Plant perception is the ability of plants to sense and respond to the environment by adjusting their morphology and physiology. [1] Botanical research has revealed that plants are capable of reacting to a broad range of stimuli, including chemicals, gravity, light, moisture, infections, temperature, oxygen and carbon dioxide concentrations, parasite infestation, disease, physical disruption, sound, [2] [3] [4] [5] and touch. The scientific study of plant perception is informed by numerous disciplines, such as plant physiology, ecology, and molecular biology.
Many plant organs contain photoreceptors (phototropins, cryptochromes, and phytochromes), each of which reacts very specifically to certain wavelengths of light. [6] These light sensors tell the plant if it is day or night, how long the day is, how much light is available, and where the light is coming from. Shoots generally grow towards light, while roots grow away from it, responses known as phototropism and skototropism, respectively. They are brought about by light-sensitive pigments like phototropins and phytochromes and the plant hormone auxin. [7]
Many plants exhibit certain behaviors at specific times of the day; for example, flowers that open only in the mornings. Plants keep track of the time of day with a circadian clock. [6] This internal clock is synchronized with solar time every day using sunlight, temperature, and other cues, similar to the biological clocks present in other organisms. The internal clock coupled with the ability to perceive light also allows plants to measure the time of the day and so determine the season of the year. This is how many plants know when to flower (see photoperiodism). [6] The seeds of many plants sprout only after they are exposed to light. This response is carried out by phytochrome signalling. Plants are also able to sense the quality of light and respond appropriately. For example, in low light conditions, plants produce more photosynthetic pigments. If the light is very bright or if the levels of harmful ultraviolet radiation increase, plants produce more of their protective pigments that act as sunscreens. [8]
Studies on the vine Boquila trifoliata has raised questions on the mode by which they are able to perceive and mimic the shape of the leaves of the plant upon which they climb. Experiments have shown that they even mimic the shape of plastic leaves when trained on them. [9] Suggestions have even been made that plants might have a form of vision. [10]
To orient themselves correctly, plants must be able to sense the direction of gravity. The subsequent response is known as gravitropism.
In roots, gravity is sensed and translated in the root tip, which then grows by elongating in the direction of gravity. In shoots, growth occurs in the opposite direction, a phenomenon known as negative gravitropism. [11] Poplar stems can detect reorientation and inclination (equilibrioception) through gravitropism. [12]
At the root tip, amyloplasts containing starch granules fall in the direction of gravity. This weight activates secondary receptors, which signal to the plant the direction of the gravitational pull. After this occurs, auxin is redistributed through polar auxin transport and differential growth towards gravity begins. In the shoots, auxin redistribution occurs in a way to produce differential growth away from gravity.
For perception to occur, the plant often must be able to sense, perceive, and translate the direction of gravity. Without gravity, proper orientation will not occur and the plant will not effectively grow. The root will not be able to uptake nutrients or water, and the shoot will not grow towards the sky to maximize photosynthesis. [13]
All plants are able to sense touch. [14] Thigmotropism is directional movement that occurs in plants responding to physical touch. [15] Climbing plants, such as tomatoes, exhibit thigmotropism, allowing them to curl around objects. These responses are generally slow (on the order of multiple hours), and can best be observed with time-lapse cinematography, but rapid movements can occur as well. For example, the so-called "sensitive plant" ( Mimosa pudica ) responds to even the slightest physical touch by quickly folding its thin pinnate leaves such that they point downwards, [16] and carnivorous plants such as the Venus flytrap (Dionaea muscipula) produce specialized leaf structures that snap shut when touched or landed upon by insects. In the Venus flytrap, touch is detected by cilia lining the inside of the specialized leaves, which generate an action potential that stimulates motor cells and causes movement to occur. [17]
Wounded or infected plants produce distinctive volatile odors, (e.g. methyl jasmonate, methyl salicylate, green leaf volatiles), which can in turn be perceived by neighboring plants. [18] [19] Plants detecting these sorts of volatile signals often respond by increasing their chemical defences and/or prepare for attack by producing chemicals which defend against insects or attract insect predators. [18]
Plants upregulate chemical defenses such as glucosinolate and anthocyanin in response to vibrations created during herbivory. [20]
Plants systematically use hormonal signalling pathways to coordinate their development and morphology.
