Self-pollination

Last updated
One type of automatic self-pollination occurs in the orchid Ophrys apifera. One of the two pollinia bends itself towards the stigma. Ophrys apifera flower2.jpg
One type of automatic self-pollination occurs in the orchid Ophrys apifera . One of the two pollinia bends itself towards the stigma.

Self-pollination is a form of pollination in which pollen from the same plant arrives at the stigma of a flower (in flowering plants) or at the ovule (in gymnosperms). There are two types of self-pollination: in autogamy, pollen is transferred to the stigma of the same flower; in geitonogamy, pollen is transferred from the anther of one flower to the stigma of another flower on the same flowering plant, or from microsporangium to ovule within a single (monoecious) gymnosperm. Some plants have mechanisms that ensure autogamy, such as flowers that do not open (cleistogamy), or stamens that move to come into contact with the stigma. The term selfing that is often used as a synonym, is not limited to self-pollination, but also applies to other type of self-fertilization.

Contents

Occurrence

Few plants self-pollinate without the aid of pollen vectors (such as wind or insects). The mechanism is seen most often in some legumes such as peanuts. In another legume, soybeans, the flowers open and remain receptive to insect cross pollination during the day. If this is not accomplished, the flowers self-pollinate as they are closing. Among other plants that can self-pollinate are many kinds of orchids, peas, sunflowers and tridax. Most of the self-pollinating plants have small, relatively inconspicuous flowers that shed pollen directly onto the stigma, sometimes even before the bud opens. Self-pollinated plants expend less energy in the production of pollinator attractants and can grow in areas where the kinds of insects or other animals that might visit them are absent or very scarce—as in the Arctic or at high elevations.

Self-pollination limits the variety of progeny and may depress plant vigor. However, self-pollination can be advantageous, allowing plants to spread beyond the range of suitable pollinators or produce offspring in areas where pollinator populations have been greatly reduced or are naturally variable. [1]

Pollination can also be accomplished by cross-pollination. Cross-pollination is the transfer of pollen, by wind or animals such as insects and birds, from the anther to the stigma of flowers on separate plants.

Types of self-pollinating flowers

Both hermaphrodite and monoecious species have the potential for self-pollination leading to self-fertilization unless there is a mechanism to avoid it. 80% of all flowering plants are hermaphroditic, meaning they contain both sexes in the same flower, while 5 percent of plant species are monoecious. The remaining 15% would therefore be dioecious (each plant unisexual). Plants that self-pollinate include several types of orchids, and sunflowers. Dandelions are capable of self-pollination as well as cross-pollination.

Advantages

There are several advantages for self-pollinating flowers. Firstly, if a given genotype is well-suited for an environment, self-pollination helps to keep this trait stable in the species. Not being dependent on pollinating agents allows self-pollination to occur when bees and wind are nowhere to be found. Self-pollination or cross pollination can be an advantage when the number of flowers is small or they are widely spaced. During self-pollination, the pollen grains are not transmitted from one flower to another. As a result, there is less wastage of pollen. Also, self-pollinating plants do not depend on external carriers. They also cannot make changes in their characters and so the features of a species can be maintained with purity. Self-pollination also helps to preserve parental characters as the gametes from the same flower are evolved. It is not necessary for flowers to produce nectar, scent, or to be colourful in order to attract pollinators.

Disadvantages

The disadvantages of self-pollination come from a lack of variation that allows no adaptation to the changing environment or potential pathogen attack. Self-pollination can lead to inbreeding depression caused by expression of deleterious recessive mutations, [2] or to the reduced health of the species, due to the breeding of related specimens. This is why many flowers that could potentially self-pollinate have a built-in mechanism to avoid it, or make it second choice at best. Genetic defects in self-pollinating plants cannot be eliminated by genetic recombination and offspring can only avoid inheriting the deleterious attributes through a chance mutation arising in a gamete.

Mixed mating

About 42% of flowering plants exhibit a mixed mating system in nature. [3] In the most common kind of system, individual plants produce a single flower type and fruits may contain self-pollinated, out-crossed or a mixture of progeny types. Another mixed mating system is referred to as dimorphic cleistogamy. In this system a single plant produces both open, potentially out-crossed and closed, obligately self-pollinated cleistogamous flowers. [4]

Example species

The evolutionary shift from outcrossing to self-fertilization is one of the most common evolutionary transitions in plants. About 10-15% of flowering plants are predominantly self-fertilizing. [5] A few well-studied examples of self-pollinating species are described below.

