Green leaf volatiles

Last updated

Green leaf volatiles (GLV) are organic compounds released by plants. [1] Some of these chemicals function as signaling compounds between either plants of the same species, of other species, or even different lifeforms like insects. [2] [3] [4] [5]

Contents

Green leaf volatiles are involved in patterns of attack and protection between species. They have been found to increase the attractive effect of pheromones of cohabiting insect species that protect plants from attacking insect species. For example, corn plants that are being fed on by caterpillars will release GLVs that attract wasps, who then attack the caterpillars. [2] [4] GLVs also have antimicrobial properties that can prevent infection at the site of injury. [3]

GLVs include C6-aldehydes [(Z)-3-hexenal, n-hexanal] and their derivatives such as (Z)-3-hexenol, (Z)-3-hexen-1-yl acetate, and the corresponding E-isomers. [6] [7]

Functions

When a plant is attacked, it emits GLVs into the environment through the air. How a plant responds depends on the type of damage involved. Plants respond differently to damage from a purely mechanical source and damage from herbivores. Mechanical damage tends to cause damage-associated molecular patterns (DAMPs) involving plant-derived substances and breakdown products. Herbivore-associated molecular patterns (HAMPs) involve characteristic molecules left by different types of herbivores when feeding. The oral secretions of herbivores appear to play an essential role in triggering the release of species-specific herbivore-induced plant volatiles. Wounds from herbivores, and mechanical wounds that have been treated with herbivore oral secretions, both trigger the release of higher quantities of plant volatiles than mechanical damage. [4]

Volatile blends are proposed to convey a variety of information to insects and plants. "Each plant species and even each plant genotype releases its own specific blend, and the quantities and ratios in which they are released also vary with the arthropod that is feeding on a plant and may even provide information on the time of day that feeding occurs." [4] In addition to GLVs, herbivore induced plant volatiles (HIPVs) include terpenes, ethylene, methyl salicylate and other VOCs. [6]

GLVs activate the expression of genes related to the plants' defense mechanisms. [3] Different antagonists trigger different expression of genes and the biosynthesis of signaling peptides which mediate systemic defense responses. [4]

Plant–plant interactions

Undamaged neighboring plants have been shown, in some cases, to respond to GLV signals. [3] Both the plant emitting the GLVs and its neighboring plants can enter a primed state in which plants activate their defenses systems more quickly and in a stronger concentration. [8] [4]

The first study to clearly demonstrate anti-herbivore defense priming by GLVs focused on corn ( Zea mays ). Neighboring plants responded to the release of GLVs by priming against insect herbivore attack, reacting more rapidly and releasing greater levels of GLVs. [3] [9] Similar results have been shown in tomato plants. Neighboring plants reacted more strongly to GLVs from the plants exposed to the herbivore, by releasing more of the proteins related to the plants' defense mechanisms. [10]

Positive plant–insect interactions

In positive plant-insect interactions, GLVs are used as a form of defense. They attract predators to plants that are being preyed upon by herbivores. [4] For example, female parasitoid wasps from two different families, Microplitis croceipes and Netelia heroica , can be attracted to plants that are emitting GLVs due to wounding from caterpillars. [11] Maize plants emit volatiles to attract the parasitic wasps Cotesia marginiventris and Microplitis rufiventris to attack African cotton leafworm. [12] [13] In some species GLVs enhance the attraction of sex pheromones. [4] [14] For example, green leaf volatiles have been found to increase the response of tobacco budworm to sex pheromone. Budworm larvae feed on tobacco, cotton, and various flowers and weeds, and in turn can be fed on by the larvae of cohabiting species that are attracted by GLVs. [15]

In another study, a multi-plant relationship was reported. The parasitic wasps ( Vespula germanica and V. vulgaris ) prey on caterpillar (Pieris brassicae)-infested cabbage leaves that emit GLVs. The same GLVs are emitted by the orchids ( Epipactis purpurata and E. helleborine ) through pheromone release. The orchids benefit from attracting the wasps, not to protect them from insects, but because the wasps aid in pollination. [16] [17]

Benefits of GLV release have also been reported in soybeans grown in Iowa. [18] When these soybean plants became heavily infested by aphids, the amount of GLV released far surpassed normal levels and as a result, more spotted lady beetles were attracted to the pheromone releasing plants and preyed on the bugs eating the plant. The stimulus of aphid predation is chemically transmitted through the plant to coordinate an increase release of GLV’s. The particular chemical released is unique to these spotted lady beetles and when different species of beetles were tested, there wasn’t any extra inclination for them to move towards GLV releasing plants. [18] This indicates that these soybeans evolved ability to release species-specific pheromones to aid in their survival.

