Hybrid speciation

Last updated
Two species mate resulting in a fit hybrid that is unable to mate with members of its parent species. Hybrid Speciation Schematic.svg
Two species mate resulting in a fit hybrid that is unable to mate with members of its parent species.

Hybrid speciation is a form of speciation where hybridization between two different species leads to a new species, reproductively isolated from the parent species. Previously, reproductive isolation between two species and their parents was thought to be particularly difficult to achieve, and thus hybrid species were thought to be very rare. With DNA analysis becoming more accessible in the 1990s, hybrid speciation has been shown to be a somewhat common phenomenon, particularly in plants. [1] [2] In botanical nomenclature, a hybrid species is also called a nothospecies. [3] Hybrid species are by their nature polyphyletic. [4]

Contents

Ecology

A hybrid may occasionally be better fitted to the local environment than the parental lineage, and as such, natural selection may favor these individuals. If reproductive isolation is subsequently achieved, a separate species may arise. Reproductive isolation may be genetic, ecological, [5] behavioral, spatial, or a combination of these.

If reproductive isolation fails to establish, the hybrid population may merge with either or both parent species. This will lead to an influx of foreign genes into the parent population, a situation called an introgression. Introgression is a source of genetic variation, and can in itself facilitate speciation. There is evidence that introgression is a ubiquitous phenomenon in plants and animals, [6] [7] even in humans, [8] where genetic material from Neanderthals and Denisovans is responsible for much of the immune genes in non-African populations. [9] [10]

Ecological constraints

For a hybrid form to persist, it must be able to exploit the available resources better than either parent species, which, in most cases, it will have to compete with. For example: while grizzly bears and polar bears may be able to mate and produce offspring, a grizzly–polar bear hybrid is apparently less- suited in either of the parents' ecological niches than the original parent species themselves. So: although the hybrid is fertile (i.e. capable of reproduction and thus theoretically could propagate), this poor adaptation would be unlikely to support the establishment of a permanent population. [11]

Likewise, lions and tigers have historically overlapped in a portion of their range and can theoretically produce wild hybrids: ligers, which are a cross between a male lion and female tiger, and tigons, which are a cross between a male tiger and a female lion; however, tigers and lions have thus far only hybridized in captivity. [12] In both ligers and tigons, the females are fertile and the males are sterile. [12] One of these hybrids (the tigon) carries growth-inhibitor genes from both parents and thus is smaller than either parent species [12] and might in the wild come into competition with smaller carnivores, e.g. the leopard. The other hybrid, the liger, ends up larger than either of its parents: about a thousand pounds (450 kilograms) fully grown. [12] No tiger-lion hybrids are known from the wild, and the ranges of the two species no longer overlap (tigers are not found in Africa, and while there was formerly overlap in the distribution of the two species in Asia, both have been extirpated from much of their respective historic ranges, and the Asiatic lion is now restricted to the Gir Forest National Park, where tigers are mostly absent). [13]

Some situations may favor hybrid population. One example is rapid turnover of available environment types, like the historical fluctuation of water level in Lake Malawi, a situation that generally favors speciation. [14] A similar situation can be found where closely related species occupy a chain of islands. This will allow any present hybrid population to move into new, unoccupied habitats, avoiding direct competition with parent species and giving a hybrid population time and space to establish. [15] [5] Genetics, too, can occasionally favor hybrids. In the Amboseli National Park in Kenya, yellow baboons and anubis baboons regularly interbreed. The hybrid males reach maturity earlier than their pure-bred cousins, setting up a situation where the hybrid population may over time replace one or both of the parent species in the area. [16]

Genetics of hybridization

Genetics are more variable and malleable in plants than in animals, probably reflecting the higher activity level in animals.[ citation needed ] Hybrids' genetics will necessarily be less stable than those of species evolving through isolation, which explains why hybrid species appear more common in plants than in animals.[ citation needed ] Many agricultural crops are hybrids with double or even triple chromosome sets. Having multiple sets of chromosomes is called polyploidy. Polyploidy is usually fatal in animals where extra chromosome sets upset fetal development, but is often found in plants. [17] A form of hybrid speciation that is relatively common in plants occurs when an infertile hybrid becomes fertile after doubling of the chromosome number.

