In evolutionary biology, an evolutionary arms race is an ongoing struggle between competing sets of co-evolving genes, phenotypic and behavioral traits that develop escalating adaptations and counter-adaptations against each other, resembling the geopolitical concept of an arms race. These are often described as examples of positive feedback. [1] The co-evolving gene sets may be in different species, as in an evolutionary arms race between a predator species and its prey (Vermeij, 1987), or a parasite and its host. Alternatively, the arms race may be between members of the same species, as in the manipulation/sales resistance model of communication (Dawkins & Krebs, 1979) or as in runaway evolution or Red Queen effects. One example of an evolutionary arms race is in sexual conflict between the sexes, often described with the term Fisherian runaway. Thierry Lodé [2] emphasized the role of such antagonistic interactions in evolution leading to character displacements and antagonistic coevolution.
Arms races may be classified as either symmetrical or asymmetrical. In a symmetrical arms race, selection pressure acts on participants in the same direction. An example of this is trees growing taller as a result of competition for light, where the selective advantage for either species is increased height. An asymmetrical arms race involves contrasting selection pressures, such as the case of cheetahs and gazelles, where cheetahs evolve to be better at hunting and killing while gazelles evolve not to hunt and kill, but rather to evade capture. [3]
Selective pressure between two species can include host-parasite coevolution. This antagonistic relationship leads to the necessity for the pathogen to have the best virulent alleles to infect the organism and for the host to have the best resistant alleles to survive parasitism. As a consequence, allele frequencies vary through time depending on the size of virulent and resistant populations (fluctuation of genetic selection pressure) and generation time (mutation rate) where some genotypes are preferentially selected thanks to the individual fitness gain. Genetic change accumulation in both populations explains a constant adaptation to have lower fitness costs and avoid extinction in accordance with the Red Queen's hypothesis suggested by Leigh Van Valen in 1973. [4]
The Bintje potato is derived from a cross between Munstersen and Fransen potato varieties. It was created in the Netherlands in the early 20th century and now is mainly cultivated in the North of France and Belgium. The oomycete Phytophthora infestans is responsible for the potato blight, in particular during the European famine in 1840. Zoospores (mobile spores, characteristics of oomycetes) are liberated by zoosporangia provided from a mycelium and brought by rain or wind before infecting tubers and leaves. Black colours appear on the plant because of the infection of its cellular system necessary for the multiplication of the oomycete infectious population. The parasite contains virulent-avirulent allelic combinations in several microsatellite loci, likewise the host contains several multiloci resistance genes (or R gene). That interaction is called gene-for-gene relationship and is, in general, widespread in plant diseases. Expression of genetic patterns in the two species is a combination of resistance and virulence characteristics in order to have the best survival rate. [5]
Bats have evolved to use echolocation to detect and catch their prey. Moths have in turn evolved to detect the echolocation calls of hunting bats, and evoke evasive flight maneuvers, [6] [7] or reply with their own ultrasonic clicks to confuse the bat's echolocation. [8] The Arctiidae subfamily of Noctuid moths uniquely respond to bat echolocation in three prevailing hypotheses: startle, sonar jamming, and acoustic aposematic defense. [9] All these differences depend on specific environmental settings and the type of echolocation call; however, these hypotheses are not mutually exclusive and can be used by the same moth for defense. [9]
The different defense mechanisms have been shown to be directly responsive to bat echolocation through sympatry studies. In places with spatial or temporal isolation between bats and their prey, the moth species hearing mechanism tends to regress. Fullard et al. (2004) compared adventive and endemic Noctiid moth species in a bat-free habitat to ultrasound and found that all of the adventive species reacted to the ultrasound by slowing their flight times, while only one of the endemic species reacted to the ultrasound signal, indicating a loss of hearing over time in the endemic population. [6] However, the degree of loss or regression depends on the amount of evolutionary time and whether or not the moth species has developed secondary uses for hearing. [10]
Some bats are known to use clicks at frequencies above or below moths' hearing ranges. [8] This is known as the allotonic frequency hypothesis. It argues that the auditory systems in moths have driven their bat predators to use higher or lower frequency echolocation to circumvent the moth hearing. [11] Barbastelle bats have evolved to use a quieter mode of echolocation, calling at a reduced volume and further reducing the volume of their clicks as they close in on prey moths. [8] The lower volume of clicks reduces the effective successful hunting range, but results in a significantly higher number of moths caught than other, louder bat species. [8] [12] Moths have further evolved the ability to discriminate between high and low echolocation click rates, which indicates whether the bat has just detected their presence or is actively pursuing them. [8] This allows them to decide whether or not defensive ultrasonic clicks are worth the time and energy expenditure. [13]