Negative plant–insect interactions

GLV release is correlated with fruit ripeness. [19] Although this may be of effect in attracting pollinators, it also can cause issues if these GLV’s attract predators. One such example of this is with boll weevils, as an increase of GLV release when the plants are ripe has been found to increase the predation rate of these beetles. [19]

Another issue with GLV release and increasing predation is with populations that alter GLV emissions from the affected plants. In one case, it was noted that secretions from certain species of caterpillars significantly decrease the effect amount of GLV emissions. [20] In order to determine what was being done to decrease GLV emissions, a study was run on four unique species of caterpillars to measure their effectiveness in decreasing GLV levels released from the predated plant. It’s been found that compounds in the gut and salivary glands, as well as modifications to those compounds in these various species, has been able to mute a large part of the effect of GLV released into the external environment. [20] How this is done is though stopping the flow of pheromone molecules, so they can’t interact with receptors on the leaves of other plants. [20]

Antimicrobial properties

GLVs can also have antimicrobial effects. [21] Some plants express HPL, the main enzyme of GLV synthesis. [8] The rates of fungal spore growth in HPL over-expressing have been compared with HPL silencing mutants to the wild type plants. [8] Results from the study showed lower rates of fungal growth and higher GLV emissions on the HPL over-expressing mutants, while the HPL silencing mutants showed higher rates of fungal growth and lower GLV emissions, which supports the hypothesis that GLVs have antimicrobial properties. [8]

The antimicrobial properties of GLVs have also been proposed to be part of an evolutionary arms race. During an infection, plants emit GLVs to act as microbial agents, but bacteria and viruses have adapted to use these GLVs to their own benefit. [22] The most common example of this is found in the red raspberry. When the red raspberry plant is infected, the virus influences it to produce more GLVs, which attract the red raspberry aphid. [9] These GLVs cause more aphids to come and to feed on the plant for longer, giving the virus better chances of being ingested and spread more widely. [9] Researchers are now trying to determine whether under infectious conditions plants emit GLVs for their benefit, or if bacteria and viruses induce the release of these compounds for their own benefit. [23] Studies in this area have been inconclusive and contradictory.

Pathway for biosynthesis of the GLV cis-3-hexenal from linolenic acid. The first step involves formation of the hydroperoxide by the action of a lipoxygenase. Subsequently a hydroperoxide lyase induces formation of the hemiacetal, the precursor to a volatile C6 compound. LyaseNonenalHemiAc.png
Pathway for biosynthesis of the GLV cis-3-hexenal from linolenic acid. The first step involves formation of the hydroperoxide by the action of a lipoxygenase. Subsequently a hydroperoxide lyase induces formation of the hemiacetal, the precursor to a volatile C6 compound.

Study

A systematic review by Schuman 2023 finds that most studies on plant volatiles relate to herbivore interactions. Schuman also finds that laboratory studies are overrepresented despite the wide differences in herbivore behaviour between natural and artificial settings. [25]

See also

Related Research Articles

<span class="mw-page-title-main">Companion planting</span> Agricultural technique

Companion planting in gardening and agriculture is the planting of different crops in proximity for any of a number of different reasons, including weed suppression, pest control, pollination, providing habitat for beneficial insects, maximizing use of space, and to otherwise increase crop productivity. Companion planting is a form of polyculture.