Hybridization without change in chromosome number is called homoploid hybrid speciation. [1] This is the situation found in most animal hybrids. For a hybrid to be viable, the chromosomes of the two organisms will have to be very similar, i.e., the parent species must be closely related, or else the difference in chromosome arrangement will make mitosis problematic. With polyploid hybridization, this constraint is less acute.[ citation needed ]

Super-numerary chromosome numbers can be unstable, which can lead to instability in the genetics of the hybrid. The European edible frog appears to be a species, but is actually a triploid semi-permanent hybrid between pool frogs and marsh frogs. [18] In most populations, the edible frog population is dependent on the presence of at least one of the parent species to be maintained, as each individual need two gene sets from one parent species and one from the other. Also, the male sex determination gene in the hybrids is only found in the genome of the pool frog, further undermining stability. [19] Such instability can also lead to rapid reduction of chromosome numbers, creating reproductive barriers and thus allowing speciation.[ citation needed ]

Hybrid speciation in animals

Closely related Heliconius species Heliconius mimicry.png
Closely related Heliconius species

Homoploid hybrid speciation

Hybrid speciation in animals is primarily homoploid. While thought not to be very common, a few animal species are the result of hybridization, mostly insects such as tephritid fruitflies that inhabit Lonicera plants [20] and Heliconius butterflies, [21] [22] as well as some fish, [15] one marine mammal, the clymene dolphin, [23] a few birds. [24] and certain Bufotes toads. [25]

One bird is an unnamed form of Darwin's finch from the Galapagos island of Daphne Major, described in 2017 and likely founded in the early 1980s by a male Española cactus finch from Española Island and a female medium ground finch from Daphne Major. [26] Another is the great skua, which has a surprising genetic similarity to the physically very different pomarine skua; most ornithologists[ who? ] now assume it to be a hybrid between the pomarine skua and one of the southern skuas. [27] The golden-crowned manakin was formed 180,000 years ago by hybridization between snow-capped and opal-crowned manakins. [28]

A 2021 DNA study determined that the Columbian mammoth of North America was a hybrid species between woolly mammoths and another lineage, discovered in Krestovka, descended from steppe mammoths. The two populations had diverged from the ancestral steppe mammoth earlier in the Pleistocene. Analysis of genetic material recovered from their remains showed that half of the ancestry of the Columbian mammoths originated from the Krestovka lineage and the other half from woolly mammoths, with the hybridization happening more than 420,000 years ago, during the Middle Pleistocene. This is the first evidence of hybrid speciation obtained from prehistoric DNA. [29] [30]

Multiple hybrids during rapid divergence

Rapidly diverging species can sometimes form multiple hybrid species, giving rise to a species complex, like several physically divergent but closely related genera of cichlid fishes in Lake Malawi. [14] The duck genus Anas (mallards and teals) has a very recent divergence history, many of the species are inter-fertile, and quite a few of them are thought to be hybrids. [31] [32] While hybrid species generally appear rare in mammals, [15] the American red wolf appears to be a hybrid species of the Canis species complex, between gray wolf and coyote. [33] Hybridization may have led to the species-rich Heliconius butterflies, [34] though this conclusion has been criticized. [35]

Hybrid speciation in plants

Hybrid speciation occurs when two divergent lineages (e.g., species) with independent evolutionary histories come into contact and interbreed. Hybridization can result in speciation when hybrid populations become isolated from the parental lineages, leading to divergence from the parent populations.

Polyploid hybrid speciation

In cases where the first-generation hybrids are viable but infertile, fertility can be restored by whole genome duplication (polyploidy), resulting in reproductive isolation and polyploid speciation. Polyploid speciation is commonly observed in plants because their nature allows them to support genome duplications. Polyploids are considered a new species because the occurrence of a whole genome duplication imposes post-zygotic barriers, which enable reproductive isolation between parent populations and hybrid offspring. Polyploids can arise through single step mutations or through triploid bridges. In single step mutations, allopolyploids are the result of unreduced gametes in crosses between divergent lineages. The F1 hybrids produced from these mutations are infertile due to failure of bivalent pairing of chromosomes and segregation into gametes which leads to the production of unreduced gametes by single division meiosis, which results in unreduced, diploid (2N) gametes. Triploid bridges occur in low frequencies in populations and are produced when unreduced gametes combine with haploid (1N) gametes to produce a triploid offspring that can function as a bridge to the formation of tetraploids. [36] In both paths, the polyploid hybrids are reproductively isolated from the parents due to the difference in ploidy. Polyploids manage to remain in populations because they generally experience less inbreeding depression and have higher self-fertility. [36] [37]

