Canalisation (genetics)

Last updated

Norms of reaction for two genotypes. Genotype B shows a strongly bimodal distribution indicating differentiation into distinct phenotypes. Each phenotype that results from genotype A is buffered against environmental variation--it is canalised. Trait-scale-bimodal.png
Norms of reaction for two genotypes. Genotype B shows a strongly bimodal distribution indicating differentiation into distinct phenotypes. Each phenotype that results from genotype A is buffered against environmental variation—it is canalised.

Canalisation is a measure of the ability of a population to produce the same phenotype regardless of variability of its environment or genotype. It is a form of evolutionary robustness. The term was coined in 1942 by C. H. Waddington to capture the fact that "developmental reactions, as they occur in organisms submitted to natural selection...are adjusted so as to bring about one definite end-result regardless of minor variations in conditions during the course of the reaction". [1] He used this word rather than robustness to consider that biological systems are not robust in quite the same way as, for example, engineered systems.

Contents

Biological robustness or canalisation comes about when developmental pathways are shaped by evolution. Waddington introduced the concept of the epigenetic landscape, in which the state of an organism rolls "downhill" during development. In this metaphor, a canalised trait is illustrated as a valley (which he called a creode) enclosed by high ridges, safely guiding the phenotype to its "fate". Waddington claimed that canals form in the epigenetic landscape during evolution, and that this heuristic is useful for understanding the unique qualities of biological robustness. [2]

Genetic assimilation

Waddington used the concept of canalisation to explain his experiments on genetic assimilation. [3] In these experiments, he exposed Drosophila pupae to heat shock. This environmental disturbance caused some flies to develop a crossveinless phenotype. He then selected for crossveinless. Eventually, the crossveinless phenotype appeared even without heat shock. Through this process of genetic assimilation, an environmentally induced phenotype had become inherited. Waddington explained this as the formation of a new canal in the epigenetic landscape.

It is, however, possible to explain genetic assimilation using only quantitative genetics and a threshold model, with no reference to the concept of canalisation. [4] [5] [6] [7] However, theoretical models that incorporate a complex genotype–phenotype map have found evidence for the evolution of phenotypic robustness [8] contributing to genetic assimilation, [9] even when selection is only for developmental stability and not for a particular phenotype, and so the quantitative genetics models do not apply. These studies suggest that the canalisation heuristic may still be useful, beyond the more simple concept of robustness.

Congruence hypothesis

Neither canalisation nor robustness are simple quantities to quantify: it is always necessary to specify which trait is canalised (robust) to which perturbations. For example, perturbations can come either from the environment or from mutations. It has been suggested that different perturbations have congruent effects on development taking place on an epigenetic landscape. [10] [11] [12] [13] [14] This could, however, depend on the molecular mechanism responsible for robustness, and be different in different cases. [15]

Evolutionary capacitance

The canalisation metaphor suggests that some phenotypic traits are very robust to small perturbations, for which development does not exit the canal, and rapidly returns down, with little effect on the final outcome of development. But perturbations whose magnitude exceeds a certain threshold will break out of the canal, moving the developmental process into uncharted territory. For instance, the study of an allelic series for Fgf8, an important gene for craniofacial development, with decreasing levels of gene expression demonstrated that the phenotype remains canalised as long as the expression level is above 40% of the wild-type expression. [16]

Strong robustness up to a limit, with little robustness beyond, is a pattern that could increase evolvability in a fluctuating environment. [17] Canalisation of a large set of genotypes into a limited phenotypic space has been suggested as a mechanism for the accumulation, in a neutral manner, of mutations that could otherwise be deleterious. [18] Genetic canalisation could allow for evolutionary capacitance, where genetic diversity accumulates in a population over time, sheltered from natural selection because it does not normally affect phenotypes. This hidden diversity could then be unleashed by extreme changes in the environment or by molecular switches, releasing previously cryptic genetic variation that can then contribute to a rapid burst of evolution, [18] a phenomenon termed decanalisation. Cycles of canalization-decanalization could explain the alternating periods of stasis, where genotypic diversity accumulates without morphological changes, followed by rapid morphological changes, where decanalization releases the phenotypic diversity and becomes subject to natural selection, in the fossil record, thus providing a potential developmental explanation for the punctuated equilibrium. [17]