<span class="mw-page-title-main">Pheromone</span> Secreted or excreted chemical factor that triggers a social response in members of the same species

A pheromone is a secreted or excreted chemical factor that triggers a social response in members of the same species. Pheromones are chemicals capable of acting like hormones outside the body of the secreting individual, to affect the behavior of the receiving individuals. There are alarm pheromones, food trail pheromones, sex pheromones, and many others that affect behavior or physiology. Pheromones are used by many organisms, from basic unicellular prokaryotes to complex multicellular eukaryotes. Their use among insects has been particularly well documented. In addition, some vertebrates, plants and ciliates communicate by using pheromones. The ecological functions and evolution of pheromones are a major topic of research in the field of chemical ecology.

Chemical ecology is the study of chemically mediated interactions between living organisms, and the effects of those interactions on the demography, behavior and ultimately evolution of the organisms involved. It is thus a vast and highly interdisciplinary field. Chemical ecologists seek to identify the specific molecules that function as signals mediating community or ecosystem processes and to understand the evolution of these signals. The substances that serve in such roles are typically small, readily-diffusible organic molecules, but can also include larger molecules and small peptides.

<span class="mw-page-title-main">Hyperparasite</span> Parasite of another parasite

A hyperparasite, also known as a metaparasite, is a parasite whose host, often an insect, is also a parasite, often specifically a parasitoid. Hyperparasites are found mainly among the wasp-waisted Apocrita within the Hymenoptera, and in two other insect orders, the Diptera and Coleoptera (beetles). Seventeen families in Hymenoptera and a few species of Diptera and Coleoptera are hyperparasitic. Hyperparasitism developed from primary parasitism, which evolved in the Jurassic period in the Hymenoptera. Hyperparasitism intrigues entomologists because of its multidisciplinary relationship to evolution, ecology, behavior, biological control, taxonomy, and mathematical models.

<span class="mw-page-title-main">Allomone</span> Chemical communication between species that benefits the first but not the second

An allomone is a type of semiochemical produced and released by an individual of one species that affects the behaviour of a member of another species to the benefit of the originator but not the receiver. Production of allomones is a common form of defense against predators, particularly by plant species against insect herbivores. In addition to defense, allomones are also used by organisms to obtain their prey or to hinder any surrounding competitors.

<span class="mw-page-title-main">Plant defense against herbivory</span> Plants defenses against being eaten

Plant defense against herbivory or host-plant resistance (HPR) is a range of adaptations evolved by plants which improve their survival and reproduction by reducing the impact of herbivores. Plants can sense being touched, and they can use several strategies to defend against damage caused by herbivores. Many plants produce secondary metabolites, known as allelochemicals, that influence the behavior, growth, or survival of herbivores. These chemical defenses can act as repellents or toxins to herbivores or reduce plant digestibility. Another defensive strategy of plants is changing their attractiveness. To prevent overconsumption by large herbivores, plants alter their appearance by changing their size or quality, reducing the rate at which they are consumed.

Herbivores are dependent on plants for food, and have coevolved mechanisms to obtain this food despite the evolution of a diverse arsenal of plant defenses against herbivory. Herbivore adaptations to plant defense have been likened to "offensive traits" and consist of those traits that allow for increased feeding and use of a host. Plants, on the other hand, protect their resources for use in growth and reproduction, by limiting the ability of herbivores to eat them. Relationships between herbivores and their host plants often results in reciprocal evolutionary change. When a herbivore eats a plant it selects for plants that can mount a defensive response, whether the response is incorporated biochemically or physically, or induced as a counterattack. In cases where this relationship demonstrates "specificity", and "reciprocity", the species are thought to have coevolved. The escape and radiation mechanisms for coevolution, presents the idea that adaptations in herbivores and their host plants, has been the driving force behind speciation. The coevolution that occurs between plants and herbivores that ultimately results in the speciation of both can be further explained by the Red Queen hypothesis. This hypothesis states that competitive success and failure evolve back and forth through organizational learning. The act of an organism facing competition with another organism ultimately leads to an increase in the organism's performance due to selection. This increase in competitive success then forces the competing organism to increase its performance through selection as well, thus creating an "arms race" between the two species. Herbivores evolve due to plant defenses because plants must increase their competitive performance first due to herbivore competitive success.