Rough-skinned newts have skin glands that contain a powerful nerve poison, tetrodotoxin, as an anti-predator adaptation. Throughout much of the newt's range, the common garter snake is resistant to the toxin. While in principle the toxin binds to a tube-shaped protein that acts as a sodium channel in the snake's nerve cells, a mutation in several snake populations configures the protein in such a way as to hamper or prevent binding of the toxin, conferring resistance. In turn, resistance creates a selective pressure that favors newts that produce more toxin. That in its turn imposes a selective pressure favoring snakes with mutations conferring even greater resistance. This evolutionary arms race has resulted in the newts producing levels of toxin far in excess of that needed to kill any other predator. [14] [15] [16]
In populations where garter snakes and newts live together, higher levels of tetrodotoxin and resistance to it are observed in the two species respectively. Where the species are separated, the toxin levels and resistance are lower. [17] While isolated garter snakes have lower resistance, they still demonstrate an ability to resist low levels of the toxin, suggesting an ancestral predisposition to tetrodotoxin resistance. [18] [19] The lower levels of resistance in separated populations suggest a fitness cost of both toxin production and resistance. Snakes with high levels of tetrodotoxin resistance crawl more slowly than isolated populations of snakes, making them more vulnerable to predation. [17] The same pattern is seen in isolated populations of newts, which have less toxin in their skin. [20] There are geographic hotspots where levels of tetrodotoxin and resistance are extremely high, showing a close interaction between newts and snakes. [17]
The whelk predators used their own shell to open the shell of their prey, oftentimes breaking both shells of the predator and prey in the process. This led to the fitness of larger-shelled prey to be higher and then more selected for through generations, however, the predator's population selected for those who were more efficient at opening the larger-shelled prey. [21] This example is an excellent example of asymmetrical arms race because while the prey is evolving a physical trait, the predators are adapting in a much different way.
Floodplain death adders eat three types of frogs: one nontoxic, one producing mucus when taken by the predator, and the highly toxic frogs, however, the snakes have also found if they wait to consume their toxic prey the potency decreases. In this specific case, the asymmetry enabled the snakes to overcome the chemical defenses of the toxic frogs after their death. [22] The results of the study showed that the snake became accustomed to the differences in the frogs by their hold and release timing, always holding the nontoxic, while always releasing the highly toxic frogs, with the frogs that discharge mucus somewhere in between. The snakes would also spend generously more time gaped between the release of the highly toxic frogs than the short gaped time between the release of the frogs that discharge mucus. Therefore, the snakes have a much higher advantage of being able to cope with the different frogs defensive mechanisms, while the frogs could eventually increase the potency of their toxic knowing the snakes would adapt to that change as well, such as the snakes having venom themselves for the initial attack. [22] The coevolution is still highly asymmetrical because of the advantage the predators have over their prey. [22]
When a species has not been subject to an arms race previously, it may be at a severe disadvantage and face extinction well before it could ever hope to adapt to a new predator, competitor, etc. This should not seem surprising, as one species may have been in evolutionary struggles for millions of years while the other might never have faced such pressures. This is a common problem in isolated ecosystems such as Australia or the Hawaiian Islands. In Australia, many invasive species, such as cane toads and rabbits, have spread rapidly due to a lack of competition and a lack of adaptations to cane toad bufotenine on the part of potential predators. Introduced species are a major reason why some indigenous species become endangered or even extinct, as was the case with the dodo.[ citation needed ]
Venom or zootoxin is a type of toxin produced by an animal that is actively delivered through a wound by means of a bite, sting, or similar action. The toxin is delivered through a specially evolved venom apparatus, such as fangs or a stinger, in a process called envenomation. Venom is often distinguished from poison, which is a toxin that is passively delivered by being ingested, inhaled, or absorbed through the skin, and toxungen, which is actively transferred to the external surface of another animal via a physical delivery mechanism.
Echolocation, also called bio sonar, is a biological active sonar used by several animal groups, both in the air and underwater. Echolocating animals emit calls and listen to the echoes of those calls that return from various objects near them. They use these echoes to locate and identify the objects. Echolocation is used for navigation, foraging, and hunting prey.
Tetrodotoxin (TTX) is a potent neurotoxin. Its name derives from Tetraodontiformes, an order that includes pufferfish, porcupinefish, ocean sunfish, and triggerfish; several of these species carry the toxin. Although tetrodotoxin was discovered in these fish, it is found in several other animals. It is also produced by certain infectious or symbiotic bacteria like Pseudoalteromonas, Pseudomonas, and Vibrio as well as other species found in symbiotic relationships with animals and plants.