HSP90 and decanalisation

In 1998, Susan Lindquist discovered that Drosophila hsp83 heterozygous mutants exhibit a large diversity of phenotypes (from sexual combs on the head, to scutoid-like and notched wings phenotypes). She showed that these phenotypes could be passed on to the next generation, suggesting a genetic basis for those phenotypes. [19] The authors hypothesized that Hsp90 (the gene mutated in hsp83), as a chaperone protein, plays a pivotal role in the folding and activation of many proteins involved in developmental signaling pathways, thus buffering against genetic variation in those pathways. [20] hsp83 mutants would therefore release the cryptic genetic variation, resulting in a diversity of phenotypes.

In 2002, Lindquist showed that pharmacological inhibition of HSP90 in Arabidopsis thaliana also lead to a wide range of phenotypes, some of which could be considered adaptive, further supporting the canalising role of HSP90. [21]

Finally, the same type of experiment in the cavefish Astyanax mexicanus yielded similar results. This species encompasses two populations: an eyed population living under the water surface and an eye-less blind population living in caves. Not only is the cave population eye-less but it also displays a largely reduced orbit size. HSP90 inhibition leads to an increased variation in orbit size that could explain how this trait could evolve in just a few generations. Further analysis showed that low conductivity in the cave water induces a stress response mimicking the inhibition of HSP90, providing a mechanism for decanalisation. [22]

It is worth noting that interpretation of the original Drosophila paper [19] is now subject to controversy. Molecular analysis of the hsp83 mutant showed that HSP90 is required for piRNA biogenesis, a set of small RNAs repressing transposons in the germline., [23] causing massive transposon [24] insertional mutagenesis that could explain the phenotypic diversification. [25]

Significance of Variability in Components

Understanding variability is an important aspect of comprehending natural selection and mutations. Variability can be classified into two categories: modulating phenotypic variation and modulating the phenotypes that are produced. [26] The presence of this so-called bias in genetic variability allows us to gain further insights into how certain phenotypes are more successful in terms of their actual morphology, biochemical makeup, or behavior. [27] It is scientifically known that organisms need to develop systematically integrated systems in order to thrive in their specific ecosystems. This extends to morphology, where variations must occur in a systematic order; otherwise, phenotypic mutations will not persist due to the occurrence of natural selection. The variation affects the speed and rate of evolutionary change through the selection and modulation of phenotypic variations. [28] Ultimately, this results in a lower amount of diversity observed throughout evolution, as the majority of phenotypes do not persist beyond a few generations due to their inferior morphology, biochemical makeup, or physical movement or appearance.

See also

Related Research Articles

<span class="mw-page-title-main">Phenotype</span> Composite of the organisms observable characteristics or traits

In genetics, the phenotype is the set of observable characteristics or traits of an organism. The term covers the organism's morphology, its developmental processes, its biochemical and physiological properties, its behavior, and the products of behavior. An organism's phenotype results from two basic factors: the expression of an organism's genetic code and the influence of environmental factors. Both factors may interact, further affecting the phenotype. When two or more clearly different phenotypes exist in the same population of a species, the species is called polymorphic. A well-documented example of polymorphism is Labrador Retriever coloring; while the coat color depends on many genes, it is clearly seen in the environment as yellow, black, and brown. Richard Dawkins in 1978 and then again in his 1982 book The Extended Phenotype suggested that one can regard bird nests and other built structures such as caddisfly larva cases and beaver dams as "extended phenotypes".

<span class="mw-page-title-main">Genotype–phenotype distinction</span> Distinction made in genetics

The genotype–phenotype distinction is drawn in genetics. The "Genotype" is an organism's full hereditary information. The "Phenotype" is an organism's actual observed properties, such as morphology, development, or behavior. This distinction is fundamental in the study of inheritance of traits and their evolution.

