Pollen

Last updated
Colorized scanning electron microscope image of pollen grains from a variety of common plants: sunflower (Helianthus annuus), morning glory (Ipomoea purpurea), prairie hollyhock (Sidalcea malviflora), oriental lily (Lilium auratum), evening primrose (Oenothera fruticosa), and castor bean (Ricinus communis). Misc pollen colorized.jpg
Colorized scanning electron microscope image of pollen grains from a variety of common plants: sunflower ( Helianthus annuus ), morning glory ( Ipomoea purpurea ), prairie hollyhock ( Sidalcea malviflora ), oriental lily ( Lilium auratum ), evening primrose ( Oenothera fruticosa ), and castor bean ( Ricinus communis).
Pollen tube diagram Pollen Tube.svg
Pollen tube diagram

Pollen is a powdery substance produced by most types of flowers of seed plants for the purpose of sexual reproduction. [1] It consists of pollen grains (highly reduced microgametophytes), which produce male gametes (sperm cells).

Contents

Pollen grains have a hard coat made of sporopollenin that protects the gametophytes during the process of their movement from the stamens to the pistil of flowering plants, or from the male cone to the female cone of gymnosperms. If pollen lands on a compatible pistil or female cone, it germinates, producing a pollen tube that transfers the sperm to the ovule containing the female gametophyte. Individual pollen grains are small enough to require magnification to see detail. The study of pollen is called palynology and is highly useful in paleoecology, paleontology, archaeology, and forensics.

Pollen in plants is used for transferring haploid male genetic material from the anther of a single flower to the stigma of another in cross-pollination. [2] In a case of self-pollination, this process takes place from the anther of a flower to the stigma of the same flower. [2]

Pollen is infrequently used as food and food supplement. Because of agricultural practices, it is often contaminated by agricultural pesticides. [3]

Structure and formation

Pollen itself is not the male gamete. [4] It is a gametophyte, something that could be considered an entire organism, which then produces the male gamete. Each pollen grain contains vegetative (non-reproductive) cells (only a single cell in most flowering plants but several in other seed plants) and a generative (reproductive) cell. In flowering plants the vegetative tube cell produces the pollen tube, and the generative cell divides to form the two sperm nuclei.

Pollen grains come in a wide variety of shapes, sizes, and surface markings characteristic of the species (see electron micrograph, right). Pollen grains of pines, firs, and spruces are winged. The smallest pollen grain, that of the forget-me-not (Myosotis spp.),[ which? ] is 2.5–5  μm (0.005 mm) in diameter. [5] Corn pollen grains are large, about 90–100 μm. [6] Most grass pollen is around 20–25 μm. [5] Some pollen grains are based on geodesic polyhedra like a soccer ball. [7]

Formation

Pollen is produced in the microsporangia in the male cone of a conifer or other gymnosperm or in the anthers of an angiosperm flower.

Pollen microspores of Lycopersicon esculentum at coenocytic tetrad stage of development observed through oil immersion microscope; the chromosomes of what will become four pollen grains can be seen. Coenocytic Tetrad.gif
Pollen microspores of Lycopersicon esculentum at coenocytic tetrad stage of development observed through oil immersion microscope; the chromosomes of what will become four pollen grains can be seen.

In angiosperms, during flower development the anther is composed of a mass of cells that appear undifferentiated, except for a partially differentiated dermis. As the flower develops, fertile sporogenous cells, the archespore, form within the anther. The sporogenous cells are surrounded by layers of sterile cells that grow into the wall of the pollen sac. Some of the cells grow into nutritive cells that supply nutrition for the microspores that form by meiotic division from the sporogenous cells. The archespore cells divide by mitosis and differentiate to form pollen mother cells (microsporocyte, meiocyte).

In a process called microsporogenesis, four haploid microspores are produced from each diploid pollen mother cell, after meiotic division. After the formation of the four microspores, which are contained by callose walls, the development of the pollen grain walls begins. The callose wall is broken down by an enzyme called callase and the freed pollen grains grow in size and develop their characteristic shape and form a resistant outer wall called the exine and an inner wall called the intine. The exine is what is preserved in the fossil record.

Two basic types of microsporogenesis are recognised, simultaneous and successive. In simultaneous microsporogenesis meiotic steps I and II are completed before cytokinesis, whereas in successive microsporogenesis cytokinesis follows. While there may be a continuum with intermediate forms, the type of microsporogenesis has systematic significance. The predominant form amongst the monocots is successive, but there are important exceptions. [8]

During microgametogenesis, the unicellular microspores undergo mitosis and develop into mature microgametophytes containing the gametes. [9] In some flowering plants,[ which? ] germination of the pollen grain may begin even before it leaves the microsporangium, with the generative cell forming the two sperm cells.

Structure

Tulip anther with many grains of pollen Tulip Stamen Tip.jpg
Tulip anther with many grains of pollen
Closeup image of a cactus flower and its stamens Cactus flower pollen.jpg
Closeup image of a cactus flower and its stamens
Pollen storm in Jasper National Park Jasper - Pollen storm - 20140624B.jpg
Pollen storm in Jasper National Park

Except in the case of some submerged aquatic plants, the mature pollen grain has a double wall. The vegetative and generative cells are surrounded by a thin delicate wall of unaltered cellulose called the endospore or intine, and a tough resistant outer cuticularized wall composed largely of sporopollenin called the exospore or exine. The exine often bears spines or warts, or is variously sculptured, and the character of the markings is often of value for identifying genus, species, or even cultivar or individual.

The spines may be less than a micron in length (spinulus, plural spinuli) referred to as spinulose (scabrate), or longer than a micron (echina, echinae) referred to as echinate. Various terms also describe the sculpturing such as reticulate, a net like appearance consisting of elements (murus, muri) separated from each other by a lumen (plural lumina). These reticulations may also be referred to as brochi.