Homoploid hybrid speciation

Homoploid (diploid) speciation is another result of hybridization, but unlike polyploid speciation, it is observed less commonly because the hybrids are not characterized by a genome duplication and isolation must develop through other mechanisms. In homoploid speciation, the hybrids remain diploid. Studies on diploid hybrid populations of Louisiana irises show how these populations occur in Hybrid zones created by disturbances and ecotones (Anderson 1949). The existence of these novel niches allows for the persistence of hybrid lineages. For example, established sunflower ( Helianthus) hybrid species represent transgressive phenotypes and display genomic divergence separating them from the parent species. [38]

See also

Related Research Articles

Microevolution is the change in allele frequencies that occurs over time within a population. This change is due to four different processes: mutation, selection, gene flow and genetic drift. This change happens over a relatively short amount of time compared to the changes termed macroevolution.

<span class="mw-page-title-main">Ploidy</span> Number of sets of chromosomes in a cell

Ploidy is the number of complete sets of chromosomes in a cell, and hence the number of possible alleles for autosomal and pseudoautosomal genes. Sets of chromosomes refer to the number of maternal and paternal chromosome copies, respectively, in each homologous chromosome pair, which chromosomes naturally exist as. Somatic cells, tissues, and individual organisms can be described according to the number of sets of chromosomes present : monoploid, diploid, triploid, tetraploid, pentaploid, hexaploid, heptaploid or septaploid, etc. The generic term polyploid is often used to describe cells with three or more sets of chromosomes.

Speciation is the evolutionary process by which populations evolve to become distinct species. The biologist Orator F. Cook coined the term in 1906 for cladogenesis, the splitting of lineages, as opposed to anagenesis, phyletic evolution within lineages. Charles Darwin was the first to describe the role of natural selection in speciation in his 1859 book On the Origin of Species. He also identified sexual selection as a likely mechanism, but found it problematic.

<span class="mw-page-title-main">Hybrid (biology)</span> Offspring of cross-species reproduction

In biology, a hybrid is the offspring resulting from combining the qualities of two organisms of different varieties, species or genera through sexual reproduction. Generally, it means that each cell has genetic material from two different organisms, whereas an individual where some cells are derived from a different organism is called a chimera. Hybrids are not always intermediates between their parents, but can show hybrid vigor, sometimes growing larger or taller than either parent. The concept of a hybrid is interpreted differently in animal and plant breeding, where there is interest in the individual parentage. In genetics, attention is focused on the numbers of chromosomes. In taxonomy, a key question is how closely related the parent species are.

<span class="mw-page-title-main">Polyploidy</span> Condition where cells of an organism have more than two paired sets of chromosomes

Polyploidy is a condition in which the cells of an organism have more than one pair of (homologous) chromosomes. Most species whose cells have nuclei (eukaryotes) are diploid, meaning they have two complete sets of chromosomes, one from each of two parents; each set contains the same number of chromosomes, and the chromosomes are joined in pairs of homologous chromosomes. However, some organisms are polyploid. Polyploidy is especially common in plants. Most eukaryotes have diploid somatic cells, but produce haploid gametes by meiosis. A monoploid has only one set of chromosomes, and the term is usually only applied to cells or organisms that are normally diploid. Males of bees and other Hymenoptera, for example, are monoploid. Unlike animals, plants and multicellular algae have life cycles with two alternating multicellular generations. The gametophyte generation is haploid, and produces gametes by mitosis; the sporophyte generation is diploid and produces spores by meiosis.

<span class="mw-page-title-main">Gene flow</span> Transfer of genetic variation from one population to another

In population genetics, gene flow is the transfer of genetic material from one population to another. If the rate of gene flow is high enough, then two populations will have equivalent allele frequencies and therefore can be considered a single effective population. It has been shown that it takes only "one migrant per generation" to prevent populations from diverging due to drift. Populations can diverge due to selection even when they are exchanging alleles, if the selection pressure is strong enough. Gene flow is an important mechanism for transferring genetic diversity among populations. Migrants change the distribution of genetic diversity among populations, by modifying allele frequencies. High rates of gene flow can reduce the genetic differentiation between the two groups, increasing homogeneity. For this reason, gene flow has been thought to constrain speciation and prevent range expansion by combining the gene pools of the groups, thus preventing the development of differences in genetic variation that would have led to differentiation and adaptation. In some cases dispersal resulting in gene flow may also result in the addition of novel genetic variants under positive selection to the gene pool of a species or population