<i>Nicotiana attenuata</i> Species of flowering plant

Nicotiana attenuata is a species of wild tobacco known by the common name coyote tobacco. It is native to western North America from British Columbia to Texas and northern Mexico, where it grows in many types of habitat. It is a glandular and sparsely hairy annual herb exceeding a meter in maximum height. The leaf blades may be 10 centimetres (4 in) long, the lower ones oval and the upper narrower in shape, and are borne on petioles. The inflorescence bears several flowers with pinkish or greenish white tubular throats 2 to 3 centimetres long, their bases enclosed in pointed sepals. The flower face has five mostly white lobes. The fruit is a capsule about 1 centimetre long.

<span class="mw-page-title-main">Chemical mimicry</span> Biological mimicry using chemicals

Chemical mimicry is a type of biological mimicry involving the use of chemicals to dupe an operator.

<span class="mw-page-title-main">Chemical defense</span>

Chemical defense is a strategy employed by many organisms to avoid consumption by producing toxic or repellent metabolites or chemical warnings which incite defensive behavioral changes. The production of defensive chemicals occurs in plants, fungi, and bacteria, as well as invertebrate and vertebrate animals. The class of chemicals produced by organisms that are considered defensive may be considered in a strict sense to only apply to those aiding an organism in escaping herbivory or predation. However, the distinction between types of chemical interaction is subjective and defensive chemicals may also be considered to protect against reduced fitness by pests, parasites, and competitors. Repellent rather than toxic metabolites are allomones, a sub category signaling metabolites known as semiochemicals. Many chemicals used for defensive purposes are secondary metabolites derived from primary metabolites which serve a physiological purpose in the organism. Secondary metabolites produced by plants are consumed and sequestered by a variety of arthropods and, in turn, toxins found in some amphibians, snakes, and even birds can be traced back to arthropod prey. There are a variety of special cases for considering mammalian antipredatory adaptations as chemical defenses as well.

Insects have a wide variety of predators, including birds, reptiles, amphibians, mammals, carnivorous plants, and other arthropods. The great majority (80–99.99%) of individuals born do not survive to reproductive age, with perhaps 50% of this mortality rate attributed to predation. In order to deal with this ongoing escapist battle, insects have evolved a wide range of defense mechanisms. The only restraint on these adaptations is that their cost, in terms of time and energy, does not exceed the benefit that they provide to the organism. The further that a feature tips the balance towards beneficial, the more likely that selection will act upon the trait, passing it down to further generations. The opposite also holds true; defenses that are too costly will have a little chance of being passed down. Examples of defenses that have withstood the test of time include hiding, escape by flight or running, and firmly holding ground to fight as well as producing chemicals and social structures that help prevent predation.

<i>Rhopalosiphum maidis</i> Species of true bug

Rhopalosiphum maidis, common names corn leaf aphid and corn aphid, is an insect, and a pest of maize and other crops. It has a nearly worldwide distribution and is typically found in agricultural fields, grasslands, and forest-grassland zones. Among aphids that feed on maize, it is the most commonly encountered and most economically damaging, particularly in tropical and warmer temperate areas. In addition to maize, R. maidis damages rice, sorghum, and other cultivated and wild monocots.

<span class="mw-page-title-main">Mimicry in plants</span>

In evolutionary biology, mimicry in plants is where a plant organism evolves to resemble another organism physically or chemically, increasing the mimic's Darwinian fitness. Mimicry in plants has been studied far less than mimicry in animals, with fewer documented cases and peer-reviewed studies. However, it may provide protection against herbivory, or may deceptively encourage mutualists, like pollinators, to provide a service without offering a reward in return.

<i>Lysibia nana</i> Species of wasp

Lysibia nana is a hyperparasitoid wasp that attacks the parasitoid wasp Cotesia glomerata.

<span class="mw-page-title-main">Tritrophic interactions in plant defense</span> Ecological interactions

Tritrophic interactions in plant defense against herbivory describe the ecological impacts of three trophic levels on each other: the plant, the herbivore, and its natural enemies. They may also be called multitrophic interactions when further trophic levels, such as soil microbes, endophytes, or hyperparasitoids are considered. Tritrophic interactions join pollination and seed dispersal as vital biological functions which plants perform via cooperation with animals.