The pollen wall protects the sperm while the pollen grain is moving from the anther to the stigma; it protects the vital genetic material from drying out and solar radiation. The pollen grain surface is covered with waxes and proteins, which are held in place by structures called sculpture elements on the surface of the grain. The outer pollen wall, which prevents the pollen grain from shrinking and crushing the genetic material during desiccation,[ citation needed ] is composed of two layers. These two layers are the tectum and the foot layer, which is just above the intine. The tectum and foot layer are separated by a region called the columella, which is composed of strengthening rods. The outer wall is constructed with a resistant biopolymer called sporopollenin.

Pollen apertures are regions of the pollen wall that may involve exine thinning or a significant reduction in exine thickness. [10] They allow shrinking and swelling of the grain caused by changes in moisture content. The process of shrinking the grain is called harmomegathy. [11] Elongated apertures or furrows in the pollen grain are called colpi (singular: colpus) or sulci (singular: sulcus). Apertures that are more circular are called pores. Colpi, sulci and pores are major features in the identification of classes of pollen. [12] Pollen may be referred to as inaperturate (apertures absent) or aperturate (apertures present).

The aperture may have a lid (operculum), hence is described as operculate. [13] However the term inaperturate covers a wide range of morphological types, such as functionally inaperturate (cryptoaperturate) and omniaperturate. [8] Inaperaturate pollen grains often have thin walls, which facilitates pollen tube germination at any position. [10] Terms such as uniaperturate and triaperturate refer to the number of apertures present (one and three respectively). Spiraperturate refers to one or more apertures being spirally shaped.

The orientation of furrows (relative to the original tetrad of microspores) classifies the pollen as sulcate or colpate. Sulcate pollen has a furrow across the middle of what was the outer face when the pollen grain was in its tetrad. [14] If the pollen has only a single sulcus, it is described as monosulcate, has two sulci, as bisulcate, or more, as polysulcate. [15] [16] Colpate pollen has furrows other than across the middle of the outer faces, and similarly may be described as polycolpate if more than two. Syncolpate pollen grains have two or more colpi that are fused at the ends. [17] [14] Eudicots have pollen with three colpi ( tricolpate ) or with shapes that are evolutionarily derived from tricolpate pollen. [18] The evolutionary trend in plants has been from monosulcate to polycolpate or polyporate pollen. [14]

Additionally, gymnosperm pollen grains often have air bladders, or vesicles, called sacci. The sacci are not actually balloons, but are sponge-like, and increase the buoyancy of the pollen grain and help keep it aloft in the wind, as most gymnosperms are anemophilous. Pollen can be monosaccate, (containing one saccus) or bisaccate (containing two sacci). Modern pine, spruce, and yellowwood trees all produce saccate pollen. [19]

Pollination

European honey bee carrying pollen in a pollen basket back to the hive Apis mellifera flying.jpg
European honey bee carrying pollen in a pollen basket back to the hive
Marmalade hoverfly, pollen on its face and legs, sitting on a rockrose. Episyrphus balteatus - head close-up (aka).jpg
Marmalade hoverfly, pollen on its face and legs, sitting on a rockrose.
Diadasia bee straddles flower carpels while visiting yellow Opuntia engelmannii cactus Diadasia Bee Straddles Cactus Flower Carpels close-up.jpg
Diadasia bee straddles flower carpels while visiting yellow Opuntia engelmannii cactus

The transfer of pollen grains to the female reproductive structure ( pistil in angiosperms) is called pollination . Pollen transfer is frequently portrayed as a sequential process that begins with placement on the vector, moves through travel, and ends with deposition. [20] This transfer can be mediated by the wind, in which case the plant is described as anemophilous (literally wind-loving). Anemophilous plants typically produce great quantities of very lightweight pollen grains, sometimes with air-sacs.

Non-flowering seed plants (e.g., pine trees) are characteristically anemophilous. Anemophilous flowering plants generally have inconspicuous flowers. Entomophilous (literally insect-loving) plants produce pollen that is relatively heavy, sticky and protein-rich, for dispersal by insect pollinators attracted to their flowers. Many insects and some mites are specialized to feed on pollen, and are called palynivores.

In non-flowering seed plants, pollen germinates in the pollen chamber, located beneath the micropyle, underneath the integuments of the ovule. A pollen tube is produced, which grows into the nucellus to provide nutrients for the developing sperm cells. Sperm cells of Pinophyta and Gnetophyta are without flagella, and are carried by the pollen tube, while those of Cycadophyta and Ginkgophyta have many flagella.

When placed on the stigma of a flowering plant, under favorable circumstances, a pollen grain puts forth a pollen tube, which grows down the tissue of the style to the ovary, and makes its way along the placenta, guided by projections or hairs, to the micropyle of an ovule. The nucleus of the tube cell has meanwhile passed into the tube, as does also the generative nucleus, which divides (if it has not already) to form two sperm cells. The sperm cells are carried to their destination in the tip of the pollen tube. Double-strand breaks in DNA that arise during pollen tube growth appear to be efficiently repaired in the generative cell that carries the male genomic information to be passed on to the next plant generation. [21] However, the vegetative cell that is responsible for tube elongation appears to lack this DNA repair capability. [21]

In the fossil record

The sporopollenin outer sheath of pollen grains affords them some resistance to the rigours of the fossilisation process that destroy weaker objects; it is also produced in huge quantities. There is an extensive fossil record of pollen grains, often disassociated from their parent plant. The discipline of palynology is devoted to the study of pollen, which can be used both for biostratigraphy and to gain information about the abundance and variety of plants alive — which can itself yield important information about paleoclimates. Also, pollen analysis has been widely used for reconstructing past changes in vegetation and their associated drivers. [22] Pollen is first found in the fossil record in the late Devonian period, [23] [24] but at that time it is indistinguishable from spores. [23] It increases in abundance until the present day.

