Bees | |
---|---|
The sugarbag bee, Tetragonula carbonaria | |
Scientific classification | |
Domain: | Eukaryota |
Kingdom: | Animalia |
Phylum: | Arthropoda |
Class: | Insecta |
Order: | Hymenoptera |
Suborder: | Apocrita |
Infraorder: | Aculeata |
Superfamily: | Apoidea |
Clade: | Anthophila |
Families | |
Synonyms | |
Apiformes (from Latin 'apis' ) |
Bees are winged insects closely related to wasps and ants, known for their roles in pollination and, in the case of the best-known bee species, the western honey bee, for producing honey. Bees are a monophyletic lineage within the superfamily Apoidea. They are currently considered a clade, called Anthophila. [1] There are over 20,000 known species of bees in seven recognized biological families. [2] [3] [4] Some species –including honey bees, bumblebees, and stingless bees –live socially in colonies while most species (>90%) –including mason bees, carpenter bees, leafcutter bees, and sweat bees –are solitary.
Bees are found on every continent except Antarctica, in every habitat on the planet that contains insect-pollinated flowering plants. The most common bees in the Northern Hemisphere are the Halictidae, or sweat bees, but they are small and often mistaken for wasps or flies. Bees range in size from tiny stingless bee species, whose workers are less than 2 millimetres (0.08 in) long, [5] to the leafcutter bee Megachile pluto , the largest species of bee, whose females can attain a length of 39 millimetres (1.54 in).
Bees feed on nectar and pollen, the former primarily as an energy source and the latter primarily for protein and other nutrients. Most pollen is used as food for their larvae. Vertebrate predators of bees include primates and birds such as bee-eaters; insect predators include beewolves and dragonflies.
Bee pollination is important both ecologically and commercially, and the decline in wild bees has increased the value of pollination by commercially managed hives of honey bees. The analysis of 353 wild bee and hoverfly species across Britain from 1980 to 2013 found the insects have been lost from a quarter of the places they inhabited in 1980. [6]
Human beekeeping or apiculture (meliponiculture for stingless bees) has been practised for millennia, since at least the times of Ancient Egypt and Ancient Greece. Bees have appeared in mythology and folklore, through all phases of art and literature from ancient times to the present day, although primarily focused in the Northern Hemisphere where beekeeping is far more common. In Mesoamerica, the Mayans have practiced large-scale intensive meliponiculture since pre-Columbian times. [5]
The immediate ancestors of bees were stinging wasps in the family Crabronidae, which were predators of other insects. The switch from insect prey to pollen may have resulted from the consumption of prey insects which were flower visitors and were partially covered with pollen when they were fed to the wasp larvae. This same evolutionary scenario may have occurred within the vespoid wasps, where the pollen wasps evolved from predatory ancestors.
Based on phylogenetic analysis, bees are thought to have originated during the Early Cretaceous (about 124 million years ago) on the supercontinent of West Gondwana, just prior to its breakup into South America and Africa. The supercontinent is thought to have been a largely xeric environment at this time; modern bee diversity hotspots are also in xeric and seasonal temperate environments, suggesting strong niche conservatism among bees ever since their origins. [7]
Genomic analysis indicates that despite only appearing much later in the fossil record, all modern bee families had already diverged from one another by the end of the Cretaceous. The Melittidae, Apidae, and Megachilidae had already evolved on the supercontinent prior to its fragmentation. Further divergences were facilitated by West Gondwana's breakup around 100 million years ago, leading to a deep Africa-South America split within both the Apidae and Megachilidae, the isolation of the Melittidae in Africa, and the origins of the Colletidae, Andrenidae and Halictidae in South America. The rapid radiation of the South American bee families is thought to have followed the concurrent radiation of flowering plants in the same region. Later in the Cretaceous (80 million years ago), colletid bees colonized Australia from South America (with an offshoot lineage evolving into the Stenotritidae), and by the end of the Cretaceous, South American bees had also colonized North America. [7] The North American fossil taxon Cretotrigona belongs to a group that is no longer found in North America, suggesting that many bee lineages went extinct during the Cretaceous-Paleogene extinction event. [7]