Orchids

Self-pollination in the slipper orchid Paphiopedilum parishii occurs when the anther changes from a solid to a liquid state and directly contacts the stigma surface without the aid of any pollinating agent. [6]

The tree-living orchid Holcoglossum amesianum has a type of self-pollination mechanism in which the bisexual flower turns its anther against gravity through 360° in order to insert pollen into its own stigma cavity—without the aid of any pollinating agent or medium. This type of self-pollination appears to be an adaptation to the windless, drought conditions that are present when flowering occurs, at a time when insects are scarce. [7] Without pollinators for outcrossing, the necessity of ensuring reproductive success appears to outweigh potential adverse effects of inbreeding. Such an adaptation may be widespread among species in similar environments.

Self-pollination in the Madagascan orchid Bulbophyllum bicoloratum occurs by virtue of a rostellum that may have regained its stigmatic function as part of the distal median stigmatic lobe. [8]

Caulokaempferia coenobialis

In the Chinese herb Caulokaempferia coenobialis a film of pollen is transported from the anther (pollen sacs) by an oily emulsion that slides sideways along the flower's style and into the individual's own stigma. [9] The lateral flow of the film of pollen along the style appears to be due solely to the spreading properties of the oily emulsion and not to gravity. This strategy may have evolved to cope with a scarcity of pollinators in the extremely shady and humid habitats of C. coenobialis.

Capsella rubella

Capsella rubella (Red Shepherd's Purse) [10] [11] is a self-pollinating species that became self-compatible 50,000 to 100,000 years ago, indicating that self-pollination is an evolutionary adaptation that can persist over many generations. Its out-crossing progenitor was identified as Capsella grandiflora.

Arabidopsis thaliana

Arabidopsis thaliana is a predominantly self-pollinating plant with an out-crossing rate in the wild estimated at less than 0.3%. [12] A study suggested that self-pollination evolved roughly a million years ago or more. [13]

Possible long-term benefit of meiosis

Meiosis followed by self-pollination produces little overall genetic variation. This raises the question of how meiosis in self-pollinating plants is adaptively maintained over extended periods (i.e. for roughly a million years or more, as in the case of A. thaliana) [13] in preference to a less complicated and less costly asexual ameiotic process for producing progeny. An adaptive benefit of meiosis that may explain its long-term maintenance in self-pollinating plants is efficient recombinational repair of DNA damage. [14] This benefit can be realized at each generation (even when genetic variation is not produced).

See also

Related Research Articles

<span class="mw-page-title-main">Fertilisation</span> Union of gametes of opposite sexes during the process of sexual reproduction to form a zygote

Fertilisation or fertilization, also known as generative fertilisation, syngamy and impregnation, is the fusion of gametes to give rise to a zygote and initiate its development into a new individual organism or offspring. While processes such as insemination or pollination, which happen before the fusion of gametes, are also sometimes informally referred to as fertilisation, these are technically separate processes. The cycle of fertilisation and development of new individuals is called sexual reproduction. During double fertilisation in angiosperms, the haploid male gamete combines with two haploid polar nuclei to form a triploid primary endosperm nucleus by the process of vegetative fertilisation.

<span class="mw-page-title-main">Pollination</span> Biological process occurring in plants

Pollination is the transfer of pollen from an anther of a plant to the stigma of a plant, later enabling fertilisation and the production of seeds. Pollinating agents can be animals such as insects, for example beetles or butterflies; birds, and bats; water; wind; and even plants themselves. Pollinating animals travel from plant to plant carrying pollen on their bodies in a vital interaction that allows the transfer of genetic material critical to the reproductive system of most flowering plants. When self-pollination occurs within a closed flower. Pollination often occurs within a species. When pollination occurs between species, it can produce hybrid offspring in nature and in plant breeding work.

<i>Capsella</i> (plant) Genus of flowering plants in the mustard family Brassicaceae

Capsella is a genus of herbaceous plant and biennial plants in the family Brassicaceae. It is a close relative of Arabidopsis, Neslia, and Halimolobos.