Molecular evolution is the process of change in the sequence composition of cellular molecules such as DNA, RNA, and proteins across generations. The field of molecular evolution uses principles of evolutionary biology and population genetics to explain patterns in these changes. Major topics in molecular evolution concern the rates and impacts of single nucleotide changes, neutral evolution vs. natural selection, origins of new genes, the genetic nature of complex traits, the genetic basis of speciation, the evolution of development, and ways that evolutionary forces influence genomic and phenotypic changes.

Population genetics is a subfield of genetics that deals with genetic differences within and among populations, and is a part of evolutionary biology. Studies in this branch of biology examine such phenomena as adaptation, speciation, and population structure.

<span class="mw-page-title-main">Directional selection</span> Type of genetic selection favoring one extreme phenotype

In population genetics, directional selection is a type of natural selection in which one extreme phenotype is favored over both the other extreme and moderate phenotypes. This genetic selection causes the allele frequency to shift toward the chosen extreme over time as allele ratios change from generation to generation. The advantageous extreme allele will increase as a consequence of survival and reproduction differences among the different present phenotypes in the population. The allele fluctuations as a result of directional selection can be independent of the dominance of the allele, and in some cases if the allele is recessive, it can eventually become fixed in the population.

Evolvability is defined as the capacity of a system for adaptive evolution. Evolvability is the ability of a population of organisms to not merely generate genetic diversity, but to generate adaptive genetic diversity, and thereby evolve through natural selection.

<span class="mw-page-title-main">Baldwin effect</span> Effect of learned behavior on evolution

In evolutionary biology, the Baldwin effect describes an effect of learned behaviour on evolution. James Mark Baldwin and others suggested that an organism's ability to learn new behaviours will affect its reproductive success and will therefore have an effect on the genetic makeup of its species through natural selection. It posits that subsequent selection might reinforce the originally learned behaviors, if adaptive, into more in-born, instinctive ones. Though this process appears similar to Lamarckism, that view proposes that living things inherited their parents' acquired characteristics. The Baldwin effect only posits that learning ability, which is genetically based, is another variable in / contributor to environmental adaptation. First proposed during the Eclipse of Darwinism in the late 19th century, this effect has been independently proposed several times, and today it is generally recognized as part of the modern synthesis.

<span class="mw-page-title-main">C. H. Waddington</span> British biologist

Conrad Hal Waddington was a British developmental biologist, paleontologist, geneticist, embryologist and philosopher who laid the foundations for systems biology, epigenetics, and evolutionary developmental biology.

Forward genetics is a molecular genetics approach of determining the genetic basis responsible for a phenotype. Forward genetics provides an unbiased approach because it relies heavily on identifying the genes or genetic factors that cause a particular phenotype or trait of interest.

Genetic architecture is the underlying genetic basis of a phenotypic trait and its variational properties. Phenotypic variation for quantitative traits is, at the most basic level, the result of the segregation of alleles at quantitative trait loci (QTL). Environmental factors and other external influences can also play a role in phenotypic variation. Genetic architecture is a broad term that can be described for any given individual based on information regarding gene and allele number, the distribution of allelic and mutational effects, and patterns of pleiotropy, dominance, and epistasis.

<span class="mw-page-title-main">Pleiotropy</span> Influence of a single gene on multiple phenotypic traits

Pleiotropy occurs when one gene influences two or more seemingly unrelated phenotypic traits. Such a gene that exhibits multiple phenotypic expression is called a pleiotropic gene. Mutation in a pleiotropic gene may have an effect on several traits simultaneously, due to the gene coding for a product used by a myriad of cells or different targets that have the same signaling function.