Following the K-Pg extinction, surviving bee lineages continued to spread into the Northern Hemisphere, colonizing Europe from Africa by the Paleocene, and then spreading east to Asia. This was facilitated by the warming climate around the same time, allowing bees to move to higher latitudes following the spread of tropical and subtropical habitats. By the Eocene (~45 mya) there was already considerable diversity among eusocial bee lineages. [8] [a] A second extinction event among bees is thought to have occurred due to rapid climatic cooling around the Eocene-Oligocene boundary, leading to the extinction of some bee lineages such as the tribe Melikertini. Over the Paleogene and Neogene, different bee lineages continued to spread all over the world, and the shifting habitats and connectedness of continents led to the isolation and evolution of many new bee tribes. [7]
The oldest non-compression bee fossil is Cretotrigona prisca , a corbiculate bee of Late Cretaceous age (~70 mya) found in New Jersey amber. [11] A fossil from the early Cretaceous (~100 mya), Melittosphex burmensis , was initially considered "an extinct lineage of pollen-collecting Apoidea sister to the modern bees", [12] but subsequent research has rejected the claim that Melittosphex is a bee, or even a member of the superfamily Apoidea to which bees belong, instead treating the lineage as incertae sedis within the Aculeata. [13]
The Allodapini (within the Apidae) appeared around 53 Mya. [14] The Colletidae appear as fossils only from the late Oligocene (~25 Mya) to early Miocene. [15] The Melittidae are known from Palaeomacropis eocenicus in the Early Eocene. [16] The Megachilidae are known from trace fossils (characteristic leaf cuttings) from the Middle Eocene. [17] The Andrenidae are known from the Eocene-Oligocene boundary, around 34 Mya, of the Florissant shale. [18] The Halictidae first appear in the Early Eocene [19] with species [20] [21] found in amber. The Stenotritidae are known from fossil brood cells of Pleistocene age. [22]
The earliest animal-pollinated flowers were shallow, cup-shaped blooms pollinated by insects such as beetles, so the syndrome of insect pollination was well established before the first appearance of bees. The novelty is that bees are specialized as pollination agents, with behavioral and physical modifications that specifically enhance pollination, and are the most efficient pollinating insects. In a process of coevolution, flowers developed floral rewards [23] such as nectar and longer tubes, and bees developed longer tongues to extract the nectar. [24] Bees also developed structures known as scopal hairs and pollen baskets to collect and carry pollen. The location and type differ among and between groups of bees. Most species have scopal hairs on their hind legs or on the underside of their abdomens. Some species in the family Apidae have pollen baskets on their hind legs, while very few lack these and instead collect pollen in their crops. [3] The appearance of these structures drove the adaptive radiation of the angiosperms, and, in turn, bees themselves. [9] Bees coevolved not only with flowers but it is believed that some species coevolved with mites. Some provide tufts of hairs called acarinaria that appear to provide lodgings for mites; in return, it is believed that mites eat fungi that attack pollen, so the relationship in this case may be mutualistic. [25] [26]
Molecular phylogeny was used by Debevic et al, 2012, to demonstrate that the bees (Anthophila) arose from deep within the Crabronidae sensu lato , which was thus rendered paraphyletic. In their study, the placement of the monogeneric Heterogynaidae was uncertain. The small family Mellinidae was not included in this analysis. [27]
Further studies by Sann et al., 2018, elevated the subfamilies (plus one tribe and one subtribe) of Crabronidae sensu lato to family status. They also recovered the placement of Heterogyna within Nyssonini and sunk Heterogynaidae. The newly erected family, Ammoplanidae, formerly a subtribe of Pemphredoninae, was recovered as the most sister family to bees. [28]
Apoidea |
| |||||||||||||||||||||||||||||||||||||||
This cladogram of the bee families is based on Hedtke et al., 2013, which places the former families Dasypodaidae and Meganomiidae as subfamilies inside the Melittidae. [29] English names, where available, are given in parentheses.