<span class="mw-page-title-main">Floral scent</span>

Floral scent, or flower scent, is composed of all the volatile organic compounds (VOCs), or aroma compounds, emitted by floral tissue. Other names for floral scent include, aroma, fragrance, floral odour or perfume. Flower scent of most flowering plant species encompasses a diversity of VOCs, sometimes up to several hundred different compounds. The primary functions of floral scent are to deter herbivores and especially folivorous insects, and to attract pollinators. Floral scent is one of the most important communication channels mediating plant-pollinator interactions, along with visual cues.

A phytobiome consists of a plant (phyto) situated in its specific ecological area (biome), including its environment and the associated communities of organisms which inhabit it. These organisms include all macro- and micro-organisms living in, on, or around the plant including bacteria, archaea, fungi, protists, insects, animals, and other plants. The environment includes the soil, air, and climate. Examples of ecological areas are fields, rangelands, forests. Knowledge of the interactions within a phytobiome can be used to create tools for agriculture, crop management, increased health, preservation, productivity, and sustainability of cropping and forest systems.

Plants can be exposed to many stress factors such as disease, temperature changes, herbivory, injury and more. Therefore, in order to respond or be ready for any kind of physiological state, they need to develop some sort of system for their survival in the moment and/or for the future. Plant communication encompasses communication using volatile organic compounds, electrical signaling, and common mycorrhizal networks between plants and a host of other organisms such as soil microbes, other plants, animals, insects, and fungi. Plants communicate through a host of volatile organic compounds (VOCs) that can be separated into four broad categories, each the product of distinct chemical pathways: fatty acid derivatives, phenylpropanoids/benzenoids, amino acid derivatives, and terpenoids. Due to the physical/chemical constraints most VOCs are of low molecular mass, are hydrophobic, and have high vapor pressures. The responses of organisms to plant emitted VOCs varies from attracting the predator of a specific herbivore to reduce mechanical damage inflicted on the plant to the induction of chemical defenses of a neighboring plant before it is being attacked. In addition, the host of VOCs emitted varies from plant to plant, where for example, the Venus Fly Trap can emit VOCs to specifically target and attract starved prey. While these VOCs typically lead to increased resistance to herbivory in neighboring plants, there is no clear benefit to the emitting plant in helping nearby plants. As such, whether neighboring plants have evolved the capability to "eavesdrop" or whether there is an unknown tradeoff occurring is subject to much scientific debate. As related to the aspect of meaning-making, the field is also identified as phytosemiotics.

Bergamotenes are a group of isomeric chemical compounds with the molecular formula C15H24. The bergamotenes are found in a variety of plants, particularly in their essential oils.

<span class="mw-page-title-main">Smell of freshly cut grass</span> Odour released when grass is damaged

The smell of freshly cut grass is an odour caused by green leaf volatiles (GLVs) released when it is damaged. Mechanical damage to grass from activities such as lawnmowing results in the release of cis-3-hexenal and other compounds that contribute to a grassy or "green" smell. cis-3-Hexenal has a low odour detection threshold that humans can perceive at concentrations as low as 0.25 parts per billion.