Allergy to pollen

A pine releasing pollen into the wind Pine releasing pollen into the wind in Tuntorp 4.jpg
A pine releasing pollen into the wind

Nasal allergy to pollen is called pollinosis, and allergy specifically to grass pollen is called hay fever. Generally, pollens that cause allergies are those of anemophilous plants (pollen is dispersed by air currents.) Such plants produce large quantities of lightweight pollen (because wind dispersal is random and the likelihood of one pollen grain landing on another flower is small), which can be carried for great distances and are easily inhaled, bringing it into contact with the sensitive nasal passages.

Pollen allergies are common in polar and temperate climate zones, where production of pollen is seasonal. In the tropics pollen production varies less by the season, and allergic reactions less. In northern Europe, common pollens for allergies are those of birch and alder, and in late summer wormwood and different forms of hay. Grass pollen is also associated with asthma exacerbations in some people, a phenomenon termed thunderstorm asthma. [25]

In the US, people often mistakenly blame the conspicuous goldenrod flower for allergies. Since this plant is entomophilous (its pollen is dispersed by animals), its heavy, sticky pollen does not become independently airborne. Most late summer and fall pollen allergies are probably caused by ragweed, a widespread anemophilous plant. [26]

Arizona was once regarded as a haven for people with pollen allergies, although several ragweed species grow in the desert. However, as suburbs grew and people began establishing irrigated lawns and gardens, more irritating species of ragweed gained a foothold and Arizona lost its claim of freedom from hay fever.

Anemophilous spring blooming plants such as oak, birch, hickory, pecan, and early summer grasses may also induce pollen allergies. Most cultivated plants with showy flowers are entomophilous and do not cause pollen allergies.

Symptoms of pollen allergy include sneezing, itchy, or runny nose, nasal congestion, red, itchy, and watery eyes. Substances, including pollen, that cause allergies can trigger asthma. A study found a 54% increased chance of asthma attacks when exposed to pollen. [27]

The number of people in the United States affected by hay fever is between 20 and 40 million, including around 6.1 million children [28] [29] and such allergy has proven to be the most frequent allergic response in the nation. Hay fever affects about 20% of Canadians and the prevalence is increasing. [30] There are certain evidential suggestions pointing out hay fever and similar allergies to be of hereditary origin. Individuals who suffer from eczema or are asthmatic tend to be more susceptible to developing long-term hay fever. [31]

Since 1990, pollen seasons have gotten longer and more pollen-filled, and climate change is responsible, according to a new study. [32] The researchers attributed roughly half of the lengthening pollen seasons and 8% of the trend in pollen concentrations to climate changes driven by human activity. [33]

In Denmark, decades of rising temperatures cause pollen to appear earlier and in greater amounts, exacerbated by the introduction of new species such as ragweed. [34]

The most efficient way to handle a pollen allergy is by preventing contact with the material. Individuals carrying the ailment may at first believe that they have a simple summer cold, but hay fever becomes more evident when the apparent cold does not disappear. The confirmation of hay fever can be obtained after examination by a general physician. [35]

Treatment

Antihistamines are effective at treating mild cases of pollinosis; this type of non-prescribed drugs includes loratadine, cetirizine and chlorpheniramine. They do not prevent the discharge of histamine, but it has been proven that they do prevent a part of the chain reaction activated by this biogenic amine, which considerably lowers hay fever symptoms.

Decongestants can be administered in different ways such as tablets and nasal sprays.

Allergy immunotherapy (AIT) treatment involves administering doses of allergens to accustom the body to pollen, thereby inducing specific long-term tolerance. [36] Allergy immunotherapy can be administered orally (as sublingual tablets or sublingual drops), or by injections under the skin (subcutaneous). Discovered by Leonard Noon and John Freeman in 1911, allergy immunotherapy represents the only causative treatment for respiratory allergies.

Nutrition

Most major classes of predatory and parasitic arthropods contain species that eat pollen, despite the common perception that bees are the primary pollen-consuming arthropod group. Many Hymenoptera other than bees consume pollen as adults, though only a small number feed on pollen as larvae (including some ant larvae). Spiders are normally considered carnivores but pollen is an important source of food for several species, particularly for spiderlings, which catch pollen on their webs. It is not clear how spiderlings manage to eat pollen however, since their mouths are not large enough to consume pollen grains.[ citation needed ] Some predatory mites also feed on pollen, with some species being able to subsist solely on pollen, such as Euseius tularensis , which feeds on the pollen of dozens of plant species. Members of some beetle families such as Mordellidae and Melyridae feed almost exclusively on pollen as adults, while various lineages within larger families such as Curculionidae, Chrysomelidae, Cerambycidae, and Scarabaeidae are pollen specialists even though most members of their families are not (e.g., only 36 of 40,000 species of ground beetles, which are typically predatory, have been shown to eat pollen—but this is thought to be a severe underestimate as the feeding habits are only known for 1,000 species). Similarly, Ladybird beetles mainly eat insects, but many species also eat pollen, as either part or all of their diet. Hemiptera are mostly herbivores or omnivores but pollen feeding is known (and has only been well studied in the Anthocoridae). Many adult flies, especially Syrphidae, feed on pollen, and three UK syrphid species feed strictly on pollen (syrphids, like all flies, cannot eat pollen directly due to the structure of their mouthparts, but can consume pollen contents that are dissolved in a fluid). [37] Some species of fungus, including Fomes fomentarius , are able to break down grains of pollen as a secondary nutrition source that is particularly high in nitrogen. [38] Pollen may be valuable diet supplement for detritivores, providing them with nutrients needed for growth, development and maturation. [39] It was suggested that obtaining nutrients from pollen, deposited on the forest floor during periods of pollen rains, allows fungi to decompose nutritionally scarce litter. [39]

Some species of Heliconius butterflies consume pollen as adults, which appears to be a valuable nutrient source, and these species are more distasteful to predators than the non-pollen consuming species. [40] [41]

Although bats, butterflies and hummingbirds are not pollen eaters per se , their consumption of nectar in flowers is an important aspect of the pollination process.