Evidence of common descent of living organisms has been discovered by scientists researching in a variety of disciplines over many decades, demonstrating that all life on Earth comes from a single ancestor. This forms an important part of the evidence on which evolutionary theory rests, demonstrates that evolution does occur, and illustrates the processes that created Earth's biodiversity. It supports the modern evolutionary synthesis—the current scientific theory that explains how and why life changes over time. Evolutionary biologists document evidence of common descent, all the way back to the last universal common ancestor, by developing testable predictions, testing hypotheses, and constructing theories that illustrate and describe its causes.

<span class="mw-page-title-main">Paleopolyploidy</span> State of having undergone whole genome duplication in deep evolutionary time

Paleopolyploidy is the result of genome duplications which occurred at least several million years ago (MYA). Such an event could either double the genome of a single species (autopolyploidy) or combine those of two species (allopolyploidy). Because of functional redundancy, genes are rapidly silenced or lost from the duplicated genomes. Most paleopolyploids, through evolutionary time, have lost their polyploid status through a process called diploidization, and are currently considered diploids, e.g., baker's yeast, Arabidopsis thaliana, and perhaps humans.

<i>Crepis</i> Genus of flowering plants in the family Asteraceae

Crepis, commonly known in some parts of the world as hawksbeard or hawk's-beard, is a genus of annual and perennial flowering plants of the family Asteraceae superficially resembling the dandelion, the most conspicuous difference being that Crepis usually has branching scapes with multiple heads. The genus name Crepis derives from the Greek krepis, meaning "slipper" or "sandal", possibly in reference to the shape of the fruit.

<span class="mw-page-title-main">Introgression</span> Transfer of genetic material from one species to another

Introgression, also known as introgressive hybridization, in genetics is the transfer of genetic material from one species into the gene pool of another by the repeated backcrossing of an interspecific hybrid with one of its parent species. Introgression is a long-term process, even when artificial; it may take many hybrid generations before significant backcrossing occurs. This process is distinct from most forms of gene flow in that it occurs between two populations of different species, rather than two populations of the same species.

<span class="mw-page-title-main">Hybrid zone</span>

A hybrid zone exists where the ranges of two interbreeding species or diverged intraspecific lineages meet and cross-fertilize. Hybrid zones can form in situ due to the evolution of a new lineage but generally they result from secondary contact of the parental forms after a period of geographic isolation, which allowed their differentiation. Hybrid zones are useful in studying the genetics of speciation as they can provide natural examples of differentiation and (sometimes) gene flow between populations that are at some point between representing a single species and representing multiple species in reproductive isolation.

The mechanisms of reproductive isolation are a collection of evolutionary mechanisms, behaviors and physiological processes critical for speciation. They prevent members of different species from producing offspring, or ensure that any offspring are sterile. These barriers maintain the integrity of a species by reducing gene flow between related species.

<i>Heliconius</i> Genus of brush-footed butterflies

Heliconius comprises a colorful and widespread genus of brush-footed butterflies commonly known as the longwings or heliconians. This genus is distributed throughout the tropical and subtropical regions of the New World, from South America as far north as the southern United States. The larvae of these butterflies eat passion flower vines (Passifloraceae). Adults exhibit bright wing color patterns which signal their distastefulness to potential predators.

<i>Heliconius heurippa</i> Species of butterfly

Heliconius heurippa is a butterfly of the genus Heliconius that is believed by some scientists to be a separate species from—but a hybrid of—the species Heliconius cydno and Heliconius melpomene, making H. heurippa an example of hybrid speciation.

<span class="mw-page-title-main">Hybrid swarm</span> Population of hybrids beyond first hybrid generation

A hybrid swarm is a population of hybrids that has survived beyond the initial hybrid generation, with interbreeding between hybrid individuals and backcrossing with its parent types. Such population are highly variable, with the genetic and phenotypic characteristics of individuals ranging widely between the two parent types. Hybrid swarms thus blur the boundary between the parent taxa. Precise definitions of which populations can be classified as hybrid swarms vary, with some specifying simply that all members of a population should be hybrids, while others differ in whether all members should have the same or different levels of hybridization.