Anthophila (bees) |
| |||||||||||||||||||||||||||||||||||||||
Bees differ from closely related groups such as wasps by having branched or plume-like setae (hairs), combs on the forelimbs for cleaning their antennae, small anatomical differences in limb structure, and the venation of the hind wings; and in females, by having the seventh dorsal abdominal plate divided into two half-plates. [30]
Bees have the following characteristics: [31]
The largest species of bee is thought to be Wallace's giant bee Megachile pluto , whose females can attain a length of 39 millimetres (1.54 in). [32] The smallest species may be dwarf stingless bees in the tribe Meliponini whose workers are less than 2 millimetres (0.08 in) in length. [33]
According to inclusive fitness theory, organisms can gain fitness not just through increasing their own reproductive output, but also that of close relatives. In evolutionary terms, individuals should help relatives when Cost < Relatedness * Benefit. The requirements for eusociality are more easily fulfilled by haplodiploid species such as bees because of their unusual relatedness structure. [34]
In haplodiploid species, females develop from fertilized eggs and males from unfertilized eggs. Because a male is haploid (has only one copy of each gene), his daughters (which are diploid, with two copies of each gene) share 100% of his genes and 50% of their mother's. Therefore, they share 75% of their genes with each other. This mechanism of sex determination gives rise to what W. D. Hamilton termed "supersisters", more closely related to their sisters than they would be to their own offspring. [35] Workers often do not reproduce, but they can pass on more of their genes by helping to raise their sisters (as queens) than they would by having their own offspring (each of which would only have 50% of their genes), assuming they would produce similar numbers. This unusual situation has been proposed as an explanation of the multiple (at least nine) evolutions of eusociality within Hymenoptera. [36] [37]
Haplodiploidy is neither necessary nor sufficient for eusociality. Some eusocial species such as termites are not haplodiploid. Conversely, all bees are haplodiploid but not all are eusocial, and among eusocial species many queens mate with multiple males, creating half-sisters that share only 25% of each other's genes. [38] But, monogamy (queens mating singly) is the ancestral state for all eusocial species so far investigated, so it is likely that haplodiploidy contributed to the evolution of eusociality in bees. [36]
Bees may be solitary or may live in various types of communities. Eusociality appears to have originated from at least three independent origins in halictid bees. [39] The most advanced of these are species with eusocial colonies; these are characterised by cooperative brood care and a division of labour into reproductive and non-reproductive adults, plus overlapping generations. [40] This division of labour creates specialized groups within eusocial societies which are called castes. In some species, groups of cohabiting females may be sisters, and if there is a division of labour within the group, they are considered semisocial. The group is called eusocial if, in addition, the group consists of a mother (the queen) and her daughters (workers). When the castes are purely behavioural alternatives, with no morphological differentiation other than size, the system is considered primitively eusocial, as in many paper wasps; when the castes are morphologically discrete, the system is considered highly eusocial. [24]
True honey bees (genus Apis , of which eight species are currently recognized) are highly eusocial, and are among the best known insects. Their colonies are established by swarms, consisting of a queen and several thousand workers. There are 29 subspecies of one of these species, Apis mellifera , native to Europe, the Middle East, and Africa. Africanized bees are a hybrid strain of A. mellifera that escaped from experiments involving crossing European and African subspecies; they are extremely defensive. [41]
Stingless bees are also highly eusocial. They practise mass provisioning, with complex nest architecture and perennial colonies also established via swarming. [5] [42]
Many bumblebees are eusocial, similar to the eusocial Vespidae such as hornets in that the queen initiates a nest on her own rather than by swarming. Bumblebee colonies typically have from 50 to 200 bees at peak population, which occurs in mid to late summer. Nest architecture is simple, limited by the size of the pre-existing nest cavity, and colonies rarely last more than a year. [43] In 2011, the International Union for Conservation of Nature set up the Bumblebee Specialist Group to review the threat status of all bumblebee species worldwide using the IUCN Red List criteria. [44]