In humans

Bee pollen for human consumption is marketed as a food ingredient and as a dietary supplement. The largest constituent is carbohydrates, with protein content ranging from 7 to 35 percent depending on the plant species collected by bees. [42]

Honey produced by bees from natural sources contains pollen derived p-coumaric acid, [43] an antioxidant and natural bactericide that is also present in a wide variety of plants and plant-derived food products. [44]

The U.S. Food and Drug Administration (FDA) has not found any harmful effects of bee pollen consumption, except for the usual allergies. However, FDA does not allow bee pollen marketers in the United States to make health claims about their produce, as no scientific basis for these has ever been proven. Furthermore, there are possible dangers not only from allergic reactions but also from contaminants such as pesticides [3] and from fungi and bacteria growth related to poor storage procedures. A manufacturers's claim that pollen collecting helps the bee colonies is also controversial. [45]

Pine pollen (송화가루;Songhwa Garu) is traditionally consumed in Korea as an ingredient in sweets and beverages. [46]

Parasites

The growing industries in pollen harvesting for human and bee consumption rely on harvesting pollen baskets from honey bees as they return to their hives using a pollen trap. [47] When this pollen has been tested for parasites, it has been found that a multitude of viruses and eukaryotic parasites are present in the pollen. [48] [49] It is currently unclear if the parasites are introduced by the bee that collected the pollen or if it is from the flower. [49] [50] Though this is not likely to pose a risk to humans, it is a major issue for the bumblebee rearing industry that relies on thousands of tonnes of honey bee collected pollen per year. [51] Several sterilization methods have been employed, though no method has been 100% effective at sterilisation without reducing the nutritional value of the pollen [52]

Forensic palynology

An SEM micrograph of redbud pollen. Scanning electron microscopes are major instruments in palynology. RedbudPollen.TIF
An SEM micrograph of redbud pollen. Scanning electron microscopes are major instruments in palynology.

In forensic biology, pollen can tell a lot about where a person or object has been, because regions of the world, or even more particular locations such a certain set of bushes, will have a distinctive collection of pollen species. [53] Pollen evidence can also reveal the season in which a particular object picked up the pollen. [54] Pollen has been used to trace activity at mass graves in Bosnia, [55] catch a burglar who brushed against a Hypericum bush during a crime, [56] and has even been proposed as an additive for bullets to enable tracking them. [57]

Spiritual purposes

In some Native American religions, pollen was used in prayers and rituals to symbolize life and renewal by sanctifying objects, dancing grounds, trails, and sandpaintings. It may also be sprinkled over heads or in mouths. Many Navajo people believed the body became holy when it traveled over a trail sprinkled with pollen. [58]

Pollen grain staining

For agricultural research purposes, assessing the viability of pollen grains can be necessary and illuminating. A very common, efficient method to do so is known as Alexander's stain. This differential stain consists of ethanol, malachite green, distilled water, glycerol, phenol, chloral hydrate, acid fuchsin, orange G, and glacial acetic acid. [59] (A less-toxic variation omits the phenol and chloral hydrate [60] .) In angiosperms and gymnosperms non-aborted pollen grain will appear red or pink, and aborted pollen grains will appear blue or slightly green.

See also

Related Research Articles

<span class="mw-page-title-main">Gametophyte</span> Haploid stage in the life cycle of plants and algae

A gametophyte is one of the two alternating multicellular phases in the life cycles of plants and algae. It is a haploid multicellular organism that develops from a haploid spore that has one set of chromosomes. The gametophyte is the sexual phase in the life cycle of plants and algae. It develops sex organs that produce gametes, haploid sex cells that participate in fertilization to form a diploid zygote which has a double set of chromosomes. Cell division of the zygote results in a new diploid multicellular organism, the second stage in the life cycle known as the sporophyte. The sporophyte can produce haploid spores by meiosis that on germination produce a new generation of gametophytes.

<span class="mw-page-title-main">Pollinator</span> Animal that moves pollen from the male anther of a flower to the female stigma

A pollinator is an animal that moves pollen from the male anther of a flower to the female stigma of a flower. This helps to bring about fertilization of the ovules in the flower by the male gametes from the pollen grains.

<span class="mw-page-title-main">Stamen</span> Male organs of a flower

The stamen is a part consisting of the male reproductive organs of a flower. Collectively, the stamens form the androecium.

<span class="mw-page-title-main">Pollination</span> Biological process occurring in plants

Pollination is the transfer of pollen from an anther of a plant to the stigma of a plant, later enabling fertilisation and the production of seeds. Pollinating agents can be animals such as insects, for example beetles or butterflies; birds, and bats; water; wind; and even plants themselves. Pollinating animals travel from plant to plant carrying pollen on their bodies in a vital interaction that allows the transfer of genetic material critical to the reproductive system of most flowering plants. When self-pollination occurs within a closed flower. Pollination often occurs within a species. When pollination occurs between species, it can produce hybrid offspring in nature and in plant breeding work.

<span class="mw-page-title-main">Gametogenesis</span> Biological process

Gametogenesis is a biological process by which diploid or haploid precursor cells undergo cell division and differentiation to form mature haploid gametes. Depending on the biological life cycle of the organism, gametogenesis occurs by meiotic division of diploid gametocytes into various gametes, or by mitosis. For example, plants produce gametes through mitosis in gametophytes. The gametophytes grow from haploid spores after sporic meiosis. The existence of a multicellular, haploid phase in the life cycle between meiosis and gametogenesis is also referred to as alternation of generations.

<span class="mw-page-title-main">Pollen tube</span> Tubular structure to conduct male gametes of plants to the female gametes

A pollen tube is a tubular structure produced by the male gametophyte of seed plants when it germinates. Pollen tube elongation is an integral stage in the plant life cycle. The pollen tube acts as a conduit to transport the male gamete cells from the pollen grain—either from the stigma to the ovules at the base of the pistil or directly through ovule tissue in some gymnosperms. In maize, this single cell can grow longer than 12 inches (30 cm) to traverse the length of the pistil.