<span class="mw-page-title-main">Secondary contact</span>

Secondary contact is the process in which two allopatricaly distributed populations of a species are geographically reunited. This contact allows for the potential for the exchange of genes, dependent on how reproductively isolated the two populations have become. There are several primary outcomes of secondary contact: extinction of one species, fusion of the two populations back into one, reinforcement, the formation of a hybrid zone, and the formation of a new species through hybrid speciation.

<span class="mw-page-title-main">History of speciation</span> Aspect of history

The scientific study of speciation — how species evolve to become new species — began around the time of Charles Darwin in the middle of the 19th century. Many naturalists at the time recognized the relationship between biogeography and the evolution of species. The 20th century saw the growth of the field of speciation, with major contributors such as Ernst Mayr researching and documenting species' geographic patterns and relationships. The field grew in prominence with the modern evolutionary synthesis in the early part of that century. Since then, research on speciation has expanded immensely.

This glossary of genetics and evolutionary biology is a list of definitions of terms and concepts used in the study of genetics and evolutionary biology, as well as sub-disciplines and related fields, with an emphasis on classical genetics, quantitative genetics, population biology, phylogenetics, speciation, and systematics. Overlapping and related terms can be found in Glossary of cellular and molecular biology, Glossary of ecology, and Glossary of biology.

Eukaryote hybrid genomes result from interspecific hybridization, where closely related species mate and produce offspring with admixed genomes. The advent of large-scale genomic sequencing has shown that hybridization is common, and that it may represent an important source of novel variation. Although most interspecific hybrids are sterile or less fit than their parents, some may survive and reproduce, enabling the transfer of adaptive variants across the species boundary, and even result in the formation of novel evolutionary lineages. There are two main variants of hybrid species genomes: allopolyploid, which have one full chromosome set from each parent species, and homoploid, which are a mosaic of the parent species genomes with no increase in chromosome number.

Hybridization, when new offspring arise from crosses between individuals of the same or different species, results in the assemblage of diverse genetic material and can act as a stimulus for evolution. Hybrid species are often more vigorous and genetically differed than their ancestors. There are primarily two different forms of hybridization: natural hybridization in an uncontrolled environment, whereas artificial hybridization occurs primarily for the agricultural purposes.

