Sporopollenin

Last updated
SEM image of pollen grains Misc pollen.jpg
SEM image of pollen grains

Sporopollenin is a biological polymer found as a major component of the tough outer (exine) walls of plant spores and pollen grains. It is chemically very stable (one of the most inert among biopolymers) [1] and is usually well preserved in soils and sediments. The exine layer is often intricately sculptured in species-specific patterns, allowing material recovered from (for example) lake sediments to provide useful information to palynologists about plant and fungal populations in the past. Sporopollenin has found uses in the field of paleoclimatology as well. Sporopollenin is also found in the cell walls of several taxa of green alga, including Phycopeltis (an ulvophycean) [2] and Chlorella . [3]

Contents

Spores are dispersed by many different environmental factors, such as wind, water or animals. In suitable conditions, the sporopollenin-rich walls of pollen grains and spores can persist in the fossil record for hundreds of millions of years, since sporopollenin is resistant to chemical degradation by organic and inorganic chemicals. [4]

Chemical composition

The chemical composition of sporopollenin has long been elusive due to its unusual chemical stability, insolubility and resistance to degradation by enzymes and strong chemical reagents. It was once thought to consist of polymerised carotenoids but the application of more detailed analytical methods since the 1980s has shown that this is not correct. [5] Analyses have revealed a complex biopolymer, containing mainly long-chain fatty acids, phenylpropanoids, phenolics and traces of carotenoids in a random co-polymer. It is likely that sporopollenin derives from several precursors that are chemically cross-linked to form a rigid structure. [4] There is also good evidence that the chemical composition of sporopollenin is not the same in all plants, indicating it is a class of compounds rather than having one constant structure. [5]

In 2019, thioacidolysis degradation and solid-state NMR was used to determine the molecular structure of pitch pine sporopollenin, finding it primarily composed of polyvinyl alcohol units alongside other aliphatic monomers, all crosslinked through a series of acetal linkages. Its complex and heterogeneous chemical structure give some protection from the biodegradative enzymes of bacteria, fungi and animals. [6] Some aromatic structures based on p-coumarate and naringenin were also identified within the sporopollenin polymer. These can absorb ultraviolet light and thus prevent it penetrating further into the spore. This has relevance to the role of pollen and spores in transporting and dispersing the gametes of plants. The DNA of the gametes is readily damaged by the ultraviolet component of daylight. Sporopollenin thus provides some protection from this damage as well as a physically robust container. [6]

Analysis of sporopollenin from the clubmoss Lycopodium in the late 1980s have shown distinct structural differences from that of flowering plants. [5] In 2020, more detailed analysis of sporopollenin from Lycopodium clavatum provided more structural information. It showed a complete lack of aromatic structures and the presence of a macrocyclic backbone of polyhydroxylated tetraketide-like monomers with pseudo-aromatic 2-pyrone rings. These were crosslinked to a poly(hydroxy acid) chain by ether linkages to form the polymer. [7]

Biosynthesis

Electron microscopy shows that the tapetal cells that surround the developing pollen grain in the anther have a highly active secretory system containing lipophilic globules. [8] These globules are believed to contain sporopollenin precursors. Tracer experiments have shown that phenylalanine is a major precursor, but other carbon sources also contribute. [4] The biosynthetic pathway for phenylpropanoid is very active in tapetal cells, supporting the idea that its products are needed for sporopollenin synthesis. Chemical inhibitors of pollen development and many male sterile mutants have effects on the secretion of these globules by the tapetal cells. [8]

See also

Related Research Articles

<span class="mw-page-title-main">Biopolymer</span> Polymer produced by a living organism

Biopolymers are natural polymers produced by the cells of living organisms. Like other polymers, biopolymers consist of monomeric units that are covalently bonded in chains to form larger molecules. There are three main classes of biopolymers, classified according to the monomers used and the structure of the biopolymer formed: polynucleotides, polypeptides, and polysaccharides. The Polynucleotides, RNA and DNA, are long polymers of nucleotides. Polypeptides include proteins and shorter polymers of amino acids; some major examples include collagen, actin, and fibrin. Polysaccharides are linear or branched chains of sugar carbohydrates; examples include starch, cellulose, and alginate. Other examples of biopolymers include natural rubbers, suberin and lignin, cutin and cutan, melanin, and polyhydroxyalkanoates (PHAs).