<span class="mw-page-title-main">Self-pollination</span> Form of pollination

Self-pollination is a form of pollination in which pollen arrives at the stigma of a flower or at the ovule of the same plant. The term cross-pollination is used for the opposite case, where pollen from one plant moves to a different plant.

<span class="mw-page-title-main">Elaioplast</span> Part of a plant

Elaioplasts are one of the three possible forms of leucoplasts, sometimes broadly referred to as such. The main function of elaioplasts is synthesis and storage of fatty acids, terpenes, and other lipids, and they can be found in the embryonic leaves of certain plants, as well as the anthers of many flowering plants.

Self-incompatibility (SI) is a general name for several genetic mechanisms that prevent self-fertilization in sexually reproducing organisms, and thus encourage outcrossing and allogamy. It is contrasted with separation of sexes among individuals (dioecy), and their various modes of spatial (herkogamy) and temporal (dichogamy) separation.

<span class="mw-page-title-main">Buzz pollination</span> Technique used by bees to release pollen

Buzz pollination or sonication is a technique used by some bees, such as solitary bees and bumblebees, to release pollen which is more or less firmly held by the anthers. The anthers of buzz-pollinated plant species are typically tubular, with an opening at only one end, and the pollen inside is smooth-grained and firmly attached. With self-fertile plants such as tomatoes, wind may be sufficient to shake loose the pollen through pores in the anther and accomplish pollination. Visits by bees may also shake loose some pollen, but more efficient pollination of those plants is accomplished by a few insect species who specialize in sonication or buzz pollination.

<span class="mw-page-title-main">Anemophily</span> Wind pollination

Anemophily or wind pollination is a form of pollination whereby pollen is distributed by wind. Almost all gymnosperms are anemophilous, as are many plants in the order Poales, including grasses, sedges, and rushes. Other common anemophilous plants are oaks, pecans, pistachios, sweet chestnuts, alders, hops, and members of the family Juglandaceae. Approximately 12% of plants across the globe are pollinated by anemophily, including cereal crops like rice and corn and other prominent crop plants like wheat, rye, barley, and oats. In addition, many pines, spruces, and firs are wind-pollinated.

<span class="mw-page-title-main">Entomophily</span> Form of pollination by insects

Entomophily or insect pollination is a form of pollination whereby pollen of plants, especially but not only of flowering plants, is distributed by insects. Flowers pollinated by insects typically advertise themselves with bright colours, sometimes with conspicuous patterns leading to rewards of pollen and nectar; they may also have an attractive scent which in some cases mimics insect pheromones. Insect pollinators such as bees have adaptations for their role, such as lapping or sucking mouthparts to take in nectar, and in some species also pollen baskets on their hind legs. This required the coevolution of insects and flowering plants in the development of pollination behaviour by the insects and pollination mechanisms by the flowers, benefiting both groups. Both the size and the density of a population are known to affect pollination and subsequent reproductive performance.

<span class="mw-page-title-main">Double fertilization</span> Complex fertilization mechanism of flowering plants

Double fertilization or double fertilisation is a complex fertilization mechanism of angiosperms. This process involves the fusion of a female gametophyte or megagametophyte, also called the embryonic sac, with two male gametes (sperm). It begins when a pollen grain adheres to the stigmatic surface of the carpel, the female reproductive structure of angiosperm flowers. The pollen grain begins to germinate, forming a pollen tube that penetrates and extends down through the style toward the ovary as it follows chemical signals released by the egg. The tip of the pollen tube then enters the ovary by penetrating through the micropyle opening in the ovule, and releases two sperm into the embryonic sac (megagametophyte).

<span class="mw-page-title-main">Microspore</span> Small land plant spores that develop into male gametophytes

Microspores are land plant spores that develop into male gametophytes, whereas megaspores develop into female gametophytes. The male gametophyte gives rise to sperm cells, which are used for fertilization of an egg cell to form a zygote. Megaspores are structures that are part of the alternation of generations in many seedless vascular cryptogams, all gymnosperms and all angiosperms. Plants with heterosporous life cycles using microspores and megaspores arose independently in several plant groups during the Devonian period. Microspores are haploid, and are produced from diploid microsporocytes by meiosis.

<span class="mw-page-title-main">Flower</span> Reproductive structure in flowering plants

A flower, also known as a bloom or blossom, is the reproductive structure found in flowering plants. Flowers consist of a combination of vegetative organs – sepals that enclose and protect the developing flower. These petals attract pollinators, and reproductive organs that produce gametophytes, which in flowering plants produce gametes. The male gametophytes, which produce sperm, are enclosed within pollen grains produced in the anthers. The female gametophytes are contained within the ovules produced in the ovary.

<span class="mw-page-title-main">Pollination syndrome</span> Flower traits that attract pollinators

Pollination syndromes are suites of flower traits that have evolved in response to natural selection imposed by different pollen vectors, which can be abiotic or biotic, such as birds, bees, flies, and so forth through a process called pollinator-mediated selection. These traits include flower shape, size, colour, odour, reward type and amount, nectar composition, timing of flowering, etc. For example, tubular red flowers with copious nectar often attract birds; foul smelling flowers attract carrion flies or beetles, etc.

Megagametogenesis is the process of maturation of the female gametophyte, or megagametophyte, in plants. During the process of megagametogenesis, the megaspore, which arises from megasporogenesis, develops into the embryonic sac, in which the female gamete is housed. These megaspores then develop into the haploid female gametophytes. This occurs within the ovule, which is housed inside the ovary.

Orbicules are small acellular structures of sporopollenin that might occur on the inner tangential and radial walls of tapetal cells. The ornamentation of the orbicule surface often resembles that of the pollen sexine. Different hypotheses about their function have been proposed, including them just being a by-product of pollen wall sporopollenin synthesis.