<span class="mw-page-title-main">Plant reproductive morphology</span> Parts of plant enabling sexual reproduction

Plant reproductive morphology is the study of the physical form and structure of those parts of plants directly or indirectly concerned with sexual reproduction.

Self-incompatibility (SI) is a general name for several genetic mechanisms that prevent self-fertilization in sexually reproducing organisms, and thus encourage outcrossing and allogamy. It is contrasted with separation of sexes among individuals (dioecy), and their various modes of spatial (herkogamy) and temporal (dichogamy) separation.

<span class="mw-page-title-main">Heterostyly</span> Two different types of flowers (style) on same plant

Heterostyly is a unique form of polymorphism and herkogamy in flowers. In a heterostylous species, two or three morphological types of flowers, termed "morphs", exist in the population. On each individual plant, all flowers share the same morph. The flower morphs differ in the lengths of the pistil and stamens, and these traits are not continuous. The morph phenotype is genetically linked to genes responsible for a unique system of self-incompatibility, termed heteromorphic self-incompatibility, that is, the pollen from a flower on one morph cannot fertilize another flower of the same morph.

<span class="mw-page-title-main">Sequential hermaphroditism</span> Sex change as part of the normal life cycle of a species

Sequential hermaphroditism is one of the two types of hermaphroditism, the other type being simultaneous hermaphroditism. It occurs when the organism's sex changes at some point in its life. In particular, a sequential hermaphrodite produces eggs and sperm at different stages in life. Sequential hermaphroditism occurs in many fish, gastropods, and plants. Species that can undergo these changes do so as a normal event within their reproductive cycle, usually cued by either social structure or the achievement of a certain age or size. In some species of fish, sequential hermaphroditism is much more common than simultaneous hermaphroditism.

Allogamy or cross-fertilization is the fertilization of an ovum from one individual with the spermatozoa of another. By contrast, autogamy is the term used for self-fertilization. In humans, the fertilization event is an instance of allogamy. Self-fertilization occurs in hermaphroditic organisms where the two gametes fused in fertilization come from the same individual. This is common in plants and certain protozoans.

<span class="mw-page-title-main">Flower</span> Reproductive structure in flowering plants

A flower, also known as a bloom or blossom, is the reproductive structure found in flowering plants. Flowers consist of a combination of vegetative organs – sepals that enclose and protect the developing flower, petals that attract pollinators, and reproductive organs that produce gametophytes, which in flowering plants produce gametes. The male gametophytes, which produce sperm, are enclosed within pollen grains produced in the anthers. The female gametophytes are contained within the ovules produced in the carpels.

<i>Asclepias asperula</i> Species of flowering plant

Asclepias asperula, commonly called antelope horns milkweed or spider milkweed, is a species of milkweed native to the Southwestern United States and northern Mexico.

<i>Holcoglossum amesianum</i> Species of orchid

Holcoglossum amesianum is an orchid species in the genus Holcoglossum.

Tristyly is a rare floral polymorphism that consists of three floral morphs that differ in regard to the length of the stamens and style within the flower. This type of floral mechanism is thought to encourage outcross pollen transfer and is usually associated with heteromorphic self-incompatibility to reduce inbreeding. It is an example of heterostyly and reciprocal herkogamy, like distyly, which is the more common form of heterostyly. Darwin first described tristylous species in 1877 in terms of the incompatibility of these three morphs.

Autogamy or self-fertilization refers to the fusion of two gametes that come from one individual. Autogamy is predominantly observed in the form of self-pollination, a reproductive mechanism employed by many flowering plants. However, species of protists have also been observed using autogamy as a means of reproduction. Flowering plants engage in autogamy regularly, while the protists that engage in autogamy only do so in stressful environments.

<span class="mw-page-title-main">Monocotyledon reproduction</span> Flowering plant reproduction system

The monocots are one of the two major groups of flowering plants, the other being the dicots. In order to reproduce they utilize various strategies such as employing forms of asexual reproduction, restricting which individuals they are sexually compatible with, or influencing how they are pollinated. Nearly all reproductive strategies that evolved in the dicots have independently evolved in monocots as well. Despite these similarities and their close relatedness, monocots and dicots have distinct traits in their reproductive biologies.