Plants produce several signal molecules usually associated with animal nervous systems, such as glutamate, GABA, acetylcholine, melatonin, and serotonin. [21] They may also use ATP, NO, and ROS for signaling in similar ways as animals do. [22]
Plants have a variety of methods of delivering electrical signals. The four commonly recognized propagation methods include action potentials (APs), variation potentials (VPs), local electric potentials (LEPs), and systemic potentials (SPs) [23] [24] [25]
Although plant cells are not neurons, they can be electrically excitable and can display rapid electrical responses in the form of APs to environmental stimuli. APs allow for the movement of signaling ions and molecules from the pre-potential cell to the post-potential cell(s). These electrophysiological signals are constituted by gradient fluxes of ions such as H+, K+, Cl−, Na+, and Ca2+ but it is also thought that other electrically charge ions such as Fe3+, Al3+, Mg2+, Zn2+, Mn2+, and Hg2+ may also play a role in downstream outputs. [26] The maintenance of each ions electrochemical gradient is vital in the health of the cell in that if the cell would ever reach equilibrium with its environment, it is dead. [27] [28] This dead state can be due to a variety of reasons such as ion channel blocking or membrane puncturing.
These electrophysiological ions bind to receptors on the receiving cell causing downstream effects result from one or a combination of molecules present. This means of transferring information and activating physiological responses via a signaling molecule system has been found to be faster and more frequent in the presence of APs. [26]
These action potentials can influence processes such as actin-based cytoplasmic streaming, plant organ movements, wound responses, respiration, photosynthesis, and flowering. [29] [30] [31] [32] These electrical responses can cause the synthesis of numerous organic molecules, including ones that act as neuroactive substances in other organisms such as calcium ions. [33]
The ion flux across cells also influence the movement of other molecules and solutes. This changes the osmotic gradient of the cell, resulting in changes to turgor pressure in plant cells by water and solute flux across cell membranes. These variations are vital for nutrient uptake, growth, many types of movements (tropisms and nastic movements) among other basic plant physiology and behavior. [34] [35] (Higinbotham 1973; Scott 2008; Segal 2016).
Thus, plants achieve behavioural responses in environmental, communicative, and ecological contexts.
Plant behavior is mediated by phytochromes, kinins, hormones, antibiotic or other chemical release, changes of water and chemical transport, and other means.
Plants have many strategies to fight off pests. For example, they can produce a slew of different chemical toxins against predators and parasites or they can induce rapid cell death to prevent the spread of infectious agents. Plants can also respond to volatile signals produced by other plants. [36] [37] Jasmonate levels also increase rapidly in response to mechanical perturbations such as tendril coiling. [38]
In plants, the mechanism responsible for adaptation is signal transduction. [39] [40] [41] [42] Adaptive responses include:
A hormone is a class of signaling molecules in multicellular organisms that are sent to distant organs or tissues by complex biological processes to regulate physiology and behavior. Hormones are required for the correct development of animals, plants and fungi. Due to the broad definition of a hormone, numerous kinds of molecules can be classified as hormones. Among the substances that can be considered hormones, are eicosanoids, steroids, amino acid derivatives, protein or peptides, and gases.
In vascular plants, the roots are the organs of a plant that are modified to provide anchorage for the plant and take in water and nutrients into the plant body, which allows plants to grow taller and faster. They are most often below the surface of the soil, but roots can also be aerial or aerating, that is, growing up above the ground or especially above water.