References

  1. Li, Tao (2016), "Neighbour Recognition Through Volatile-Mediated Interactions", Deciphering Chemical Language of Plant Communication, Signaling and Communication in Plants, Springer International Publishing, pp. 153–174, doi:10.1007/978-3-319-33498-1_7, ISBN   9783319334967
  2. 1 2 Vernimmen, Tim (14 June 2023). "Natural pest control: Plants enlist their enemies' enemies". Knowable Magazine | Annual Reviews. doi: 10.1146/knowable-061423-1 .
  3. 1 2 3 4 5 Scala, A; Allmann, S; Mirabella, R; Haring, MA; Schuurink, RC (30 August 2013). "Green leaf volatiles: a plant's multifunctional weapon against herbivores and pathogens". International Journal of Molecular Sciences. 14 (9): 17781–811. doi: 10.3390/ijms140917781 . PMC   3794753 . PMID   23999587.
  4. 1 2 3 4 5 6 7 8 Turlings, Ted C.J.; Erb, Matthias (7 January 2018). "Tritrophic Interactions Mediated by Herbivore-Induced Plant Volatiles: Mechanisms, Ecological Relevance, and Application Potential". Annual Review of Entomology. 63 (1): 433–452. doi:10.1146/annurev-ento-020117-043507. ISSN   0066-4170. PMID   29324043.
  5. Price, Peter W.; Bouton, Carl E.; Gross, Paul; McPheron, Bruce A.; Thompson, John N.; Weis, Arthur E. (November 1980). "Interactions Among Three Trophic Levels: Influence of Plants on Interactions Between Insect Herbivores and Natural Enemies". Annual Review of Ecology and Systematics. 11 (1): 41–65. doi:10.1146/annurev.es.11.110180.000353. ISSN   0066-4162.
  6. 1 2 War, AR; Paulraj, MG; Ahmad, T; Buhroo, AA; Hussain, B; Ignacimuthu, S; Sharma, HC (1 October 2012). "Mechanisms of plant defense against insect herbivores". Plant Signaling & Behavior. 7 (10): 1306–20. doi:10.4161/psb.21663. PMC   3493419 . PMID   22895106.
  7. Ferreira, Jordana A.; Ramos, José A.; Dutra, Debora R. C. S.; Di Lella, Brandon; Helmick, Ericka E.; Queiroz, Sonia C. N.; Bahder, Brian W. (January 2023). "Identification of Green-Leaf Volatiles Released from Cabbage Palms (Sabal palmetto) Infected with the Lethal Bronzing Phytoplasma". Plants. 12 (11): 2164. doi: 10.3390/plants12112164 . ISSN   2223-7747.
  8. 1 2 3 4 ul Hassan, Muhammad Naeem; Zainal, Zamri; Ismail, Ismanizan (2015-04-10). "Green leaf volatiles: biosynthesis, biological functions and their applications in biotechnology". Plant Biotechnology Journal. 13 (6): 727–739. doi: 10.1111/pbi.12368 . ISSN   1467-7644. PMID   25865366.
  9. 1 2 3 Engelberth, Juergen; Alborn, Hans T.; Schmelz, Eric A.; Tumlinson, James H. (2004-02-10). "Airborne signals prime plants against insect herbivore attack". Proceedings of the National Academy of Sciences. 101 (6): 1781–1785. Bibcode:2004PNAS..101.1781E. doi: 10.1073/pnas.0308037100 . ISSN   0027-8424. PMC   341853 . PMID   14749516.
  10. Matsui, Kenji; Sugimoto, Kohichi; Mano, Jun'ichi; Ozawa, Rika; Takabayashi, Junji (2012-04-30). "Differential Metabolisms of Green Leaf Volatiles in Injured and Intact Parts of a Wounded Leaf Meet Distinct Ecophysiological Requirements". PLOS ONE. 7 (4): e36433. Bibcode:2012PLoSO...736433M. doi: 10.1371/journal.pone.0036433 . ISSN   1932-6203. PMC   3340338 . PMID   22558466.
  11. Whitman, Douglas W.; Eller, Fred J. (1 August 1990). "Parasitic wasps orient to green leaf volatiles". Chemoecology. 1 (2): 69–76. doi:10.1007/BF01325231. ISSN   1423-0445. S2CID   6386021.
  12. Arimura, G.-i.; Matsui, K.; Takabayashi, J. (25 February 2009). "Chemical and Molecular Ecology of Herbivore-Induced Plant Volatiles: Proximate Factors and Their Ultimate Functions". Plant and Cell Physiology. 50 (5): 911–923. doi: 10.1093/pcp/pcp030 . ISSN   0032-0781. PMID   19246460.