<span class="mw-page-title-main">Sexual selection in Arabidopsis thaliana</span> Mode of natural selection in plants

Sexual selection in Arabidopsis thaliana is a mode of natural selection by which the flowering plant Arabidopsis thaliana selects mates to maximize reproductive success.

Sexual selection is described as natural selection arising through preference by one sex for certain characteristics in individuals of the other sex. Sexual selection is a common concept in animal evolution but, with plants, it is oftentimes overlooked because many plants are hermaphrodites. Flowering plants show many characteristics that are often sexually selected for. For example, flower symmetry, nectar production, floral structure, and inflorescences are just a few of the many secondary sex characteristics acted upon by sexual selection. Sexual dimorphisms and reproductive organs can also be affected by sexual selection in flowering plants.

Selfing syndrome refers to plants that are autogamous and display a complex of characteristics associated with self-pollination. The term was first coined by Adrien Sicard and Michael Lenhard in 2011, but was first described in detail by Charles Darwin in his book “The Effects of Cross and Self Fertilisation in the Vegetable Kingdom” (1876), making note that the flowers of self-fertilizing plants are typically smaller and have little distance between reproductive organs.

<span class="mw-page-title-main">Mixed mating systems</span> Plants which reproduce in multiple ways

A mixed mating system, also known as “variable inbreeding” a characteristic of many hermaphroditic seed plants, where more than one means of mating is used. Mixed mating usually refers to the production of a mixture of self-fertilized (selfed) and outbred (outcrossed) seeds. Plant mating systems influence the distribution of genetic variation within and among populations, by affecting the propensity of individuals to self-fertilize or cross-fertilize . Mixed mating systems are generally characterized by the frequency of selfing vs. outcrossing, but may include the production of asexual seeds through agamospermy. The trade offs for each strategy depend on ecological conditions, pollinator abundance and herbivory and parasite load. Mating systems are not permanent within species; they can vary with environmental factors, and through domestication when plants are bred for commercial agriculture.

Reproductive assurance occurs as plants have mechanisms to assure full seed set through selfing when outcross pollen is limiting. It is assumed that self-pollination is beneficial, in spite of potential fitness costs, when there is insufficient pollinator services or outcross pollen from other individuals to accomplish full seed set.. This phenomenon has been observed since the 19th century, when Darwin observed that self-pollination was common in some plants. Constant pollen limitation may cause the evolution of automatic selfing, also known as autogamy. This occurs in plants such as weeds, and is a form of reproductive assurance. As plants pursue reproductive assurance through self-fertilization, there is an increase in homozygosity, and inbreeding depression, due to genetic load, which results in reduced fitness of selfed offspring. Solely outcrossing plants may not be successful colonizers of new regions due to lack of other plants to outcross with, so colonizing species are expected to have mechanisms of reproductive assurance - an idea first proposed by Herbert G. Baker and referred to as Baker's "law" or "rule". Baker's law predicts that reproductive assurance affects establishment of plants in many contexts, including spread by weedy plants and following long-distance dispersal, such as occurs during island colonization. As plants evolve towards increase self-fertilization, energy is redirected to seed production rather than characteristics that increased outcrossing, such as floral attractants, which is a condition known as the selfing syndrome.

Cryptic self-incompatibility (CSI) is the botanical expression that's used to describe a weakened self-incompatibility (SI) system. CSI is one expression of a mixed mating system in flowering plants. Both SI and CSI are traits that increase the frequency of fertilization of ovules by outcross pollen, as opposed to self-pollen.