<span class="mw-page-title-main">Chlorophyceae</span> Class of green algae

The Chlorophyceae are one of the classes of green algae, distinguished mainly on the basis of ultrastructural morphology. They are usually green due to the dominance of pigments chlorophyll a and chlorophyll b. The chloroplast may be discoid, plate-like, reticulate, cup-shaped, spiral- or ribbon-shaped in different species. Most of the members have one or more storage bodies called pyrenoids located in the chloroplast. Pyrenoids contain protein besides starch. Some green algae may store food in the form of oil droplets. They usually have a cell wall made up of an inner layer of cellulose and outer layer of pectose.

<span class="mw-page-title-main">Chlorophyta</span> Phylum of green algae

Chlorophyta is a division of green algae informally called chlorophytes.

<span class="mw-page-title-main">Gamete</span> Haploid sex cell

A gamete is a haploid cell that fuses with another haploid cell during fertilization in organisms that reproduce sexually. Gametes are an organism's reproductive cells, also referred to as sex cells. The name gamete was introduced by the German cytologist Eduard Strasburger in 1878.

<span class="mw-page-title-main">Gametophyte</span> Haploid stage in the life cycle of plants and algae

A gametophyte is one of the two alternating multicellular phases in the life cycles of plants and algae. It is a haploid multicellular organism that develops from a haploid spore that has one set of chromosomes. The gametophyte is the sexual phase in the life cycle of plants and algae. It develops sex organs that produce gametes, haploid sex cells that participate in fertilization to form a diploid zygote which has a double set of chromosomes. Cell division of the zygote results in a new diploid multicellular organism, the second stage in the life cycle known as the sporophyte. The sporophyte can produce haploid spores by meiosis that on germination produce a new generation of gametophytes.

<span class="mw-page-title-main">Pollen</span> Grains containing the male gametophytes of seed plants

Pollen is a powdery substance produced by most types of flowers of seed plants for the purpose of sexual reproduction. It consists of pollen grains, which produce male gametes. Pollen grains have a hard coat made of sporopollenin that protects the gametophytes during the process of their movement from the stamens to the pistil of flowering plants, or from the male cone to the female cone of gymnosperms. If pollen lands on a compatible pistil or female cone, it germinates, producing a pollen tube that transfers the sperm to the ovule containing the female gametophyte. Individual pollen grains are small enough to require magnification to see detail. The study of pollen is called palynology and is highly useful in paleoecology, paleontology, archaeology, and forensics. Pollen in plants is used for transferring haploid male genetic material from the anther of a single flower to the stigma of another in cross-pollination. In a case of self-pollination, this process takes place from the anther of a flower to the stigma of the same flower.

<span class="mw-page-title-main">Spore</span> Unit of reproduction adapted for dispersal and survival in unfavorable conditions

In biology, a spore is a unit of sexual or asexual reproduction that may be adapted for dispersal and for survival, often for extended periods of time, in unfavourable conditions. Spores form part of the life cycles of many plants, algae, fungi and protozoa. They were thought to have appeared as early as the mid-late Ordovician period as an adaptation of early land plants.

<span class="mw-page-title-main">Lignin</span> Structural phenolic polymer in plant cell walls

Lignin is a class of complex organic polymers that form key structural materials in the support tissues of most plants. Lignins are particularly important in the formation of cell walls, especially in wood and bark, because they lend rigidity and do not rot easily. Chemically, lignins are polymers made by cross-linking phenolic precursors.

<span class="mw-page-title-main">Chytridiomycota</span> Division of fungi

Chytridiomycota are a division of zoosporic organisms in the kingdom Fungi, informally known as chytrids. The name is derived from the Ancient Greek χυτρίδιον (khutrídion), meaning "little pot", describing the structure containing unreleased zoospores. Chytrids are one of the earliest diverging fungal lineages, and their membership in kingdom Fungi is demonstrated with chitin cell walls, a posterior whiplash flagellum, absorptive nutrition, use of glycogen as an energy storage compound, and synthesis of lysine by the α-amino adipic acid (AAA) pathway.