Plant hormones are signal molecules, produced within plants, that occur in extremely low concentrations. Plant hormones control all aspects of plant growth and development, including embryogenesis, the regulation of organ size, pathogen defense, stress tolerance and reproductive development. Unlike in animals each plant cell is capable of producing hormones. Went and Thimann coined the term "phytohormone" and used it in the title of their 1937 book.
Auxins are a class of plant hormones with some morphogen-like characteristics. Auxins play a cardinal role in coordination of many growth and behavioral processes in plant life cycles and are essential for plant body development. The Dutch biologist Frits Warmolt Went first described auxins and their role in plant growth in the 1920s. Kenneth V. Thimann became the first to isolate one of these phytohormones and to determine its chemical structure as indole-3-acetic acid (IAA). Went and Thimann co-authored a book on plant hormones, Phytohormones, in 1937.
Phytochromes are a class of photoreceptor proteins found in plants, bacteria and fungi. They respond to light in the red and far-red regions of the visible spectrum and can be classed as either Type I, which are activated by far-red light, or Type II that are activated by red light. Recent advances have suggested that phytochromes also act as temperature sensors, as warmer temperatures enhance their de-activation. All of these factors contribute to the plant's ability to germinate.
Jasmonate (JA) and its derivatives are lipid-based plant hormones that regulate a wide range of processes in plants, ranging from growth and photosynthesis to reproductive development. In particular, JAs are critical for plant defense against herbivory and plant responses to poor environmental conditions and other kinds of abiotic and biotic challenges. Some JAs can also be released as volatile organic compounds (VOCs) to permit communication between plants in anticipation of mutual dangers.
Hydrotropism is a plant's growth response in which the direction of growth is determined by a stimulus or gradient in water concentration. A common example is a plant root growing in humid air bending toward a higher relative humidity level.
Gravitropism is a coordinated process of differential growth by a plant in response to gravity pulling on it. It also occurs in fungi. Gravity can be either "artificial gravity" or natural gravity. It is a general feature of all higher and many lower plants as well as other organisms. Charles Darwin was one of the first to scientifically document that roots show positive gravitropism and stems show negative gravitropism. That is, roots grow in the direction of gravitational pull and stems grow in the opposite direction. This behavior can be easily demonstrated with any potted plant. When laid onto its side, the growing parts of the stem begin to display negative gravitropism, growing upwards. Herbaceous (non-woody) stems are capable of a degree of actual bending, but most of the redirected movement occurs as a consequence of root or stem growth outside. The mechanism is based on the Cholodny–Went model which was proposed in 1927, and has since been modified. Although the model has been criticized and continues to be refined, it has largely stood the test of time.
Methyl jasmonate is a volatile organic compound used in plant defense and many diverse developmental pathways such as seed germination, root growth, flowering, fruit ripening, and senescence. Methyl jasmonate is derived from jasmonic acid and the reaction is catalyzed by S-adenosyl-L-methionine:jasmonic acid carboxyl methyltransferase.
Shade avoidance is a set of responses that plants display when they are subjected to the shade of another plant. It often includes elongation, altered flowering time, increased apical dominance and altered partitioning of resources. This set of responses is collectively called the shade-avoidance syndrome (SAS).
A pulvinus may refer to a joint-like thickening at the base of a plant leaf or leaflet that facilitates growth-independent movement. Pulvinus is also a botanical term for the persistent peg-like bases of the leaves in the coniferous genera Picea and Tsuga. Pulvinar movement is common, for example, in members of the bean family Fabaceae (Leguminosae) and the prayer plant family Marantaceae.
