Genetic erosion

Last updated

Genetic erosion (also known as genetic depletion) is a process where the limited gene pool of an endangered species diminishes even more when reproductive individuals die off before reproducing with others in their endangered low population. The term is sometimes used in a narrow sense, such as when describing the loss of particular alleles or genes, as well as being used more broadly, as when referring to the loss of a phenotype or whole species.

Contents

Genetic erosion occurs because each individual organism has many unique genes which get lost when it dies without getting a chance to breed. Low genetic diversity in a population of wild animals and plants leads to a further diminishing gene pool – inbreeding and a weakening immune system can then "fast-track" that species towards eventual extinction.

By definition, endangered species suffer varying degrees of genetic erosion. Many species benefit from a human-assisted breeding program to keep their population viable,[ citation needed ] thereby avoiding extinction over long time-frames. Small populations are more susceptible to genetic erosion than larger populations.

Genetic erosion gets compounded and accelerated by habitat loss and habitat fragmentation  – many endangered species are threatened by habitat loss and (fragmentation) habitat. Fragmented habitat create barriers in gene flow between populations.

The gene pool of a species or a population is the complete set of unique alleles that would be found by inspecting the genetic material of every living member of that species or population. A large gene pool indicates extensive genetic diversity, which is associated with robust populations that can survive bouts of intense selection. Meanwhile, low genetic diversity (see inbreeding and population bottlenecks) can cause reduced biological fitness and increase the chance of extinction of that species or population.

Processes and consequences

Population bottlenecks create shrinking gene pools, which leave fewer and fewer fertile mating partners. The genetic implications can be illustrated by considering the analogy of a high-stakes poker game with a crooked dealer. Consider that the game begins with a 52-card deck (representing high genetic diversity). Reduction of the number of breeding pairs with unique genes resembles the situation where the dealer deals only the same five cards over and over, producing only a few limited "hands".

As specimens begin to inbreed, both physical and reproductive congenital effects and defects appear more often. Abnormal sperm increases, infertility rises, and birthrates decline. "Most perilous are the effects on the immune defense systems, which become weakened and less and less able to fight off an increasing number of bacterial, viral, fungal, parasitic, and other disease-producing threats. Thus, even if an endangered species in a bottleneck can withstand whatever human development may be eating away at its habitat, it still faces the threat of an epidemic that could be fatal to the entire population." [1]

Loss of agricultural and livestock biodiversity

Genetic erosion in agricultural and livestock is the loss of biological genetic diversity – including the loss of individual genes, and the loss of particular recombinants of genes (or gene complexes) – such as those manifested in locally adapted landraces of domesticated animals or plants that have become adapted to the natural environment in which they originated.

The major driving forces behind genetic erosion in crops are variety replacement, land clearing, overexploitation of species, population pressure, environmental degradation, overgrazing, governmental policy, and changing agricultural systems. The main factor, however, is the replacement of local varieties of domestic plants and animals by other varieties or species that are non-local. A large number of varieties can also often be dramatically reduced when commercial varieties are introduced into traditional farming systems. Many researchers believe that the main problem related to agro-ecosystem management is the general tendency towards genetic and ecological uniformity imposed by the development of modern agriculture.

In the case of Animal Genetic Resources for Food and Agriculture, major causes of genetic erosion are reported to include indiscriminate cross-breeding, increased use of exotic breeds, weak policies and institutions in animal genetic resources management, neglect of certain breeds because of a lack of profitability or competitiveness, the intensification of production systems, the effects of diseases and disease management, loss of pastures or other elements of the production environment, and poor control of inbreeding. [2]

Prevention by human intervention, modern science and safeguards

In situ conservation

With advances in modern bioscience, several techniques and safeguards have emerged to check the relentless advance of genetic erosion and the resulting acceleration of endangered species towards eventual extinction. However, many of these techniques and safeguards are too expensive yet to be practical, and so the best way to protect species is to protect their habitat and to let them live in it as naturally as possible. Complicating matters, the conservation of substantial amounts of genetic diversity often requires the maintenance of multiple independent populations across a species distribution. [3] For example, to conserve at least 90% of the genetic diversity of the northern quoll requires the conservation of at least eight populations across the continent of Australia. [3]

Wildlife sanctuaries and national parks have been created to preserve entire ecosystems with all the web of species native to the area. Wildlife corridors are created to join fragmented habitats (see Habitat fragmentation) to enable endangered species to travel, meet, and breed with others of their kind. Scientific conservation and modern wildlife management techniques, with the expertise of scientifically trained staff, help manage these protected ecosystems and the wildlife found in them. Wild animals are also translocated and reintroduced to other locations physically when fragmented wildlife habitats are too far and isolated to be able to link together via a wildlife corridor, or when local extinctions have already occurred.