References

  1. Grossenbacher D, Briscoe Runquist R, Goldberg EE, Brandvain Y (2015). "Geographic range size is predicted by plant mating system". Ecol. Lett. 18 (7): 706–13. doi:10.1111/ele.12449. PMID   25980327. S2CID   833417.
  2. Charlesworth D, Willis JH (2009). "The genetics of inbreeding depression". Nat. Rev. Genet. 10 (11): 783–96. doi:10.1038/nrg2664. PMID   19834483. S2CID   771357.
  3. Goodwillie C, Kalisz S, Eckert CG (2005). "The evolutionary enigma of mixed mating systems in plants: Occurrence, theoretical explanations, and empirical evidence". Annu. Rev. Ecol. Evol. Syst. 36: 47–79. doi:10.1146/annurev.ecolsys.36.091704.175539.
  4. Munguía-Rosas MA, Campos-Navarrete MJ, Parra-Tabla V (2013). "The effect of pollen source vs. flower type on progeny performance and seed predation under contrasting light environments in a cleistogamous herb". PLOS ONE. 8 (11): e80934. Bibcode:2013PLoSO...880934M. doi: 10.1371/journal.pone.0080934 . PMC   3829907 . PMID   24260515.
  5. Wright SI, Kalisz S, Slotte T (June 2013). "Evolutionary consequences of self-fertilization in plants". Proc. Biol. Sci. 280 (1760): 20130133. doi:10.1098/rspb.2013.0133. PMC   3652455 . PMID   23595268.
  6. Chen LJ, Liu KW, Xiao XJ, Tsai WC, Hsiao YY, Huang J, Liu ZJ (2012). "The anther steps onto the stigma for self-fertilization in a slipper orchid". PLOS ONE. 7 (5): e37478. Bibcode:2012PLoSO...737478C. doi: 10.1371/journal.pone.0037478 . PMC   3359306 . PMID   22649529.
  7. Liu KW, Liu ZJ, Huang L, Li LQ, Chen LJ, Tang GD (June 2006). "Pollination: self-fertilization strategy in an orchid". Nature. 441 (7096): 945–6. Bibcode:2006Natur.441..945L. doi:10.1038/441945a. PMID   16791185. S2CID   4382904.
  8. Gamisch A, Staedler YM, Schönenberger J, Fischer GA, Comes HP (2013). "Histological and Micro-CT Evidence of Stigmatic Rostellum Receptivity Promoting Auto-Pollination in the Madagascan Orchid Bulbophyllum bicoloratum". PLOS ONE. 8 (8): e72688. Bibcode:2013PLoSO...872688G. doi: 10.1371/journal.pone.0072688 . PMC   3742538 . PMID   23967332. S2CID   5787057.
  9. Wang Y, Zhang D, Renner SS, Chen Z (September 2004). "Botany: a new self-pollination mechanism". Nature. 431 (7004): 39–40. Bibcode:2004Natur.431...39W. doi:10.1038/431039b. PMID   15343325. S2CID   52858044.
  10. Brandvain Y, Slotte T, Hazzouri KM, Wright SI, Coop G (2013). "Genomic identification of founding haplotypes reveals the history of the selfing species Capsella rubella". PLOS Genet. 9 (9): e1003754. arXiv: 1307.4118 . doi: 10.1371/journal.pgen.1003754 . PMC   3772084 . PMID   24068948.
  11. Slotte T, Hazzouri KM, Ågren JA, Koenig D, Maumus F, Guo YL, Steige K, Platts AE, Escobar JS, Newman LK, Wang W, Mandáková T, Vello E, Smith LM, Henz SR, Steffen J, Takuno S, Brandvain Y, Coop G, Andolfatto P, Hu TT, Blanchette M, Clark RM, Quesneville H, Nordborg M, Gaut BS, Lysak MA, Jenkins J, Grimwood J, Chapman J, Prochnik S, Shu S, Rokhsar D, Schmutz J, Weigel D, Wright SI (July 2013). "The Capsella rubella genome and the genomic consequences of rapid mating system evolution". Nat. Genet. 45 (7): 831–5. doi: 10.1038/ng.2669 . PMID   23749190.
  12. Abbott RJ, Gomes MF (1989). "Population genetic structure and outcrossing rate of Arabidopsis thaliana (L.) Heynh". Heredity. 62 (3): 411–418. doi: 10.1038/hdy.1989.56 . S2CID   41914710.
  13. 1 2 Tang C, Toomajian C, Sherman-Broyles S, Plagnol V, Guo YL, Hu TT, Clark RM, Nasrallah JB, Weigel D, Nordborg M (August 2007). "The evolution of selfing in Arabidopsis thaliana". Science. 317 (5841): 1070–2. Bibcode:2007Sci...317.1070T. doi:10.1126/science.1143153. PMID   17656687. S2CID   45853624.
  14. Bernstein H, Hopf FA, Michod RE (1987). "The molecular basis of the evolution of sex". Adv Genet. Advances in Genetics. 24: 323–70. doi:10.1016/s0065-2660(08)60012-7. ISBN   9780120176243. PMID   3324702.