In biology, phototropism is the growth of an organism in response to a light stimulus. Phototropism is most often observed in plants, but can also occur in other organisms such as fungi. The cells on the plant that are farthest from the light contain a hormone called auxin that reacts when phototropism occurs. This causes the plant to have elongated cells on the furthest side from the light. Phototropism is one of the many plant tropisms, or movements, which respond to external stimuli. Growth towards a light source is called positive phototropism, while growth away from light is called negative phototropism. Negative phototropism is not to be confused with skototropism, which is defined as the growth towards darkness, whereas negative phototropism can refer to either the growth away from a light source or towards the darkness. Most plant shoots exhibit positive phototropism, and rearrange their chloroplasts in the leaves to maximize photosynthetic energy and promote growth. Some vine shoot tips exhibit negative phototropism, which allows them to grow towards dark, solid objects and climb them. The combination of phototropism and gravitropism allow plants to grow in the correct direction.
Randy O. Wayne is an associate professor of plant biology at Cornell University. Along with his former colleague Peter K. Hepler, Wayne established the role of calcium in regulating plant growth. Their 1985 article Calcium and Plant Development was awarded the "Citation Classic" award from Current Contents magazine. They researched how plant cells sense gravity through pressure, the water permeability of plant membranes, light microscopy, as well as the effects of calcium on plant development. Wayne authored two textbooks, including Plant Cell Biology: From Astronomy to Zoology and Light and Video Microscopy.
Ruth Lyttle Satter was an American botanist best known for her work on circadian leaf movement.
Plant intelligence is a field of plant biology which aims to understand how plants process the information they obtain from their environment. Plant neurobiological researchers claim that plants possess abilities associated with cognition including anticipation, decision making, learning and memory.
Plants are exposed to many stress factors such as disease, temperature changes, herbivory, injury and more. Therefore, in order to respond or be ready for any kind of physiological state, they need to develop some sort of system for their survival in the moment and/or for the future. Plant communication encompasses communication using volatile organic compounds, electrical signaling, and common mycorrhizal networks between plants and a host of other organisms such as soil microbes, other plants, animals, insects, and fungi. Plants communicate through a host of volatile organic compounds (VOCs) that can be separated into four broad categories, each the product of distinct chemical pathways: fatty acid derivatives, phenylpropanoids/benzenoids, amino acid derivatives, and terpenoids. Due to the physical/chemical constraints most VOCs are of low molecular mass, are hydrophobic, and have high vapor pressures. The responses of organisms to plant emitted VOCs varies from attracting the predator of a specific herbivore to reduce mechanical damage inflicted on the plant to the induction of chemical defenses of a neighboring plant before it is being attacked. In addition, the host of VOCs emitted varies from plant to plant, where for example, the Venus Fly Trap can emit VOCs to specifically target and attract starved prey. While these VOCs typically lead to increased resistance to herbivory in neighboring plants, there is no clear benefit to the emitting plant in helping nearby plants. As such, whether neighboring plants have evolved the capability to "eavesdrop" or whether there is an unknown tradeoff occurring is subject to much scientific debate. As related to the aspect of meaning-making, the field is also identified as phytosemiotics.
Stefano Mancuso is an Italian botanist, professor of the Agriculture, Food, Environment and Forestry department at his alma mater, the University of Florence. He is the director of the International Laboratory of Plant Neurobiology, steering committee member of the Society of Plant Signaling and Behavior, editor-in-chief of the Plant Signaling & Behavior journal and a member of the Accademia dei Georgofili.
Plant nucleus movement is the movement of the cell nucleus in plants by the cytoskeleton.
In plant biology, plant memory describes the ability of a plant to retain information from experienced stimuli and respond at a later time. For example, some plants have been observed to raise their leaves synchronously with the rising of the sun. Other plants produce new leaves in the spring after overwintering. Many experiments have been conducted into a plant's capacity for memory, including sensory, short-term, and long-term. The most basic learning and memory functions in animals have been observed in some plant species, and it has been proposed that the development of these basic memory mechanisms may have developed in an early organismal ancestor.
{{cite journal}}
: CS1 maint: multiple names: authors list (link)when it is touched, its leaves fold up and its branches droop, leaving it looking dead or sick in a matter of seconds