Ex situ conservation

Modern policies of zoo associations and zoos around the world have begun putting dramatically increased emphasis on keeping and breeding wild-sourced species and subspecies of animals in their registered endangered species breeding programs. These specimens are intended to have a chance to be reintroduced and survive back in the wild. The main objectives of zoos today have changed, and greater resources are being invested in breeding species and subspecies for then ultimate purpose of assisting conservation efforts in the wild. Zoos do this by maintaining extremely detailed scientific breeding records (i.e. studbooks)) and by loaning their wild animals to other zoos around the country (and often globally) for breeding, to safeguard against inbreeding by attempting to maximize genetic diversity however possible.

Costly (and sometimes controversial) ex-situ conservation techniques aim to increase the genetic biodiversity on our planet, as well as the diversity in local gene pools. by guarding against genetic erosion. Modern concepts like seedbanks, sperm banks, and tissue banks have become much more commonplace and valuable. Sperm, eggs, and embryos can now be frozen and kept in banks, which are sometimes called "Modern Noah's Arks" or "Frozen Zoos". Cryopreservation techniques are used to freeze these living materials and keep them alive in perpetuity by storing them submerged in liquid nitrogen tanks at very low temperatures. Thus, preserved materials can then be used for artificial insemination, in vitro fertilization, embryo transfer, and cloning methodologies to protect diversity in the gene pool of critically endangered species.

It can be possible to save an endangered species from extinction by preserving only parts of specimens, such as tissues, sperm, eggs, etc. – even after the death of a critically endangered animal, or collected from one found freshly dead, in captivity or from the wild. A new specimen can then be "resurrected" with the help of cloning, so as to give it another chance to breed its genes into the living population of the respective threatened species. Resurrection of dead critically endangered wildlife specimens with the help of cloning is still being perfected, and is still too expensive to be practical, but with time and further advancements in science and methodology it may well become a routine procedure not too far into the future.

Recently, strategies for finding an integrated approach to in situ and ex situ conservation techniques have been given considerable attention, and progress is being made. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Bongo (antelope)</span> Species of mammal

The bongo is a large, mostly nocturnal, forest-dwelling antelope, native to sub-Saharan Africa. Bongos are characterised by a striking reddish-brown coat, black and white markings, white-yellow stripes, and long slightly spiralled horns. It is the only tragelaphid in which both sexes have horns. Bongos have a complex social interaction and are found in African dense forest mosaics. They are the third-largest antelope in the world.

<span class="mw-page-title-main">Inbreeding</span> Reproduction by closely related organisms

Inbreeding is the production of offspring from the mating or breeding of individuals or organisms that are closely related genetically. By analogy, the term is used in human reproduction, but more commonly refers to the genetic disorders and other consequences that may arise from expression of deleterious recessive traits resulting from incestuous sexual relationships and consanguinity. Animals avoid incest only rarely.

<span class="mw-page-title-main">Przewalski's horse</span> Subspecies of mammal

Przewalski's horse, also called the takhi, Mongolian wild horse or Dzungarian horse, is a rare and endangered horse originally native to the steppes of Central Asia. It is named after the Russian geographer and explorer Nikolay Przhevalsky. Once extinct in the wild, since the 1990s it has been reintroduced to its native habitat in Mongolia in the Khustain Nuruu National Park, Takhin Tal Nature Reserve, and Khomiin Tal, as well as several other locales in Central Asia and Eastern Europe.

Small populations can behave differently from larger populations. They are often the result of population bottlenecks from larger populations, leading to loss of heterozygosity and reduced genetic diversity and loss or fixation of alleles and shifts in allele frequencies. A small population is then more susceptible to demographic and genetic stochastic events, which can impact the long-term survival of the population. Therefore, small populations are often considered at risk of endangerment or extinction, and are often of conservation concern.

<i>Ex situ</i> conservation Preservation of plants or animals outside their natural habitats

Ex situ conservation is the process of protecting an endangered species, variety or breed, of plant or animal outside its natural habitat. For example, by removing part of the population from a threatened habitat and placing it in a new location, an artificial environment which is similar to the natural habitat of the respective animal and within the care of humans, such as a zoological park or wildlife sanctuary. The degree to which humans control or modify the natural dynamics of the managed population varies widely, and this may include alteration of living environments, reproductive patterns, access to resources, and protection from predation and mortality.