References

  1. 1 2 Arnold, M.L. (1996). Natural Hybridization and Evolution. New York: Oxford University Press. p. 232. ISBN   978-0-19-509975-1.
  2. Wendel, J F. & Doyle, J.J. (1998): DNA Sequencing. In Molecular Systematics of Plants II. Editors: D.E. Soltis, P.S. Soltis, J.J. Doyle. Kluwer, Boston, pp. 265–296.
  3. McNeill, J.; Barrie, F.R.; Buck, W.R.; Demoulin, V.; Greuter, W.; Hawksworth, D.L.; Herendeen, P.S.; Knapp, S.; Marhold, K.; Prado, J.; Prud'homme Van Reine, W.F.; Smith, G.F.; Wiersema, J.H.; Turland, N.J. (2012). International Code of Nomenclature for algae, fungi, and plants (Melbourne Code) adopted by the Eighteenth International Botanical Congress Melbourne, Australia, July 2011. Vol. Regnum Vegetabile 154. A.R.G. Gantner Verlag KG. ISBN   978-3-87429-425-6. Article H.1
  4. Hörandl, E.; Stuessy, T.F. (2010). "Paraphyletic groups as natural units of biological classification". Taxon. 59 (6): 1641–1653. doi:10.1002/tax.596001.
  5. 1 2 Marques, I.; Draper, D.; López-Herranz, M. L.; Garnatje, T.; Segarra-Moragues, J. G.; Catalán, P. (2016-11-03). "Past climate changes facilitated homoploid speciation in three mountain spiny fescues (Festuca, Poaceae)". Scientific Reports. 6 (1): 36283. Bibcode:2016NatSR...636283M. doi:10.1038/srep36283. ISSN   2045-2322. PMC   5093761 . PMID   27808118.
  6. Dowling T. E.; Secor C. L. (1997). "The role of hybridization and introgression in the diversification of animals". Annual Review of Ecology and Systematics. 28: 593–619. doi:10.1146/annurev.ecolsys.28.1.593.
  7. Bullini L (1994). "Origin and evolution of animal hybrid species". Trends in Ecology and Evolution. 9 (11): 422–426. doi:10.1016/0169-5347(94)90124-4. PMID   21236911.
  8. Holliday T. W. (2003). "Species concepts, reticulations, and human evolution". Current Anthropology. 44 (5): 653–673. doi:10.1086/377663. S2CID   85569586.
  9. Mendez, F. L.; Watkins, J. C.; Hammer, M. F. (12 January 2013). "Neandertal Origin of Genetic Variation at the Cluster of OAS Immunity Genes". Molecular Biology and Evolution. 30 (4): 798–801. doi: 10.1093/molbev/mst004 . PMID   23315957.
  10. Mendez, F.L. (2012). Archaic introgression and natural selection in the evolution of modern humans: A study of genetic variation at the loci containing the immune genes OAS1 and STAT2 (Phd thesis). University of Arizona. Retrieved 6 December 2013.
  11. "Bear shot in N.W.T. was grizzly-polar hybrid". Cbc.ca. 2010-04-30. Archived from the original on July 5, 2010. Retrieved 2011-03-09.
  12. 1 2 3 4 Mott, M. (2005, August 5). Retrieved February 13, 2013, from Liger Facts. Big Cat Rescue
  13. "Frequently asked questions". University of Minnesota Lion Research Project. Archived from the original on 2011-08-07. Retrieved 2011-06-28.
  14. 1 2 Genner, M.J.; Turner, G.F. (December 2011). "Ancient Hybridization and Phenotypic Novelty within Lake Malawi's Cichlid Fish Radiation". Molecular Biology and Evolution. 29 (Published online): 195–206. doi: 10.1093/molbev/msr183 . PMID   22114359.
  15. 1 2 3 Larsen, P.A.; Marchán-Rivadeneira, M.R.; Baker, R.J. (5 January 2010). "Natural hybridization generates mammalian lineage with species characteristics". Proceedings of the National Academy of Sciences of the United States of America . 107 (25): 11447–11452. Bibcode:2010PNAS..10711447L. doi: 10.1073/pnas.1000133107 . PMC   2895066 . PMID   20534512.
  16. Charpentier & al. (2012). "Genetic structure in a dynamic baboon hybrid zone corroborates behavioural observations in a hybrid population". Molecular Ecology. 21 (3): 715–731. doi:10.1111/j.1365-294X.2011.05302.x. PMID   21988698. S2CID   940441.
  17. von Wettstein, F. (1927). "Die Erscheinung der Heteroploidie, besonders im Pflanzenreich". Ergebnisse der Biologie. Vol. 2. pp. 311–356. doi:10.1007/978-3-642-49712-4_5. ISBN   978-3-642-49433-8.
  18. Frost, Grant, Faivovich, Bain, Haas, Haddad, de Sá, Channing, Wilkinson, Donnellan, Raxworthy, Campbell, Blotto, Moler, Drewes, Nussbaum, Lynch, Green, and Wheeler 2006. The amphibian tree of life. Bulletin of the American Museum of Natural History. Number 297. New York. Issued March 15, 2006.
  19. Guldager Christiansen, D. (2010): Genetic Structure and Dynamics of All-hybrid Edible Frog Populations. Doctoral dissertation for the University of Zurich. 140 pages