Salamandridae is a family of salamanders consisting of true salamanders and newts. Salamandrids are distinguished from other salamanders by the lack of rib or costal grooves along the sides of their bodies and by their rough skin. Their skin is very granular because of the number of poison glands. They also lack nasolabial grooves. Most species of Salamandridae have moveable eyelids but lack lacrimal glands.
A xenobiotic is a chemical substance found within an organism that is not naturally produced or expected to be present within the organism. It can also cover substances that are present in much higher concentrations than are usual. Natural compounds can also become xenobiotics if they are taken up by another organism, such as the uptake of natural human hormones by fish found downstream of sewage treatment plant outfalls, or the chemical defenses produced by some organisms as protection against predators. The term "xenobiotic" is also used to refer to organs transplanted from one species to another.
Garter snake is the common name for small to medium-sized snakes belonging to the genus Thamnophis in the family Colubridae. They are native to North and Central America, ranging from central Canada in the north to Costa Rica in the south.
The common garter snake is a species of snake in the subfamily Natricinae of the family Colubridae. The species is indigenous to North America and found widely across the continent. There are several recognized subspecies. Most common garter snakes have a pattern of yellow stripes on a black, brown or green background, and their average total length is about 55 cm (22 in), with a maximum total length of about 137 cm (54 in). The average body mass is 150 g (5.3 oz). The common garter snake is the state reptile of Massachusetts.
Batesian mimicry is a form of mimicry where a harmless species has evolved to imitate the warning signals of a harmful species directed at a predator of them both. It is named after the English naturalist Henry Walter Bates, who worked on butterflies in the rainforests of Brazil.
In ecology, crypsis is the ability of an animal or a plant to avoid observation or detection by other animals. It may be a predation strategy or an antipredator adaptation. Methods include camouflage, nocturnality, subterranean lifestyle and mimicry. Crypsis can involve visual, olfactory or auditory concealment. When it is visual, the term cryptic coloration, effectively a synonym for animal camouflage, is sometimes used, but many different methods of camouflage are employed by animals or plants.
The genus Taricha consists of four species of highly toxic newts in the family Salamandridae. Their common name is Pacific newts, sometimes also western newts or roughskin newts. The four species within this genus are the California newt, the rough-skinned newt, the red-bellied newt, and the sierra newt, all of which are found on the Pacific coastal region from southern Alaska to southern California, with one species possibly ranging into northern Baja California, Mexico.
The rough-skinned newt or roughskin newt is a North American newt known for the strong toxin exuded from its skin.
The California newt or orange-bellied newt, is a species of newt endemic to California, in the Western United States. Its adult length can range from 5 to 8 in. Its skin produces the potent toxin tetrodotoxin.
Cycnia tenera, the dogbane tiger moth or delicate cycnia, is a moth in the family Erebidae. It occurs throughout North America, from southern British Columbia to Nova Scotia southwards to Arizona and Florida. The species is distasteful and there is evidence that it emits aposematic ultrasound signals; these may also jam bat echolocation, as the functions are not mutually exclusive.
The Sierra newt is a newt found west of the Sierra Nevada, from Shasta county to Tulare County, in California, Western North America.
Ultrasound avoidance is an escape or avoidance reflex displayed by certain animal species that are preyed upon by echolocating predators. Ultrasound avoidance is known for several groups of insects that have independently evolved mechanisms for ultrasonic hearing. Insects have evolved a variety of ultrasound-sensitive ears based upon a vibrating tympanic membrane tuned to sense the bat's echolocating calls. The ultrasonic hearing is coupled to a motor response that causes evasion of the bat during flight.
Poisonous amphibians are amphibians that produce toxins to defend themselves from predators.
Deimatic behaviour or startle display means any pattern of bluffing behaviour in an animal that lacks strong defences, such as suddenly displaying conspicuous eyespots, to scare off or momentarily distract a predator, thus giving the prey animal an opportunity to escape. The term deimatic or dymantic originates from the Greek δειματόω (deimatóo), meaning "to frighten".
Echolocation systems of animals, like human radar systems, are susceptible to interference known as echolocation jamming or sonar jamming. Jamming occurs when non-target sounds interfere with target echoes. Jamming can be purposeful or inadvertent, and can be caused by the echolocation system itself, other echolocating animals, prey, or humans. Echolocating animals have evolved to minimize jamming, however; echolocation avoidance behaviors are not always successful.
Venom in snakes and some lizards is a form of saliva that has been modified into venom over its evolutionary history. In snakes, venom has evolved to kill or subdue prey, as well as to perform other diet-related functions. While snakes occasionally use their venom in self defense, this is not believed to have had a strong effect on venom evolution. The evolution of venom is thought to be responsible for the enormous expansion of snakes across the globe.
Evolutionarily speaking, insects have responded to selective pressure from bats with new evasive mechanisms[...]
General