Evolutionary capacitance is the storage and release of variation, just as electric capacitors store and release charge. Living systems are robust to mutations. This means that living systems accumulate genetic variation without the variation having a phenotypic effect. But when the system is disturbed, robustness breaks down, and the variation has phenotypic effects and is subject to the full force of natural selection. An evolutionary capacitor is a molecular switch mechanism that can "toggle" genetic variation between hidden and revealed states. If some subset of newly revealed variation is adaptive, it becomes fixed by genetic assimilation. After that, the rest of variation, most of which is presumably deleterious, can be switched off, leaving the population with a newly evolved advantageous trait, but no long-term handicap. For evolutionary capacitance to increase evolvability in this way, the switching rate should not be faster than the timescale of genetic assimilation.

Genetic assimilation is a process described by Conrad H. Waddington by which a phenotype originally produced in response to an environmental condition, such as exposure to a teratogen, later becomes genetically encoded via artificial selection or natural selection. Despite superficial appearances, this does not require the (Lamarckian) inheritance of acquired characters, although epigenetic inheritance could potentially influence the result. Waddington stated that genetic assimilation overcomes the barrier to selection imposed by what he called canalization of developmental pathways; he supposed that the organism's genetics evolved to ensure that development proceeded in a certain way regardless of normal environmental variations.

Developmental noise or stochastic noise is a concept within developmental biology in which the observable characteristics or traits (phenotype) varies between individuals even though both individuals share the same genetic code (genotypes) and the other environmental factors are completely the same. Factors that influence the effect include stochastic, or randomized, gene expression and other cellular noise.

<span class="mw-page-title-main">Robustness (evolution)</span> Persistence of a biological trait under uncertain conditions

In evolutionary biology, robustness of a biological system is the persistence of a certain characteristic or trait in a system under perturbations or conditions of uncertainty. Robustness in development is known as canalization. According to the kind of perturbation involved, robustness can be classified as mutational, environmental, recombinational, or behavioral robustness etc. Robustness is achieved through the combination of many genetic and molecular mechanisms and can evolve by either direct or indirect selection. Several model systems have been developed to experimentally study robustness and its evolutionary consequences.

The Extended Evolutionary Synthesis (EES) consists of a set of theoretical concepts argued to be more comprehensive than the earlier modern synthesis of evolutionary biology that took place between 1918 and 1942. The extended evolutionary synthesis was called for in the 1950s by C. H. Waddington, argued for on the basis of punctuated equilibrium by Stephen Jay Gould and Niles Eldredge in the 1980s, and was reconceptualized in 2007 by Massimo Pigliucci and Gerd B. Müller.

A human disease modifier gene is a modifier gene that alters expression of a human gene at another locus that in turn causes a genetic disease. Whereas medical genetics has tended to distinguish between monogenic traits, governed by simple, Mendelian inheritance, and quantitative traits, with cumulative, multifactorial causes, increasing evidence suggests that human diseases exist on a continuous spectrum between the two.

This glossary of genetics and evolutionary biology is a list of definitions of terms and concepts used in the study of genetics and evolutionary biology, as well as sub-disciplines and related fields, with an emphasis on classical genetics, quantitative genetics, population biology, phylogenetics, speciation, and systematics. Overlapping and related terms can be found in Glossary of cellular and molecular biology, Glossary of ecology, and Glossary of biology.

In evolutionary biology, developmental bias refers to the production against or towards certain ontogenetic trajectories which ultimately influence the direction and outcome of evolutionary change by affecting the rates, magnitudes, directions and limits of trait evolution. Historically, the term was synonymous with developmental constraint, however, the latter has been more recently interpreted as referring solely to the negative role of development in evolution.

