Part of a series on |
Evolutionary biology |
---|
Evolutionary physiology is the study of the biological evolution of physiological structures and processes; that is, the manner in which the functional characteristics of organisms have responded to natural selection or sexual selection or changed by random genetic drift across multiple generations during the history of a population or species. [2] It is a sub-discipline of both physiology and evolutionary biology. Practitioners in the field come from a variety of backgrounds, including physiology, evolutionary biology, ecology, and genetics.
Accordingly, the range of phenotypes studied by evolutionary physiologists is broad, including life history traits, behavior, whole-organism performance, [3] [4] functional morphology, biomechanics, anatomy, classical physiology, endocrinology, biochemistry, and molecular evolution. The field is closely related to comparative physiology, ecophysiology, and environmental physiology, and its findings are a major concern of evolutionary medicine. One definition that has been offered is "the study of the physiological basis of fitness, namely, correlated evolution (including constraints and trade-offs) of physiological form and function associated with the environment, diet, homeostasis, energy management, longevity, and mortality and life history characteristics". [5]
As the name implies, evolutionary physiology is the product of a merger between two distinct scientific disciplines. According to Garland and Carter, [2] evolutionary physiology arose in the late 1970s, following debates concerning the metabolic and thermoregulatory status of dinosaurs (see physiology of dinosaurs) and mammal-like reptiles.
This period was followed by attempts in the early 1980s to integrate quantitative genetics into evolutionary biology, which had spillover effects on other fields, such as behavioral ecology and ecophysiology. In the mid- to late 1980s, phylogenetic comparative methods started to become popular in many fields, including physiological ecology and comparative physiology. A 1987 volume titled New Directions in Ecological Physiology [6] had little ecology [7] but a considerable emphasis on evolutionary topics. It generated vigorous debate, and within a few years the National Science Foundation had developed a panel titled Ecological and Evolutionary Physiology.
Shortly thereafter, selection experiments and experimental evolution became increasingly common in evolutionary physiology. Macrophysiology has emerged as a sub-discipline, in which practitioners attempt to identify large-scale patterns in physiological traits (e.g. patterns of co-variation with latitude) and their ecological implications. [8] [9] [10]
More recently, the importance of evolutionary physiology has been argued from the perspective of functional analyses, epigenetics, and an extended evolutionary synthesis. [11] The growth of evolutionary physiology is also reflected in the emergence of sub-disciplines, such as evolutionary biomechanics [12] [13] and evolutionary endocrinology, [14] [15] which addresses such hybrid questions as "What are the most common endocrine mechanisms that respond to selection on behavior or life-history traits?" [16]
As a hybrid scientific discipline, evolutionary physiology provides some unique perspectives. For example, an understanding of physiological mechanisms can help in determining whether a particular pattern of phenotypic variation or co-variation (such as an allometric relationship) represents what could possibly exist or just what selection has allowed. [2] [17] [18] Similarly, a thorough knowledge of physiological mechanisms can greatly enhance understanding of possible reasons for evolutionary correlations and constraints than is possible for many of the traits typically studied by evolutionary biologists (such as morphology).
Important areas of current research include:
In the United States, research in evolutionary physiology is funded mainly by the National Science Foundation. A number of scientific societies feature sections that encompass evolutionary physiology, including:
The metabolic theory of ecology (MTE) is the ecological component of the more general Metabolic Scaling Theory and Kleiber's law. It posits that the metabolic rate of organisms is the fundamental biological rate that governs most observed patterns in ecology. MTE is part of a larger set of theory known as metabolic scaling theory that attempts to provide a unified theory for the importance of metabolism in driving pattern and process in biology from the level of cells all the way to the biosphere.
Experimental evolution is the use of laboratory experiments or controlled field manipulations to explore evolutionary dynamics. Evolution may be observed in the laboratory as individuals/populations adapt to new environmental conditions by natural selection.
In biology, adaptation has three related meanings. Firstly, it is the dynamic evolutionary process of natural selection that fits organisms to their environment, enhancing their evolutionary fitness. Secondly, it is a state reached by the population during that process. Thirdly, it is a phenotypic trait or adaptive trait, with a functional role in each individual organism, that is maintained and has evolved through natural selection.
Kleiber's law, named after Max Kleiber for his biology work in the early 1930s, is the observation that, for the vast majority of animals, an animal's metabolic rate scales to the 3⁄4 power of the animal's mass. More recently, Kleiber's law has also been shown to apply in plants, suggesting that Kleiber's observation is much more general. Symbolically: if B is the animal's metabolic rate, and M is the animal's mass, then Kleiber's law states that . Thus, over the same time span, a cat having a mass 100 times that of a mouse will consume only about 32 times the energy the mouse uses.