There are many more species of primitively eusocial than highly eusocial bees, but they have been studied less often. Most are in the family Halictidae, or "sweat bees". Colonies are typically small, with a dozen or fewer workers, on average. Queens and workers differ only in size, if at all. Most species have a single season colony cycle, even in the tropics, and only mated females hibernate. A few species have long active seasons and attain colony sizes in the hundreds, such as Halictus hesperus . [45] Some species are eusocial in parts of their range and solitary in others, [46] or have a mix of eusocial and solitary nests in the same population. [47] The orchid bees (Apidae) include some primitively eusocial species with similar biology. Some allodapine bees (Apidae) form primitively eusocial colonies, with progressive provisioning: a larva's food is supplied gradually as it develops, as is the case in honey bees and some bumblebees. [48]
Most other bees, including familiar insects such as carpenter bees, leafcutter bees and mason bees are solitary in the sense that every female is fertile, and typically inhabits a nest she constructs herself. There is no division of labor so these nests lack queens and worker bees for these species. Solitary bees typically produce neither honey nor beeswax. Bees collect pollen to feed their young, and have the necessary adaptations to do this. However, certain wasp species such as pollen wasps have similar behaviours, and a few species of bee scavenge from carcases to feed their offspring. [30] Solitary bees are important pollinators; they gather pollen to provision their nests with food for their brood. Often it is mixed with nectar to form a paste-like consistency. Some solitary bees have advanced types of pollen-carrying structures on their bodies. Very few species of solitary bee are being cultured for commercial pollination. Most of these species belong to a distinct set of genera which are commonly known by their nesting behavior or preferences, namely: carpenter bees, sweat bees, mason bees, plasterer bees, squash bees, dwarf carpenter bees, leafcutter bees, alkali bees and digger bees. [49]
Most solitary bees are fossorial, digging nests in the ground in a variety of soil textures and conditions, while others create nests in hollow reeds or twigs, or holes in wood. The female typically creates a compartment (a "cell") with an egg and some provisions for the resulting larva, then seals it off. A nest may consist of numerous cells. When the nest is in wood, usually the last (those closer to the entrance) contain eggs that will become males. The adult does not provide care for the brood once the egg is laid, and usually dies after making one or more nests. The males typically emerge first and are ready for mating when the females emerge. Solitary bees are very unlikely to sting (only in self-defense, if ever), and some (esp. in the family Andrenidae) are stingless. [50] [51]
While solitary, females each make individual nests. [52] Some species, such as the European mason bee Hoplitis anthocopoides , [53] and the Dawson's Burrowing bee, Amegilla dawsoni, [54] are gregarious, preferring to make nests near others of the same species, and giving the appearance of being social. Large groups of solitary bee nests are called aggregations, to distinguish them from colonies. In some species, multiple females share a common nest, but each makes and provisions her own cells independently. This type of group is called "communal" and is not uncommon. The primary advantage appears to be that a nest entrance is easier to defend from predators and parasites when multiple females use that same entrance regularly. [53]
The life cycle of a bee, be it a solitary or social species, involves the laying of an egg, the development through several moults of a legless larva, a pupation stage during which the insect undergoes complete metamorphosis, followed by the emergence of a winged adult. The number of eggs laid by a female during her lifetime can vary from eight or less in some solitary bees, to more than a million in highly social species. [55] Most solitary bees and bumble bees in temperate climates overwinter as adults or pupae and emerge in spring when increasing numbers of flowering plants come into bloom. The males usually emerge first and search for females with which to mate. Like the other members of Hymenoptera bees are haplodiploid; the sex of a bee is determined by whether or not the egg is fertilised. After mating, a female stores the sperm, and determines which sex is required at the time each individual egg is laid, fertilised eggs producing female offspring and unfertilised eggs, males. Tropical bees may have several generations in a year and no diapause stage. [56] [57] [58] [59]