<span class="mw-page-title-main">Zygomycota</span> Division or phylum of the kingdom Fungi

Zygomycota, or zygote fungi, is a former division or phylum of the kingdom Fungi. The members are now part of two phyla: the Mucoromycota and Zoopagomycota. Approximately 1060 species are known. They are mostly terrestrial in habitat, living in soil or on decaying plant or animal material. Some are parasites of plants, insects, and small animals, while others form symbiotic relationships with plants. Zygomycete hyphae may be coenocytic, forming septa only where gametes are formed or to wall off dead hyphae. Zygomycota is no longer recognised as it was not believed to be truly monophyletic.

<span class="mw-page-title-main">Gametogenesis</span> Biological process

Gametogenesis is a biological process by which diploid or haploid precursor cells undergo cell division and differentiation to form mature haploid gametes. Depending on the biological life cycle of the organism, gametogenesis occurs by meiotic division of diploid gametocytes into various gametes, or by mitosis. For example, plants produce gametes through mitosis in gametophytes. The gametophytes grow from haploid spores after sporic meiosis. The existence of a multicellular, haploid phase in the life cycle between meiosis and gametogenesis is also referred to as alternation of generations.

<span class="mw-page-title-main">Pollen tube</span> Tubular structure to conduct male gametes of plants to the female gametes

A pollen tube is a tubular structure produced by the male gametophyte of seed plants when it germinates. Pollen tube elongation is an integral stage in the plant life cycle. The pollen tube acts as a conduit to transport the male gamete cells from the pollen grain—either from the stigma to the ovules at the base of the pistil or directly through ovule tissue in some gymnosperms. In maize, this single cell can grow longer than 12 inches (30 cm) to traverse the length of the pistil.

<span class="mw-page-title-main">Suberin</span> Hydrophobic lipid polyester in plant cell walls

Suberin is a lipophilic, complex polyester biopolymer of plants, composed of long-chain fatty acids called suberin acids and glycerol. Suberin, interconnected with cutins and lignins, also complex macromolecules, form a protective barrier in the epidermal and peridermal cell walls of higher plants. Suberins and lignins are considered covalently linked to lipids and carbohydrates, respectively, and lignin is covalently linked to suberin, and to a lesser extent, to cutin. Suberin is a major constituent of cork, and is named after the cork oak, Quercus suber. Its main function is as a barrier to movement of water and solutes.

<span class="mw-page-title-main">Double fertilization</span> Complex fertilization mechanism of flowering plants

Double fertilization or double fertilisation is a complex fertilization mechanism of angiosperms. This process involves the fusion of a female gametophyte or megagametophyte, also called the embryonic sac, with two male gametes (sperm). It begins when a pollen grain adheres to the stigmatic surface of the carpel, the female reproductive structure of angiosperm flowers. The pollen grain begins to germinate, forming a pollen tube that penetrates and extends down through the style toward the ovary as it follows chemical signals released by the egg. The tip of the pollen tube then enters the ovary by penetrating through the micropyle opening in the ovule, and releases two sperm into the embryonic sac (megagametophyte).

<span class="mw-page-title-main">Phenylpropanoid</span>

The phenylpropanoids are a diverse family of organic compounds that are biosynthesized by plants from the amino acids phenylalanine and tyrosine in the shikimic acid pathway. Their name is derived from the six-carbon, aromatic phenyl group and the three-carbon propene tail of coumaric acid, which is the central intermediate in phenylpropanoid biosynthesis. From 4-coumaroyl-CoA emanates the biosynthesis of myriad natural products including lignols, flavonoids, isoflavonoids, coumarins, aurones, stilbenes, catechin, and phenylpropanoids. The coumaroyl component is produced from cinnamic acid.