Allometry is the study of the relationship of body size to shape, anatomy, physiology and behaviour, first outlined by Otto Snell in 1892, by D'Arcy Thompson in 1917 in On Growth and Form and by Julian Huxley in 1932.
Phenotypic plasticity refers to some of the changes in an organism's behavior, morphology and physiology in response to a unique environment. Fundamental to the way in which organisms cope with environmental variation, phenotypic plasticity encompasses all types of environmentally induced changes that may or may not be permanent throughout an individual's lifespan.
Biological constraints are factors which make populations resistant to evolutionary change. One proposed definition of constraint is "A property of a trait that, although possibly adaptive in the environment in which it originally evolved, acts to place limits on the production of new phenotypic variants." Constraint has played an important role in the development of such ideas as homology and body plans.
Comparative physiology is a subdiscipline of physiology that studies and exploits the diversity of functional characteristics of various kinds of organisms. It is closely related to evolutionary physiology and environmental physiology. Many universities offer undergraduate courses that cover comparative aspects of animal physiology. According to Clifford Ladd Prosser, "Comparative Physiology is not so much a defined discipline as a viewpoint, a philosophy."
Phylogenetic comparative methods (PCMs) use information on the historical relationships of lineages (phylogenies) to test evolutionary hypotheses. The comparative method has a long history in evolutionary biology; indeed, Charles Darwin used differences and similarities between species as a major source of evidence in The Origin of Species. However, the fact that closely related lineages share many traits and trait combinations as a result of the process of descent with modification means that lineages are not independent. This realization inspired the development of explicitly phylogenetic comparative methods. Initially, these methods were primarily developed to control for phylogenetic history when testing for adaptation; however, in recent years the use of the term has broadened to include any use of phylogenies in statistical tests. Although most studies that employ PCMs focus on extant organisms, many methods can also be applied to extinct taxa and can incorporate information from the fossil record.
Ecological and Evolutionary Physiology is a peer-reviewed scientific journal published by the University of Chicago Press on behalf of the Society for Integrative and Comparative Biology. The journal publishes original research examining fundamental questions about how the ecological environment and/or evolutionary history interact with physiological function, as well as the ways physiology may constrain behavior. For EEP, physiology denotes the study of function in the broadest sense, across levels of organization from molecules to morphology to organismal performance and on behavior and life history traits.
Theodore Garland Jr. is a biologist specializing in evolutionary physiology at the University of California, Riverside.
Ecoimmunology or Ecological Immunology is the study of the causes and consequences of variation in immunity. The field of ecoimmunology seeks to give an ultimate perspective for proximate mechanisms of immunology. This approach places immunology in evolutionary and ecological contexts across all levels of biological organization.
Brian Joseph Enquist is an American biologist and academic. Enquist is a professor of biology at the University of Arizona. He is also external professor at the Santa Fe Institute. He is a biologist, plant biologist and an ecologist. He was elected as a Fellow of the American Association for the Advancement of Science (AAAS) in 2012 and the Ecological Society of America (ESA) in 2018.
This glossary of genetics and evolutionary biology is a list of definitions of terms and concepts used in the study of genetics and evolutionary biology, as well as sub-disciplines and related fields, with an emphasis on classical genetics, quantitative genetics, population biology, phylogenetics, speciation, and systematics. It has been designed as a companion to Glossary of cellular and molecular biology, which contains many overlapping and related terms; other related glossaries include Glossary of biology and Glossary of ecology.
In evolutionary biology, developmental bias refers to the production against or towards certain ontogenetic trajectories which ultimately influence the direction and outcome of evolutionary change by affecting the rates, magnitudes, directions and limits of trait evolution. Historically, the term was synonymous with developmental constraint, however, the latter has been more recently interpreted as referring solely to the negative role of development in evolution.
Phylogenetic signal is an evolutionary and ecological term, that describes the tendency or the pattern of related biological species to resemble each other more than any other species that is randomly picked from the same phylogenetic tree.
Lauren B. Buckley is an evolutionary ecologist and professor of biology at the University of Washington. She researches the relationship between organismal physiological and life history features and response to global climate change.
Albert Farrell Bennett is an American zoologist, physiologist, evolutionary biologist, author, and academic. He is Dean Emeritus of the School of Biological Sciences at University of California, Irvine.
Organismal performance refers to the ability of an organism to conduct a task when maximally motivated. Various aspects of performance are of primary concern in human athletics, horse racing, and dog racing. Performance in swimming tasks has been a subject of fisheries research since the 1960s. In a broader biological context, the term first came to prominence with studies of locomotor abilities in lizards and snakes in the late 1970s and early 1980s.