  20. Schwarz, Dietmar; et al. (2005). Host shift to an invasive plant triggers rapid animal hybrid speciation. Nature 436 (7050): 546–549. doi:10.1038/nature03800. PMID   16049486.
  21. Mavárez, J., Salazar, C., Bermingham, E., Salcedo, C., Jiggins, C.D., & Linares, M. 2006. Speciation by hybridization in Heliconius butterflies. Nature (London) 441:868-871
  22. Heliconius Genome Consortium. 2012. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487:94-98. http://www.nature.com/nature/journal/v487/n7405/full/nature11041.html
  23. Bhanoo, Sindya (2014-01-13). "Scientists Find Rare Hybrid of Two Other Dolphin Species". The New York Times. Retrieved 20 January 2014.
  24. Ottenburghs, Jente (2018). "Exploring the hybrid speciation continuum in birds". Ecology and Evolution. 8 (24): 13027–13034. doi:10.1002/ece3.4558. ISSN   2045-7758. PMC   6308868 . PMID   30619602.
  25. Betto-Colliard, C.; S. Hofmann; R. Sermier; N. Perrin; M. Stöck (2018). "Profound genetic divergence and asymmetric parental genome contributions as hallmarks of hybrid speciation in polyploid toads". Proceedings of the Royal Society B: Biological Sciences. 285 (1872): 1872. doi:10.1098/rspb.2017.2667. PMC   5829204 . PMID   29436499.
  26. Lamichhaney, Sangeet; Han, Fan; Webster, Matthew T.; Andersson, Leif; Grant, B. Rosemary; Grant, Peter R. (2018). "Rapid hybrid speciation in Darwin's finches". Science. 359 (6372): 224–228. Bibcode:2018Sci...359..224L. doi: 10.1126/science.aao4593 . PMID   29170277.
  27. Furness, R. W.; Hamer, K. (2003). "Skuas and Jaegers" . In Christopher Perrins (ed.). Firefly Encyclopedia of Birds. Firefly Books. pp.  270–273. ISBN   978-1-55297-777-4.
  28. "First-ever hybrid bird species from the Amazon: A closer look at genetics and feathers reveals first-ever hybrid bird species living in the Amazon rainforest". ScienceDaily. Retrieved 1 January 2018.
  29. van der Valk, T.; Pečnerová, P.; Díez-del-Molino, D.; Bergström, A.; Oppenheimer, J.; Hartmann, S.; Xenikoudakis, G.; Thomas, J. A.; Dehasque, M.; Sağlıcan, E.; Fidan, F. Rabia; Barnes, I.; Liu, S.; Somel, M.; Heintzman, P. D.; Nikolskiy, P.; Shapiro, B.; Skoglund, P.; Hofreiter, M.; Lister, A. M.; Götherström, A.; Dalén, L. (2021). "Million-year-old DNA sheds light on the genomic history of mammoths". Nature. 591 (7849): 265–269. Bibcode:2021Natur.591..265V. doi:10.1038/s41586-021-03224-9. ISSN   1476-4687. PMC   7116897 . PMID   33597750.
  30. Callaway, E. (2021). "Million-year-old mammoth genomes shatter record for oldest ancient DNA". nature.com. Vol. 590, no. 7847. pp. 537–538. doi:10.1038/d41586-021-00436-x . Retrieved Jan 29, 2023.
  31. A mid-sized species: Bernor, R.L.; Kordos, L. & Rook, L. (eds): Recent Advances on Multidisciplinary Research at Rudabánya, Late Miocene (MN9), Hungary: A compendium Archived June 28, 2007, at the Wayback Machine . Paleontographica Italiana89: 3–36.
  32. Grant, Peter R.; Grant, B. Rosemary (1992-04-10). "Hybridization of Bird Species". Science. 256 (5054): 193–197. Bibcode:1992Sci...256..193G. doi:10.1126/science.256.5054.193. PMID   17744718. S2CID   36528284.
  33. Esch, Mary (31 May 2011). "Study: Eastern wolves are hybrids with coyotes". The Huffington Post . Retrieved 1 June 2011.
  34. Mallet, James; Beltrán, M.; Neukirchen, W.; Linares, M. (2007). "Natural hybridization in heliconiine butterflies: The species boundary as a continuum". BMC Evolutionary Biology. 7: 28. doi: 10.1186/1471-2148-7-28 . PMC   1821009 . PMID   17319954.
  35. Brower, A.V.Z. (2011). "Hybrid speciation in Heliconius butterflies? A review and critique of the evidence". Genetica. 139 (2): 589–609. doi:10.1007/s10709-010-9530-4. PMC   3089819 . PMID   21113790.
  36. 1 2 Ramsey, Justin; Schemske, Douglas W. (November 2002). "Neopolyploidy in Flowering Plants". Annual Review of Ecology and Systematics. 33 (1): 589–639. doi:10.1146/annurev.ecolsys.33.010802.150437. ISSN   0066-4162.
  37. Rausch, Joseph H.; Morgan, Martin T. (2005). "The Effect of Self-Fertilization, Inbreeding Depression, and Population Size on Autopolyploid Establishment". Evolution. 59 (9): 1867–1875. doi:10.1554/05-095.1. ISSN   0014-3820. PMID   16261725. S2CID   198155476.
  38. Rieseberg, Loren H.; Van Fossen, Chrystal; Desrochers, Andrée M. (May 1995). "Hybrid speciation accompanied by genomic reorganization in wild sunflowers". Nature. 375 (6529): 313–316. Bibcode:1995Natur.375..313R. doi:10.1038/375313a0. ISSN   0028-0836. S2CID   4358931.