The egg is generally oblong, slightly curved and tapering at one end. Solitary bees, lay each egg in a separate cell with a supply of mixed pollen and nectar next to it. This may be rolled into a pellet or placed in a pile and is known as mass provisioning. Social bee species provision progressively, that is, they feed the larva regularly while it grows. The nest varies from a hole in the ground or in wood, in solitary bees, to a substantial structure with wax combs in bumblebees and honey bees. [60]
In most species, larvae are whitish grubs, roughly oval and bluntly-pointed at both ends. They have 15 segments and spiracles in each segment for breathing. They have no legs but move within the cell, helped by tubercles on their sides. They have short horns on the head, jaws for chewing food and an appendage on either side of the mouth tipped with a bristle. There is a gland under the mouth that secretes a viscous liquid which solidifies into the silk they use to produce a cocoon. The cocoon is semi-transparent and the pupa can be seen through it. Over the course of a few days, the larva undergoes metamorphosis into a winged adult. When ready to emerge, the adult splits its skin dorsally and climbs out of the exuviae and breaks out of the cell. [60]
Antoine Magnan's 1934 book Le vol des insectes says that he and André Sainte-Laguë had applied the equations of air resistance to insects and found that their flight could not be explained by fixed-wing calculations, but that "One shouldn't be surprised that the results of the calculations don't square with reality". [61] This has led to a common misconception that bees "violate aerodynamic theory". In fact it merely confirms that bees do not engage in fixed-wing flight, and that their flight is explained by other mechanics, such as those used by helicopters. [62] In 1996 it was shown that vortices created by many insects' wings helped to provide lift. [63] High-speed cinematography [64] and robotic mock-up of a bee wing [65] showed that lift was generated by "the unconventional combination of short, choppy wing strokes, a rapid rotation of the wing as it flops over and reverses direction, and a very fast wing-beat frequency". Wing-beat frequency normally increases as size decreases, but as the bee's wing beat covers such a small arc, it flaps approximately 230 times per second, faster than a fruitfly (200 times per second) which is 80 times smaller. [66]
The ethologist Karl von Frisch studied navigation in the honey bee. He showed that honey bees communicate by the waggle dance, in which a worker indicates the location of a food source to other workers in the hive. He demonstrated that bees can recognize a desired compass direction in three different ways: by the Sun, by the polarization pattern of the blue sky, and by the Earth's magnetic field. He showed that the Sun is the preferred or main compass; the other mechanisms are used under cloudy skies or inside a dark beehive. [67] Bees navigate using spatial memory with a "rich, map-like organization". [68]
The gut of bees is relatively simple, but multiple metabolic strategies exist in the gut microbiota. [69] Pollinating bees consume nectar and pollen, which require different digestion strategies by somewhat specialized bacteria. While nectar is a liquid of mostly monosaccharide sugars and so easily absorbed, pollen contains complex polysaccharides: branching pectin and hemicellulose. [70] Approximately five groups of bacteria are involved in digestion. Three groups specialize in simple sugars ( Snodgrassella and two groups of Lactobacillus ), and two other groups in complex sugars ( Gilliamella and Bifidobacterium ). Digestion of pectin and hemicellulose is dominated by bacterial clades Gilliamella and Bifidobacterium respectively. Bacteria that cannot digest polysaccharides obtain enzymes from their neighbors, and bacteria that lack certain amino acids do the same, creating multiple ecological niches. [71]
Although most bee species are nectarivorous and palynivorous, some are not. Particularly unusual are vulture bees in the genus Trigona, which consume carrion and wasp brood, turning meat into a honey-like substance. [72] Drinking guttation drops from leaves is also a source of energy and nutrients. [73]
Most bees are polylectic (generalist) meaning they collect pollen from a range of flowering plants, but some are oligoleges (specialists), in that they only gather pollen from one or a few species or genera of closely related plants. [74] In Melittidae and Apidae we also find a few genera that are highly specialized for collecting plant oils both in addition to, and instead of, nectar, which is mixed with pollen as larval food. [75] Male orchid bees in some species gather aromatic compounds from orchids, which is one of the few cases where male bees are effective pollinators. Bees are able to sense the presence of desirable flowers through ultraviolet patterning on flowers, floral odors, [76] and even electromagnetic fields. [77] Once landed, a bee then uses nectar quality [76] and pollen taste [78] to determine whether to continue visiting similar flowers.