Bias in the introduction of variation is a theory in the domain of evolutionary biology that asserts biases in the introduction of heritable variation are reflected in the outcome of evolution. It is relevant to topics in molecular evolution, evo-devo, and self-organization. In the context of this theory, "introduction" ("origination") is a technical term for events that shift an allele frequency upward from zero. Formal models demonstrate that when an evolutionary process depends on introduction events, mutational and developmental biases in the generation of variation may influence the course of evolution by a first come, first served effect, so that evolution reflects the arrival of the likelier, not just the survival of the fitter. Whereas mutational explanations for evolutionary patterns are typically assumed to imply or require neutral evolution, the theory of arrival biases distinctively predicts the possibility of mutation-biased adaptation. Direct evidence for the theory comes from laboratory studies showing that adaptive changes are systematically enriched for mutationally likely types of changes. Retrospective analyses of natural cases of adaptation also provide support for the theory. This theory is notable as an example of contemporary structuralist thinking, contrasting with a classical functionalist view in which the course of evolution is determined by natural selection.

References

  1. Waddington CH (1942). "Canalization of development and the inheritance of acquired characters". Nature. 150 (3811): 563–565. Bibcode:1942Natur.150..563W. doi:10.1038/150563a0. S2CID   4127926.
  2. Waddington CH (1957). The strategy of the genes. George Allen & Unwin.
  3. Waddington CH (1953). "Genetic assimilation of an acquired character". Evolution. 7 (2): 118–126. doi:10.2307/2405747. JSTOR   2405747.
  4. Stern C (1958). "Selection for subthreshold differences and the origin of pseudoexogenous adaptations". American Naturalist. 92 (866): 313–316. doi:10.1086/282040. S2CID   84634317.
  5. Bateman KG (1959). "The genetic assimilation of the dumpy phenocopy". American Naturalist. 56 (3): 341–351. doi:10.1007/bf02984790. S2CID   41242659.
  6. Scharloo W (1991). "Canalization – genetic and developmental aspects". Annual Review of Ecology and Systematics. 22: 65–93. doi:10.1146/annurev.es.22.110191.000433.
  7. Falconer DS, Mackay TF (1996). Introduction to Quantitative Genetics. pp. 309–310.
  8. Siegal ML, Bergman A (August 2002). "Waddington's canalization revisited: developmental stability and evolution". Proceedings of the National Academy of Sciences of the United States of America. 99 (16): 10528–32. Bibcode:2002PNAS...9910528S. doi: 10.1073/pnas.102303999 . PMC   124963 . PMID   12082173.
  9. Masel J (September 2004). "Genetic assimilation can occur in the absence of selection for the assimilating phenotype, suggesting a role for the canalization heuristic". Journal of Evolutionary Biology. 17 (5): 1106–10. doi: 10.1111/j.1420-9101.2004.00739.x . PMID   15312082.
  10. Meiklejohn CD, Hartl DL (2002). "A single mode of canalization". Trends in Ecology & Evolution. 17 (10): 468–473. doi:10.1016/S0169-5347(02)02596-X.
  11. Ancel LW, Fontana W (October 2000). "Plasticity, evolvability, and modularity in RNA". The Journal of Experimental Zoology. 288 (3): 242–83. CiteSeerX   10.1.1.43.6910 . doi:10.1002/1097-010X(20001015)288:3<242::AID-JEZ5>3.0.CO;2-O. PMID   11069142.
  12. Szöllosi GJ, Derényi I (April 2009). "Congruent evolution of genetic and environmental robustness in micro-RNA". Molecular Biology and Evolution. 26 (4): 867–74. arXiv: 0810.2658 . doi:10.1093/molbev/msp008. PMID   19168567.