Sporogenesis is the production of spores in biology. The term is also used to refer to the process of reproduction via spores. Reproductive spores were found to be formed in eukaryotic organisms, such as plants, algae and fungi, during their normal reproductive life cycle. Dormant spores are formed, for example by certain fungi and algae, primarily in response to unfavorable growing conditions. Most eukaryotic spores are haploid and form through cell division, though some types are diploid sor dikaryons and form through cell fusion.we can also say this type of reproduction as single pollination

<span class="mw-page-title-main">Monocotyledon reproduction</span> Flowering plant reproduction system

The monocots are one of the two major groups of flowering plants, the other being the dicots. In order to reproduce they utilize various strategies such as employing forms of asexual reproduction, restricting which individuals they are sexually compatible with, or influencing how they are pollinated. Nearly all reproductive strategies that evolved in the dicots have independently evolved in monocots as well. Despite these similarities and their close relatedness, monocots and dicots have distinct traits in their reproductive biologies.

References

  1. "Best and Worst Flowers for People With Allergies". WebMD.com. Retrieved 2023-10-30.
  2. 1 2 Chisholm, Hugh, ed. (1911). "Pollination"  . Encyclopædia Britannica . Vol. 22 (11th ed.). Cambridge University Press. pp. 2–5.
  3. 1 2 Tosi, S.; Costa, C.; Vesco, U.; Quaglia, G.; Guido, G. (2018). "A survey of honey bee-collected pollen reveals widespread contamination by agricultural pesticides". The Science of the Total Environment. 615: 208–218. doi:10.1016/j.scitotenv.2017.09.226. PMID   28968582. S2CID   19956612.
  4. Johnstone, Adam (2001). Biology: facts & practice for A level. Oxford University Press. p.  95. ISBN   978-0-19-914766-3.
  5. 1 2 "Spores and Pollens".
  6. Pleasants, J. M.; Hellmich, R. L.; Dively, G. P.; Sears, M. K.; Stanley-Horn, D. E.; Mattila, H. R.; Foster, J. E.; Clark, P.; Jones, G. D. (2001). "Corn pollen deposition on milkweeds in and near cornfields". Proceedings of the National Academy of Sciences of the United States of America. 98 (21): 11919–24. Bibcode:2001PNAS...9811919P. doi: 10.1073/pnas.211287498 . PMC   59743 . PMID   11559840.
  7. Andrade, Kleber; Guerra, Sara; Debut, Alexis (2014). "Fullerene-Based Symmetry in Hibiscus rosa-sinensis Pollen". PLOS ONE. 9 (7): e102123. Bibcode:2014PLoSO...9j2123A. doi: 10.1371/journal.pone.0102123 . PMC   4086983 . PMID   25003375. See also this picture by Igor Siwanowicz of a morning glory pollen grain.
  8. 1 2 Furness, Carol A.; Rudall, Paula J. (January 2001). "Pollen and anther characters in monocot systematics". Grana. 40 (1–2): 17–25. Bibcode:2001Grana..40...17F. doi: 10.1080/00173130152591840 .
  9. "Pollen Development — University of Leicester". Archived from the original on 2014-10-06. Retrieved 2013-12-12.
  10. 1 2 Furness, Carol A.; Rudall, Paula J. (2004-03-01). "Pollen aperture evolution--a crucial factor for eudicot success?". Trends in Plant Science. 9 (3): 154–158. CiteSeerX   10.1.1.462.5084 . doi:10.1016/j.tplants.2004.01.001. PMID   15003239.
  11. Katifori, Eleni; Alben, Silas; Cerda, Enrique; Nelson, David R.; Dumais, Jacques (27 April 2010). "Foldable structures and the natural design of pollen grains". Proceedings of the National Academy of Sciences. 107 (17): 7635–7639. Bibcode:2010PNAS..107.7635K. doi: 10.1073/pnas.0911223107 . PMC   2867878 . PMID   20404200.
  12. Davis, Owen. "Aperture". geo.arizona.edu. Archived from the original on 2009-02-03. Retrieved 2009-02-16.
  13. Furness, Carol A.; Rudall, Paula J. (November 2003). "Apertures with Lids: Distribution and Significance of Operculate Pollen in Monocotyledons". International Journal of Plant Sciences. 164 (6): 835–854. doi:10.1086/378656. S2CID   84766627.
  14. 1 2 3 Sporne, Kenneth R. (1972). "Some Observations on the Evolution of Pollen Types in Dicotyledons". New Phytologist. 71 (1): 181–185. doi: 10.1111/j.1469-8137.1972.tb04826.x .
  15. Simpson, Michael G. (2011). "Palynology". Plant Systematics. Academic Press. pp. 453–464. ISBN   978-0-08-051404-8 . Retrieved 6 January 2014.
  16. Singh, Gurcharan (2004). "Palynology". Plant Systematics: An Integrated Approach. Science Publishers. p. 142. ISBN   9781578083510 . Retrieved 23 January 2014.
  17. Kaltenrieder & von Ballmoos 2003.
  18. Judd, Walter S. & Olmstead, Richard G. (2004). "A survey of tricolpate (eudicot) phylogenetic relationships". American Journal of Botany. 91 (10): 1627–1644. doi: 10.3732/ajb.91.10.1627 . PMID   21652313.
  19. Traverse, Alfred (1988). Paleopalynology. Unwin Hyman. ISBN   978-0045610013. OCLC   17674795.