In rare cases, a plant species may only be effectively pollinated by a single bee species, and some plants are endangered at least in part because their pollinator is also threatened. But, there is a pronounced tendency for oligolectic bees to be associated with common, widespread plants visited by multiple pollinator species. For example, the creosote bush in the arid parts of the United States southwest is associated with some 40 oligoleges. [79]
Many bees are aposematically coloured, typically orange and black, warning of their ability to defend themselves with a powerful sting. As such they are models for Batesian mimicry by non-stinging insects such as bee-flies, robber flies and hoverflies, [80] all of which gain a measure of protection by superficially looking and behaving like bees. [80]
Bees are themselves Müllerian mimics of other aposematic insects with the same colour scheme, including wasps, lycid and other beetles, and many butterflies and moths (Lepidoptera) which are themselves distasteful, often through acquiring bitter and poisonous chemicals from their plant food. All the Müllerian mimics, including bees, benefit from the reduced risk of predation that results from their easily recognised warning coloration. [81]
Bees are also mimicked by plants such as the bee orchid which imitates both the appearance and the scent of a female bee; male bees attempt to mate (pseudocopulation) with the furry lip of the flower, thus pollinating it. [82]
Brood parasites occur in several bee families including the apid subfamily Nomadinae. [83] Females of these species lack pollen collecting structures (the scopa) and do not construct their own nests. They typically enter the nests of pollen collecting species, and lay their eggs in cells provisioned by the host bee. When the "cuckoo" bee larva hatches, it consumes the host larva's pollen ball, and often the host egg also. [84] In particular, the Arctic bee species, Bombus hyperboreus is an aggressive species that attacks and enslaves other bees of the same subgenus. However, unlike many other bee brood parasites, they have pollen baskets and often collect pollen. [85]
In Southern Africa, hives of African honeybees (A. mellifera scutellata) are being destroyed by parasitic workers of the Cape honeybee, A. m. capensis. These lay diploid eggs ("thelytoky"), escaping normal worker policing, leading to the colony's destruction; the parasites can then move to other hives. [86]
The cuckoo bees in the Bombus subgenus Psithyrus are closely related to, and resemble, their hosts in looks and size. This common pattern gave rise to the ecological principle "Emery's rule". Others parasitize bees in different families, like Townsendiella , a nomadine apid, two species of which are cleptoparasites of the dasypodaid genus Hesperapis , [87] while the other species in the same genus attacks halictid bees. [88]
Four bee families (Andrenidae, Colletidae, Halictidae, and Apidae) contain some species that are crepuscular. Most are tropical or subtropical, but some live in arid regions at higher latitudes. These bees have greatly enlarged ocelli, which are extremely sensitive to light and dark, though incapable of forming images. Some have refracting superposition compound eyes: these combine the output of many elements of their compound eyes to provide enough light for each retinal photoreceptor. Their ability to fly by night enables them to avoid many predators, and to exploit flowers that produce nectar only or also at night. [89]
Vertebrate predators of bees include bee-eaters, shrikes and flycatchers, which make short sallies to catch insects in flight. [90] Swifts and swallows [90] fly almost continually, catching insects as they go. The honey buzzard attacks bees' nests and eats the larvae. [91] The greater honeyguide interacts with humans by guiding them to the nests of wild bees. The humans break open the nests and take the honey and the bird feeds on the larvae and the wax. [92] Among mammals, predators such as the badger dig up bumblebee nests and eat both the larvae and any stored food. [93]
Specialist ambush predators of visitors to flowers include crab spiders, which wait on flowering plants for pollinating insects; predatory bugs, and praying mantises, [90] some of which (the flower mantises of the tropics) wait motionless, aggressive mimics camouflaged as flowers. [94] Beewolves are large wasps that habitually attack bees; [90] the ethologist Niko Tinbergen estimated that a single colony of the beewolf Philanthus triangulum might kill several thousand honeybees in a day: all the prey he observed were honeybees. [95] Other predatory insects that sometimes catch bees include robber flies and dragonflies. [90] Honey bees are affected by parasites including tracheal and Varroa mites. [96] However, some bees are believed to have a mutualistic relationship with mites. [26]
Some mites of genus Tarsonemus are associated with bees. They live in bee nests and ride on adult bees for dispersal. They are presumed to feed on fungi, nest materials or pollen. However, the impact they have on bees remains uncertain. [97]