  13. Wagner GP, Booth G, Bagheri-Chaichian H (April 1997). "A Population Genetic Theory of Canalization". Evolution; International Journal of Organic Evolution. 51 (2): 329–347. CiteSeerX   10.1.1.27.1001 . doi:10.2307/2411105. JSTOR   2411105. PMID   28565347.
  14. Lehner B (February 2010). Polymenis M (ed.). "Genes confer similar robustness to environmental, stochastic, and genetic perturbations in yeast". PLOS ONE. 5 (2): e9035. Bibcode:2010PLoSO...5.9035L. doi: 10.1371/journal.pone.0009035 . PMC   2815791 . PMID   20140261.
  15. Masel J, Siegal ML (September 2009). "Robustness: mechanisms and consequences". Trends in Genetics. 25 (9): 395–403. doi:10.1016/j.tig.2009.07.005. PMC   2770586 . PMID   19717203.
  16. Green RM, Fish JL, Young NM, Smith FJ, Roberts B, Dolan K, et al. (December 2017). "Developmental nonlinearity drives phenotypic robustness". Nature Communications. 8 (1): 1970. Bibcode:2017NatCo...8.1970G. doi:10.1038/s41467-017-02037-7. PMC   5719035 . PMID   29213092.
  17. 1 2 Eshel I, Matessi C (August 1998). "Canalization, genetic assimilation and preadaptation. A quantitative genetic model". Genetics. 149 (4): 2119–33. doi:10.1093/genetics/149.4.2119. PMC   1460279 . PMID   9691063.
  18. 1 2 Paaby AB, Rockman MV (April 2014). "Cryptic genetic variation: evolution's hidden substrate". Nature Reviews. Genetics. 15 (4): 247–58. doi:10.1038/nrg3688. PMC   4737706 . PMID   24614309.
  19. 1 2 Rutherford SL, Lindquist S (November 1998). "Hsp90 as a capacitor for morphological evolution". Nature. 396 (6709): 336–42. Bibcode:1998Natur.396..336R. doi:10.1038/24550. PMID   9845070. S2CID   204996106.
  20. Whitesell L, Lindquist SL (October 2005). "HSP90 and the chaperoning of cancer". Nature Reviews. Cancer. 5 (10): 761–72. doi:10.1038/nrc1716. PMID   16175177. S2CID   22098282.
  21. Queitsch C, Sangster TA, Lindquist S (June 2002). "Hsp90 as a capacitor of phenotypic variation". Nature. 417 (6889): 618–24. Bibcode:2002Natur.417..618Q. doi:10.1038/nature749. PMID   12050657. S2CID   4419085.
  22. Rohner N, Jarosz DF, Kowalko JE, Yoshizawa M, Jeffery WR, Borowsky RL, et al. (December 2013). "Cryptic variation in morphological evolution: HSP90 as a capacitor for loss of eyes in cavefish". Science. 342 (6164): 1372–5. Bibcode:2013Sci...342.1372R. doi:10.1126/science.1240276. PMC   4004346 . PMID   24337296.
  23. Mutation in this gene results in the gene being expressed
  24. Hackett, Perry B.; Largaespada, David A.; Switzer, Kirsten C.; Cooper, Laurence J. N. (1 April 2013). "Evaluating risks of insertional mutagenesis by DNA transposons in gene therapy". Translational Research. 161 (4): 265–283. doi:10.1016/j.trsl.2012.12.005. PMC   3602164 . PMID   23313630.
  25. Specchia V, Piacentini L, Tritto P, Fanti L, D'Alessandro R, Palumbo G, et al. (February 2010). "Hsp90 prevents phenotypic variation by suppressing the mutagenic activity of transposons". Nature. 463 (7281): 662–5. Bibcode:2010Natur.463..662S. doi:10.1038/nature08739. PMID   20062045. S2CID   4429205.
  26. Hallgrímsson, Benedikt; Willmore, Katherine; Hall, Brian K. (2002). "Canalization, Developmental Stability, and Morphological Integration in Primate Limbs". American Journal of Physical Anthropology. Suppl 35: 131–158. doi:10.1002/ajpa.10182. PMC   5217179 . PMID   12653311.
  27. West-Eberhard, M J (November 2018). "Phenotypic Plasticity and the Origins of Diversity". Annual Review of Ecology and Systematics. 20 (Annual Review of Ecology and Systematics): 249–278. doi:10.1146/annurev.es.20.110189.001341.
  28. Loewe, Laurence; Hill, William G. (27 April 2010). "The population genetics of mutations: good, bad and indifferent". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 365 (1544): 1153–1167. doi:10.1098/rstb.2009.0317. PMC   2871823 . PMID   20308090.