  13. D’Alessandro, Marco; Held, Matthias; Triponez, Yann; Turlings, Ted C. J. (December 2006). "The Role of Indole and Other Shikimic Acid Derived Maize Volatiles in the Attraction of Two Parasitic Wasps". Journal of Chemical Ecology. 32 (12): 2733–2748. doi:10.1007/s10886-006-9196-7. PMID   17123171. S2CID   1145238.
  14. Reddy, Gadi V.P; Guerrero, Angel (May 2004). "Interactions of insect pheromones and plant semiochemicals". Trends in Plant Science. 9 (5): 253–261. doi:10.1016/j.tplants.2004.03.009. PMID   15130551.
  15. Dickens, Joseph C.; Smith, James W.; Light, Douglas M. (1 September 1993). "Green leaf volatiles enhance sex attractant pheromone of the tobacco budworm,Heliothis virescens (Lep.: Noctuidae)". Chemoecology. 4 (3): 175–177. doi:10.1007/BF01256553. ISSN   1423-0445. S2CID   43030446.
  16. Brodmann, Jennifer; Twele, Robert; Francke, Wittko; Hölzler, Gerald; Zhang, Qing-He; Ayasse, Manfred (2008-05-20). "Orchids Mimic Green-Leaf Volatiles to Attract Prey-Hunting Wasps for Pollination". Current Biology. 18 (10): 740–744. doi: 10.1016/j.cub.2008.04.040 . ISSN   0960-9822. PMID   18472423.
  17. Heil, Martin; Ton, Jurriaan (2008). "Long-distance signalling in plant defence". Trends in Plant Science. 13 (6): 264–272. doi:10.1016/j.tplants.2008.03.005. PMID   18487073.
  18. 1 2 Zhu, Junwei; Park, Kye-Chung (2005-08-01). "Methyl Salicylate, a Soybean Aphid-Induced Plant Volatile Attractive to the Predator Coccinella septempunctata". Journal of Chemical Ecology. 31 (8): 1733–1746. doi:10.1007/s10886-005-5923-8. ISSN   1573-1561. PMID   16222805. S2CID   11118467.
  19. 1 2 Dickens, J. C.; Jang, E. B.; Light, D. M.; Alford, A. R. (1990-01-01). "Enhancement of insect pheromone responses by green leaf volatiles". Naturwissenschaften. 77 (1): 29–31. Bibcode:1990NW.....77...29D. doi:10.1007/BF01131792. ISSN   1432-1904. S2CID   20311560.
  20. 1 2 3 Jones, Anne C.; Seidl-Adams, Irmgard; Engelberth, Jurgen; Hunter, Charles T.; Alborn, Hans; Tumlinson, James H. (2019). "Herbivorous Caterpillars Can Utilize Three Mechanisms to Alter Green Leaf Volatile Emission". Environmental Entomology. 48 (2): 419–425. doi: 10.1093/ee/nvy191 . PMID   30668656.
  21. Brilli, Federico; Ruuskanen, Taina M.; Schnitzhofer, Ralf; Müller, Markus; Breitenlechner, Martin; Bittner, Vinzenz; Wohlfahrt, Georg; Loreto, Francesco; Hansel, Armin (2011-05-26). "Detection of Plant Volatiles after Leaf Wounding and Darkening by Proton Transfer Reaction "Time-of-Flight" Mass Spectrometry (PTR-TOF)". PLOS ONE. 6 (5): e20419. Bibcode:2011PLoSO...620419B. doi: 10.1371/journal.pone.0020419 . ISSN   1932-6203. PMC   3102719 . PMID   21637822.
  22. Fujita, Miki; Fujita, Yasunari; Noutoshi, Yoshiteru; Takahashi, Fuminori; Narusaka, Yoshihiro; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo (2006-08-01). "Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks". Current Opinion in Plant Biology. 9 (4): 436–442. doi:10.1016/j.pbi.2006.05.014. ISSN   1369-5266. PMID   16759898. S2CID   31166870.
  23. Dombrowski, James E.; Martin, Ruth C. (2018-01-29). "Activation of MAP kinases by green leaf volatiles in grasses". BMC Research Notes. 11 (1): 79. doi: 10.1186/s13104-017-3076-9 . ISSN   1756-0500. PMC   5789745 . PMID   29378628.
  24. Matsui K (2006). "Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism". Current Opinion in Plant Biology. 9 (3): 274–80. doi:10.1016/j.pbi.2006.03.002. PMID   16595187.
  25. Schuman, Meredith C. (2023). "Where, When, and Why Do Plant Volatiles Mediate Ecological Signaling? The Answer Is Blowing in the Wind". Annual Review of Plant Biology . Annual Reviews. 74: 609–633. doi: 10.1146/annurev-arplant-040121-114908 . PMID   36889007. S2CID   257425339.

Further reading