  20. Minnaar, Corneile; Anderson, Bruce; de Jager, Marinus L; Karron, Jeffrey D (2019-01-23). "Plant–pollinator interactions along the pathway to paternity". Annals of Botany. 123 (2): 225–245. doi:10.1093/aob/mcy167. ISSN   0305-7364. PMC   6344347 . PMID   30535041.
  21. 1 2 Hirano T, Takagi K, Hoshino Y, Abe T (2013). "DNA damage response in male gametes of Cyrtanthus mackenii during pollen tube growth". AoB Plants. 5: plt004. doi:10.1093/aobpla/plt004. PMC   3583183 . PMID   23550213.
  22. Franco-Gaviria, Felipe; Caballero-Rodríguez, Dayenari; Correa-Metrio, Alexander; Pérez, Liseth; Schwalb, Antje; Cohuo, Sergio; Macario-González, Laura (6 April 2018). "The human impact imprint on modern pollen spectra of the Maya lands". Boletín de la Sociedad Geológica Mexicana. 70 (1): 61–78. doi: 10.18268/bsgm2018v70n1a4 .
  23. 1 2 Traverse, Alfred (2007). "Chapter 8: Devonian Palynology". Paleopalynology. Topics in Geobiology, 28. Vol. 28. Dordrecht: Springer. pp. 199–227. doi:10.1007/978-1-4020-5610-9_8. ISBN   978-1-4020-6684-9.
  24. Wang, De-Ming; Meng, Mei-Cen; Guo, Yun (2016). "Pollen Organ Telangiopsis sp. of Late Devonian Seed Plant and Associated Vegetative Frond". PLOS ONE. 11 (1): e0147984. Bibcode:2016PLoSO..1147984W. doi: 10.1371/journal.pone.0147984 . PMC   4725745 . PMID   26808271.
  25. Erbas, B.; Jazayeri, M.; Lambert, K. A.; Katelaris, C. H.; Prendergast, L. A.; Tham, R.; Parrodi, M. J.; Davies, J.; Newbigin, E.; Abramson, M. J.; Dharmage, S. C. (August 2018). "Outdoor pollen is a trigger of child and adolescent asthma emergency department presentations: A systematic review and meta-analysis". Allergy. 73 (8): 1632–1641. doi: 10.1111/all.13407 . hdl: 11343/283486 . PMID   29331087.
  26. Oder, Tom. "Dear allergy sufferers: Don't blame goldenrod". mnn.com. Mother Nature Network. Retrieved 18 July 2016.
  27. Baldacci, S.; Maio, S.; Cerrai, S.; Sarno, G.; Baïz, N.; Simoni, M.; Annesi-Maesano, I.; Viegi, G.; HEALS Study (2015-09-01). "Allergy and asthma: Effects of the exposure to particulate matter and biological allergens". Respiratory Medicine. 109 (9): 1089–1104. doi: 10.1016/j.rmed.2015.05.017 . ISSN   0954-6111. PMID   26073963. S2CID   205000320.
  28. "Allergy Facts | AAFA.org". www.aafa.org. Retrieved 2021-07-12.
  29. Skoner, David P. (July 2001). "Allergic rhinitis: Definition, epidemiology, pathophysiology, detection, and diagnosis". Journal of Allergy and Clinical Immunology. 108 (1): S2–S8. doi: 10.1067/mai.2001.115569 . PMID   11449200.
  30. Sierra-Heredia, Cecilia; North, Michelle; Brook, Jeff; Daly, Christina; Ellis, Anne K.; Henderson, Dave; Henderson, Sarah B.; Lavigne, Éric; Takaro, Tim K. (August 2018). "Aeroallergens in Canada: Distribution, Public Health Impacts, and Opportunities for Prevention". International Journal of Environmental Research and Public Health. 15 (8): 1577. doi: 10.3390/ijerph15081577 . PMC   6121311 . PMID   30044421.
  31. Allergies and Hay Fever WebMD. Retrieved on 2010-03-09
  32. Anderegg, William R. L.; Abatzoglou, John T.; Anderegg, Leander D. L.; Bielory, Leonard; Kinney, Patrick L.; Ziska, Lewis (2021-02-16). "Anthropogenic climate change is worsening North American pollen seasons". Proceedings of the National Academy of Sciences. 118 (7): e2013284118. Bibcode:2021PNAS..11813284A. doi: 10.1073/pnas.2013284118 . ISSN   0027-8424. PMC   7896283 . PMID   33558232.
  33. Boston, 677 Huntington Avenue; Ma 02115 +1495‑1000 (2021-02-18). "Pollen seasons are getting longer, driven by climate change". News. Retrieved 2021-07-12.{{cite web}}: CS1 maint: numeric names: authors list (link)
  34. Siewertsen, Bjarne. "Hård nyser for allergikere i varm fremtid Archived 2015-04-19 at the Wayback Machine " (English: Hard sneeze for allergic people in warm future) Danish Meteorological Institute , 18 April 2015. Retrieved: 19 April 2015.
  35. Bee, grass pollen allergy symptoms Archived 2009-10-10 at the Wayback Machine . allergiesandtreatments.com. Retrieved on 2010-03-09
  36. Moingeon, P.; Batard, T.; Fadel, R.; Frati, F.; Sieber, J.; Overtvelt, L. (February 2006). "Immune mechanisms of allergen-specific sublingual immunotherapy". Allergy. 61 (2): 151–165. doi:10.1111/j.1398-9995.2006.01002.x. PMID   16409190. S2CID   36043612.
  37. Lundgren, Jonathan G. (2009). "The Pollen Feeders". Relationships of Natural Enemies and Non-Prey Foods. Vol. 7. pp. 87–116. doi:10.1007/978-1-4020-9235-0_6. ISBN   978-1-4020-9234-3.
  38. Schwarze, Francis W. M. R.; Engels, Julia & Mattheck, Claus (2000). Fungal Strategies of Wood Decay in Trees. Springer. p. 61. ISBN   978-3-540-67205-0.
  39. 1 2 Filipiak, Michał (15 December 2016). "Pollen Stoichiometry May Influence Detrital Terrestrial and Aquatic Food Webs". Frontiers in Ecology and Evolution. 4. doi: 10.3389/fevo.2016.00138 .