<span class="mw-page-title-main">Population bottleneck</span> Effects of a sharp reduction in numbers on the diversity and robustness of a population

A population bottleneck or genetic bottleneck is a sharp reduction in the size of a population due to environmental events such as famines, earthquakes, floods, fires, disease, and droughts; or human activities such as genocide, specicide, widespread violence or intentional culling. Such events can reduce the variation in the gene pool of a population; thereafter, a smaller population, with a smaller genetic diversity, remains to pass on genes to future generations of offspring. Genetic diversity remains lower, increasing only when gene flow from another population occurs or very slowly increasing with time as random mutations occur. This results in a reduction in the robustness of the population and in its ability to adapt to and survive selecting environmental changes, such as climate change or a shift in available resources. Alternatively, if survivors of the bottleneck are the individuals with the greatest genetic fitness, the frequency of the fitter genes within the gene pool is increased, while the pool itself is reduced.

<span class="mw-page-title-main">Gene flow</span> Transfer of genetic variation from one population to another

In population genetics, gene flow is the transfer of genetic material from one population to another. If the rate of gene flow is high enough, then two populations will have equivalent allele frequencies and therefore can be considered a single effective population. It has been shown that it takes only "one migrant per generation" to prevent populations from diverging due to drift. Populations can diverge due to selection even when they are exchanging alleles, if the selection pressure is strong enough. Gene flow is an important mechanism for transferring genetic diversity among populations. Migrants change the distribution of genetic diversity among populations, by modifying allele frequencies. High rates of gene flow can reduce the genetic differentiation between the two groups, increasing homogeneity. For this reason, gene flow has been thought to constrain speciation and prevent range expansion by combining the gene pools of the groups, thus preventing the development of differences in genetic variation that would have led to differentiation and adaptation. In some cases dispersal resulting in gene flow may also result in the addition of novel genetic variants under positive selection to the gene pool of a species or population

<span class="mw-page-title-main">Genetic diversity</span> Total number of genetic characteristics in a species

Genetic diversity is the total number of genetic characteristics in the genetic makeup of a species, it ranges widely from the number of species to differences within species and can be attributed to the span of survival for a species. It is distinguished from genetic variability, which describes the tendency of genetic characteristics to vary.

<span class="mw-page-title-main">Habitat fragmentation</span> Discontinuities in an organisms environment causing population fragmentation.

Habitat fragmentation describes the emergence of discontinuities (fragmentation) in an organism's preferred environment (habitat), causing population fragmentation and ecosystem decay. Causes of habitat fragmentation include geological processes that slowly alter the layout of the physical environment, and human activity such as land conversion, which can alter the environment much faster and causes the extinction of many species. More specifically, habitat fragmentation is a process by which large and contiguous habitats get divided into smaller, isolated patches of habitats.

<span class="mw-page-title-main">Conservation genetics</span> Interdisciplinary study of extinction avoidance

Conservation genetics is an interdisciplinary subfield of population genetics that aims to understand the dynamics of genes in a population for the purpose of natural resource management, conservation of genetic diversity, and the prevention of species extinction. Scientists involved in conservation genetics come from a variety of fields including population genetics, research in natural resource management, molecular ecology, molecular biology, evolutionary biology, and systematics. The genetic diversity within species is one of the three fundamental components of biodiversity, so it is an important consideration in the wider field of conservation biology.

Genetic viability is the ability of the genes present to allow a cell, organism or population to survive and reproduce. The term is generally used to mean the chance or ability of a population to avoid the problems of inbreeding. Less commonly genetic viability can also be used in respect to a single cell or on an individual level.

<span class="mw-page-title-main">Captive breeding</span> Of wild organisms, by humans

Captive breeding, also known as captive propagation, is the process of keeping plants or animals in controlled environments, such as wildlife reserves, zoos, botanic gardens, and other conservation facilities. It is sometimes employed to help species that are being threatened by the effects of human activities such as climate change, habitat loss, fragmentation, overhunting or fishing, pollution, predation, disease, and parasitism.

<span class="mw-page-title-main">Wildlife tourism</span>

Wildlife tourism is an element of many nations' travel industry centered around observation and interaction with local animal and plant life in their natural habitats. While it can include eco- and animal-friendly tourism, safari hunting and similar high-intervention activities also fall under the umbrella of wildlife tourism. Wildlife tourism, in its simplest sense, is interacting with wild animals in their natural habitat, either by actively or passively. Wildlife tourism is an important part of the tourism industries in many countries including many African and South American countries, Australia, India, Canada, Indonesia, Bangladesh, Malaysia, Sri Lanka and Maldives among many. It has experienced a dramatic and rapid growth in recent years worldwide and many elements are closely aligned to eco-tourism and sustainable tourism.

<span class="mw-page-title-main">Cheetah Conservation Fund</span> Non-profit organisation based in Namibia

The Cheetah Conservation Fund is a research and lobby institution in Namibia concerned with the study and sustenance of the country's cheetah population, the largest and healthiest in the world. Its Research and Education Centre is located 44 kilometres (27 mi) east of Otjiwarongo. The CCF was founded in 1990 by conservation biologist Laurie Marker who won the 2010 Tyler Prize for her efforts in Namibia.

