Extinction threshold is a term used in conservation biology to explain the point at which a species, population or metapopulation, experiences an abrupt change in density or number because of an important parameter, such as habitat loss. It is at this critical value below which a species, population, or metapopulation, will go extinct, though this may take a long time for species just below the critical value, a phenomenon known as extinction debt.

<span class="mw-page-title-main">Endangered species</span> Species of organisms facing a very high risk of extinction

An endangered species is a species that is very likely to become extinct in the near future, either worldwide or in a particular political jurisdiction. Endangered species may be at risk due to factors such as habitat loss, poaching, invasive species, and climate change. The International Union for Conservation of Nature (IUCN) Red List lists the global conservation status of many species, and various other agencies assess the status of species within particular areas. Many nations have laws that protect conservation-reliant species which, for example, forbid hunting, restrict land development, or create protected areas. Some endangered species are the target of extensive conservation efforts such as captive breeding and habitat restoration.

<span class="mw-page-title-main">Defaunation</span> Loss or extinctions of animals in the forests

Defaunation is the global, local, or functional extinction of animal populations or species from ecological communities. The growth of the human population, combined with advances in harvesting technologies, has led to more intense and efficient exploitation of the environment. This has resulted in the depletion of large vertebrates from ecological communities, creating what has been termed "empty forest". Defaunation differs from extinction; it includes both the disappearance of species and declines in abundance. Defaunation effects were first implied at the Symposium of Plant-Animal Interactions at the University of Campinas, Brazil in 1988 in the context of Neotropical forests. Since then, the term has gained broader usage in conservation biology as a global phenomenon.

In ecology, extinction debt is the future extinction of species due to events in the past. The phrases dead clade walking and survival without recovery express the same idea.

<span class="mw-page-title-main">Assisted migration</span> Intentional transport of species to a different habitat

Assisted migration is "the intentional establishment of populations or meta-populations beyond the boundary of a species' historic range for the purpose of tracking suitable habitats through a period of changing climate...." It is therefore a nature conservation tactic by which plants or animals are intentionally moved to geographic locations better suited to their present or future habitat needs and climate tolerances — and to which they are unable to migrate or disperse on their own.

Katherine Elizabeth Jones is a British biodiversity scientist, with a special interest in bats. She is Professor of Ecology and Biodiversity, and Director of the Biodiversity Modelling Research Group, at University College London. She is a past chair of the Bat Conservation Trust.

<span class="mw-page-title-main">Biodiversity loss</span> Extinction of species or loss of species in a given habitat

Biodiversity loss happens when plant or animal species disappear completely from Earth (extinction) or when there is a decrease or disappearance of species in a specific area. Biodiversity loss means that there is a reduction in biological diversity in a given area. The decrease can be temporary or permanent. It is temporary if the damage that led to the loss is reversible in time, for example through ecological restoration. If this is not possible, then the decrease is permanent. The cause of most of the biodiversity loss is, generally speaking, human activities that push the planetary boundaries too far. These activities include habitat destruction and land use intensification. Further problem areas are air and water pollution, over-exploitation, invasive species and climate change.

References

  1. 1 2 3 4 Cardillo, M.; Mace, G. M.; Gittleman, J. L.; Purvis, A. (2006), "Latent extinction risk and the future battlegrounds of mammal conservation", Proceedings of the National Academy of Sciences of the United States of America, 103 (11): 4157–61, Bibcode:2006PNAS..103.4157C, doi: 10.1073/pnas.0510541103 , PMC   1449663 , PMID   16537501 .
  2. Cardillo, M.; Mace, G. M.; Jones, K. E.; Bielby, J.; Bininda-Emonds, O. R. P.; Sechrest, W.; Orme, C. D. L.; Purvis, A. (2005), "Multiple causes of high extinction risk in large mammal species", Science, 309 (5738): 1239–41, Bibcode:2005Sci...309.1239C, CiteSeerX   10.1.1.327.7340 , doi:10.1126/science.1116030, PMID   16037416, S2CID   378183 .
  3. McKenzie, N. L.; Burbidge, A. A.; Baynes, A.; Brereton, R. N.; Dickman, C. R.; Gordon, G.; Gibson, L. A.; Menkhorst, P. W.; et al. (2007), "Analysis of factors implicated in the recent decline of Australia's mammal fauna", Journal of Biogeography, 34 (4): 597–611, doi:10.1111/j.1365-2699.2006.01639.x, S2CID   84254399 .