  40. Salcedo, C. (1 June 2010). "Evidence of pollen digestion at nocturnal aggregations of Heliconius sara in Costa Rica (Lepidoptera: Nymphalidae)". Tropical Lepidoptera Research: 35–37.
  41. Cardoso MZ, Gilbert LE (June 2013). "Pollen feeding, resource allocation and the evolution of chemical defence in passion vine butterflies". Journal of Evolutionary Biology. 26 (6): 1254–60. doi: 10.1111/jeb.12119 . PMID   23662837. S2CID   206046558.
  42. Sanford, Malcolm T. "Producing Pollen". Archived from the original on January 13, 2007. Retrieved 2015-07-15., University of Florida, Institute of Food and Agricultural Sciences; citing P. Witherell, "Other Products of the Hive," Chapter XVIII, The Hive and the Honey Bee, Dadant & Sons, Inc., Hamilton, IL, 1975.
  43. Mao W, Schuler MA, Berenbaum MR (May 2013). "Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera". Proceedings of the National Academy of Sciences of the United States of America. 110 (22): 8842–6. Bibcode:2013PNAS..110.8842M. doi: 10.1073/pnas.1303884110 . PMC   3670375 . PMID   23630255.
  44. Lou, Zaixiang; Wang, Hongxin; Rao, Shengqi; Sun, Juntao; Ma, Chaoyang; Li, Jing (2012). "p-Coumaric acid kills bacteria through dual damage mechanisms". Food Control. 25 (2): 550–554. doi:10.1016/j.foodcont.2011.11.022.
  45. Sanford, Malcolm T. "Producing Pollen". University of Florida, Institute of Food and Agricultural Sciences. Archived from the original on 2001-04-29. Retrieved 2007-08-30. Document ENY118. Original publication date November 1, 1994. Revised February 1, 1995. Reviewed May 1, 2003.
  46. "Source". Aarongilbreath's Blog. 2013-05-31.
  47. "How a Pollen Trap Works (Bee Pollen)". YouTube . 30 April 2014. Archived from the original on 2021-11-04.
  48. Graystock, Peter; Yates, Kathryn; Evison, Sophie E. F.; Darvill, Ben; Goulson, Dave; Hughes, William O. H. (July 2013). "The Trojan hives: pollinator pathogens, imported and distributed in bumblebee colonies". Journal of Applied Ecology. 50 (5): 1207–1215. Bibcode:2013JApEc..50.1207G. doi:10.1111/1365-2664.12134. S2CID   3937352.
  49. 1 2 Singh, Rajwinder; Levitt, Abby L.; Rajotte, Edwin G.; Holmes, Edward C.; Ostiguy, Nancy; vanEngelsdorp, Dennis; Lipkin, W. Ian; dePamphilis, Claude W.; Toth, Amy L.; Cox-Foster, Diana L.; Traveset, Anna (22 December 2010). "RNA Viruses in Hymenopteran Pollinators: Evidence of Inter-Taxa Virus Transmission via Pollen and Potential Impact on Non-Apis Hymenopteran Species". PLOS ONE. 5 (12): e14357. Bibcode:2010PLoSO...514357S. doi: 10.1371/journal.pone.0014357 . PMC   3008715 . PMID   21203504.
  50. Graystock, Peter; Goulson, Dave; Hughes, William O. H. (5 August 2015). "Parasites in bloom: flowers aid dispersal and transmission of pollinator parasites within and between bee species". Proceedings of the Royal Society B: Biological Sciences. 282 (1813): 20151371. doi:10.1098/rspb.2015.1371. PMC   4632632 . PMID   26246556.
  51. Graystock, Peter; Blane, Edward J.; McFrederick, Quinn S.; Goulson, Dave; Hughes, William O.H. (October 2015). "Do managed bees drive parasite spread and emergence in wild bees?". International Journal for Parasitology: Parasites and Wildlife. 5 (1): 64–75. doi:10.1016/j.ijppaw.2015.10.001. PMC   5439461 . PMID   28560161.
  52. Graystock, P.; Jones, J.C.; Pamminger, T.; Parkinson, J.F.; Norman, V.; Blane, E.J.; Rothstein, L.; Wäckers, F.; Goulson, D.; Hughes, W.O.H. (May 2016). "Hygienic food to reduce pathogen risk to bumblebees". Journal of Invertebrate Pathology. 136: 68–73. Bibcode:2016JInvP.136...68G. doi:10.1016/j.jip.2016.03.007. PMID   26970260.
  53. Bryant, Vaughn M. "Forensic Palynology: A New Way to Catch Crooks". crimeandclues.com. Archived from the original on 2007-02-03.
  54. Stackhouse, Robert (17 April 2003). "Forensics studies look to pollen". The Battalion. Archived from the original on 2013-04-23.
  55. Wood, Peter (9 September 2004). "Pollen helps war crime forensics". BBC News.
  56. D. Mildenhall (2006). "Hypericum pollen determines the presence of burglars at the scene of a crime: An example of forensic palynology". Forensic Science International. 163 (3): 231–235. doi:10.1016/j.forsciint.2005.11.028. PMID   16406430.
  57. Wolf, Lauren K. (18 August 2008). "Newscripts". Chemical & Engineering News. 86 (33): 88. doi:10.1021/cen-v086n033.p088.
  58. Hirshfelder, Arlene (2000). Encyclopedia of Native American Religions. Facts on File, Inc. p. 225. ISBN   978-0816039494.
  59. Alexander, M. P. (1 January 1969). "Differential Staining of Aborted and Nonaborted Pollen". Stain Technology. 44 (3): 117–122. doi:10.3109/10520296909063335. PMID   4181665.
  60. Peterson, Ross; Slovin, Janet P.; Chen, Changbin (23 July 2010). "A Simplified Method for Differential Staining of Aborted and Non-Aborted Pollen Grains". International Journal of Plant Biology. 1 (2): e13. doi: 10.4081/pb.2010.e13 . eISSN   2037-0164.

Bibliography