A frozen zoo is a storage facility in which genetic materials taken from animals are stored at very low temperatures (−196 °C) in tanks of liquid nitrogen. Material preserved in this way can be stored indefinitely and used for artificial insemination, in vitro fertilization, embryo transfer, and cloning. There are a few frozen zoos across the world that implement this technology for conservation efforts. Several different species have been introduced to this technology, including the Pyrenean ibex, Black-footed ferret, and potentially the white rhinoceros.

The EAZA Ex-situ Programme (EEP) is a population management and conservation programme by European Association of Zoos and Aquaria (EAZA) for wild animals living in European zoos. The programme was formerly known as the European Endangered Species Programme.

<span class="mw-page-title-main">Endangered species</span> Species of organisms facing a very high risk of extinction

An endangered species is a species that is very likely to become extinct in the near future, either worldwide or in a particular political jurisdiction. Endangered species may be at risk due to factors such as habitat loss, poaching, and invasive species. The International Union for Conservation of Nature (IUCN) Red List lists the global conservation status of many species, and various other agencies assess the status of species within particular areas. Many nations have laws that protect conservation-reliant species which, for example, forbid hunting, restrict land development, or create protected areas. Some endangered species are the target of extensive conservation efforts such as captive breeding and habitat restoration.

<span class="mw-page-title-main">Persian fallow deer</span> Species of deer

The Persian fallow deer is a deer species once native to all of the Middle East, but currently only living in Iran and Israel. It was reintroduced in Israel. It has been listed as endangered on the IUCN Red List since 2008. After a captive breeding program, the population has rebounded from only a handful of deer in the 1960s to over a thousand individuals.

<span class="mw-page-title-main">Popular sire effect</span>

The popular sire effect occurs when an animal with desirable attributes is bred repeatedly. In dog breeding, a male dog that wins respected competitions becomes highly sought after, as breeders believe the sire possesses the genes necessary to produce champions. However, the popular sire effect is not just down to wanting to produce a champion. For example, in Staffordshire Bull Terriers there are several popular sires who are used by breeders to produce specific colours that are not favoured in the show ring. The popular sire is often bred extensively with many females. This can cause undetected, undesirable genetic traits in the stud to spread rapidly within the gene pool. It can also reduce genetic diversity by the exclusion of other males.

<span class="mw-page-title-main">De-extinction</span> Process of re-creating an extinct species

De-extinction is the process of generating an organism that either resembles or is an extinct species. There are several ways to carry out the process of de-extinction. Cloning is the most widely proposed method, although genome editing and selective breeding have also been considered. Similar techniques have been applied to certain endangered species, in hopes to boost their genetic diversity. The only method of the three that would provide an animal with the same genetic identity is cloning. There are benefits and drawbacks to the process of de-extinction ranging from technological advancements to ethical issues.

References

  1. Stephen J. O'Brien, Chief, Laboratory of Viral Carcinogenesis, National Cancer Institute (April 1992). "GENETIC EROSION A Global Dilemma". National Geographic. Posted online by Oslo Cyclotron Laboratory at the Department of Physics, UiO; The University of Oslo in Norway: 136. Archived from the original on 12 October 2007. Retrieved 20 October 2007. A population bottleneck creates a shrinking gene pool that leaves fewer and fewer mating partners. What are the genetic implications? The animals become part of a high stakes poker game – with a crooked dealer. After beginning with a 52-card deck, the players wind up with, say, five cards that they are dealt over and over. As they begin to inbreed, congenital effects appear, both physical and reproductive. Often abnormal sperm increase; infertility rises; the birthrate falls. Most perilous in the long run, each animal's immune defense system is weakened. Thus, even if an endangered species in a bottleneck can withstand whatever human development may be eating away at its habitat, it still faces the threat of an epidemic that could well be fatal to the entire population.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  2. FAO (2015). The Second Report on the State of the World's Animal Genetic Resources for Food and Agriculture.
  3. 1 2 von Takach, Brenton; Cameron, Skye F.; Cremona, Teigan; Eldridge, Mark D. B.; Fisher, Diana O.; Hohnen, Rosemary; Jolly, Chris J.; Kelly, Ella; Phillips, Ben L.; Radford, Ian J.; Rick, Kate; Spencer, Peter B. S.; Trewella, Gavin J.; Umbrello, Linette S.; Banks, Sam C. (2024-03-01). "Conservation prioritisation of genomic diversity to inform management of a declining mammal species". Biological Conservation. 291: 110467. doi: 10.1016/j.biocon.2024.110467 . ISSN   0006-3207.
  4. See DIVERSEEDS online discussion [ permanent dead link ] forum on the integrated approach.[ dead link ]