<span class="mw-page-title-main">Biological pigment</span> Substances produced by living organisms

Biological pigments, also known simply as pigments or biochromes, are substances produced by living organisms that have a color resulting from selective color absorption. Biological pigments include plant pigments and flower pigments. Many biological structures, such as skin, eyes, feathers, fur and hair contain pigments such as melanin in specialized cells called chromatophores. In some species, pigments accrue over very long periods during an individual's lifespan.

Plant reproduction is the production of new offspring in plants, which can be accomplished by sexual or asexual reproduction. Sexual reproduction produces offspring by the fusion of gametes, resulting in offspring genetically different from either parent. Asexual reproduction produces new individuals without the fusion of gametes, resulting in clonal plants that are genetically identical to the parent plant and each other, unless mutations occur.

Orbicules are small acellular structures of sporopollenin that might occur on the inner tangential and radial walls of tapetal cells. The ornamentation of the orbicule surface often resembles that of the pollen sexine. Different hypotheses about their function have been proposed, including them just being a by-product of pollen wall sporopollenin synthesis.

Dinosporin is a macromolecular, highly resistant organic compound which forms or partly forms, the enclosing wall of fossilizable organic-walled dinoflagellate cysts.

Most fossils represent mineralized material such as bone or shells. However, biopolymers such as chitin and collagen can sometimes leave fossils – most famously in Burgess Shale type preservation and palynomorphs. The preservation of soft tissue is not as rare as sometimes thought.

References

  1. The Evolution of Plant Physiology. London: Elsevier Academic Press. 2004-02-05. p. 45. ISBN   978-0-12-339552-8.
  2. Good, B. H.; Chapman, R. L. (1978). "The Ultrastructure of Phycopeltis (Chroolepidaceae: Chlorophyta). I. Sporopollenin in the Cell Walls". American Journal of Botany. 65 (1): 27–33. doi:10.2307/2442549. JSTOR   2442549.
  3. Atkinson, A. W.; Gunning, B. E. S.; John, P. C. L. (1972). "Sporopollenin in the cell wall of Chlorella and other algae: Ultrastructure, chemistry, and incorporation of 14C-acetate, studied in synchronous cultures". Planta. 107 (1): 1–32. Bibcode:1972Plant.107....1A. doi:10.1007/BF00398011. PMID   24477346. S2CID   19630391.
  4. 1 2 3 Shaw, G. (1971), "THE CHEMISTRY OF SPOROPOLLENIN", Sporopollenin, Elsevier, pp. 305–350, doi:10.1016/b978-0-12-135750-4.50017-1, ISBN   9780121357504
  5. 1 2 3 Guilford, W. J.; Opella, S. J.; Schneider, D. M.; Labovitz, J. (1988). "High Resolution Solid State 13C NMR Spectroscopy of Sporopollenins from Different Plant Taxa". Plant Physiology. 86 (1): 134–136. doi:10.1104/pp.86.1.134. JSTOR   4271095. PMC   1054442 . PMID   16665854.
  6. 1 2 Weng, Jing-Ke; Hong, Mei; Jacobowitz, Joseph; Phyo, Pyae; Li, Fu-Shuang (January 2019). "The molecular structure of plant sporopollenin". Nature Plants. 5 (1): 41–46. Bibcode:2019NatPl...5...41L. doi:10.1038/s41477-018-0330-7. ISSN   2055-0278. OSTI   1617031. PMID   30559416. S2CID   56174700.
  7. Mikhael, Abanoub; Jurcic, Kristina; Schneider, Celine; others, and 7 (2020). "Demystifying and unravelling the molecular structure of the biopolymer sporopollenin". Rapid Communications in Mass Spectrometry. 34 (10): e8740. Bibcode:2020RCMS...34.8740M. doi:10.1002/rcm.8740. PMID   32003875. S2CID   210984485 . Retrieved 8 July 2021.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  8. 1 2 Boavida, L. C.; Becker, J. D.; Feijo, J. A. (2005). "The making of gametes in higher plants". The International Journal of Developmental Biology. 49 (5–6): 595–614. doi: 10.1387/ijdb.052019lb . hdl: 10400.7/77 . PMID   16096968.

Further reading