Recent studies have shown that mycelium provides honey bees and stingless bees with vital nutrients. Specific fungi, such as Zygosaccharomyces sp, Candida sp., and Monascus ruber, produce chemicals that fight against bacteria, fungal infections from different species, and viruses. Recently these types of bees have been observed eating mycelium, suggesting that honey bees have been “foraging mushrooms to collect antimicrobial medicine to boost their collective immunity”. [98] Without these vital nutrients, honey bee morbidity rates rise, and the possibility of fungal infections can spike, leading to unhealthy bee hives and honey shortage. Fungal infections can also lead to colony collapse disorder, so the ingestion of mycelium lowers the morbidity rate of honey bees by preventing those fungal infections from happening. Colony collapse disorder (CCD) is when worker bees abandon the queen bee and leave behind the brood and a few nurse bees. This however is not enough to sustain a hive as workers are required to construct and maintain the hive structure as well as produce honey. Colony collapse disorder can also happen when varroa mites infiltrate a hive. These mites will attack and eat bees inside a hive, making it impossible for them to continue to reproduce and make honey. The presence of varroa mites results in a decrease in bee population, deformed bees, an inability to reproduce on the bees part, and overall weakening of the colony. Varroa mites are only capable of reproducing inside of a honey bee colony, posing an even greater threat if they are able to infiltrate because it will destroy their home. Mycelium has been shown to germinate inside of varroa mites and grow from the inside out, killing the mites and protecting the bees. The extermination of mites by mycelium is a better alternative to pesticides that have shown to be toxic towards the bee colony. Mycelium also plays a role in boosting anti-inflammatory and antibacterial resistance in bees due to the ecdysteroids and Zygosaccharomyces found in mycelium, which are then fed to larvae, boosting the next generations immunity and improving overall hive health. Zygosaccharomyces are “spoilage yeasts that have an extreme resistance to acids and preservatives” and can “tolerate high concentrations of sugars and salts”. [99] Honey bees depend on this source of steroids to allow them to develop properly during insect pupation.
The symbiotic relationship between bees and mycelium is found primarily in Brazilian stingless bees and Malaysian stingless bees - or more commonly honey bees. Bee broods are the larvae of honeybees. They can typically be found inside of a bee hive, and in man made hives especially, the honeybees can be found developing at different stages (eggs, larvae, and pupae) inside a hexagonal shape. Bee larvae are incapable of producing steroids at birth, so they ingest mycelium to receive vital nutrients they cannot create on their own such as ecdysteroids and Zygosaccharomyces sp. [100] Once the honey bee eggs hatch, a white microbial film starts to grow on the boundary between the brood cell and the larval food supply, and is then ingested by the larvae to complete their development. [100]
Gut microbiota play an immense role in the health of the entire bee colony. Three studies were recently conducted and each introduced a new organism to the bees gut microbiota. The bees were fed aged pollen, the assembly of the gut microbiota was disturbed, and antibiotic tetracycline entered their diet. All three studies showed that the honey bees' ability to survive decreased drastically and they became more likely to contract parasites and fungal infections. [101] The introduction of certain mycelium to the honey bees gut microbiota has the opposite effect to what took place in these three studies, highlighting the importance of what bees ingest and the impacts it has on their survivability during both the development and adult stages.
As mentioned above, honey bees cannot produce steroids themselves, they must be ingested through their diet, specifically in the early development process. Larvae eat the fungus and the ecdysteroids and Zygosaccharomyces produced by the mycelium benefit the larvae. Ecdysteroids are naturally occurring steroids found in mycelium and they help enhance performance and reproduction, boosting honey production and keeping the hive population running at a stable rate. “Zygosaccharomyces sp. is essential for S. depilis larvae”. [100] These sterols thus have a high impact on the survival rate of honey bees. Their ingestion determines whether the honey bees will be able to protect themselves against fungal infections, viruses, and whether or not they will have sufficient strength to increase honey production and the ability to pollinate a larger area and more frequently.
Knowledge of how mycelium boosts honey bees immunity could be pivotal to the increase of a honey bee's lifespan and boost reproduction by helping implement new policies to prevent the use of harmful pesticides. [100]
Pesticides have been diminishing the bee population recently due to a lack of regulations regarding what can and cannot be sprayed on produce to protect it from being damaged during growth. When honey bees collect pollen and nectar for nutrition and to make honey, they are also ingesting harmful chemicals. Such chemicals take a toll on the honey bees' already sensitive gut microbiome and lead to a higher morbidity rate in honey bees. "These microbes can suffer with toxic pesticides applied in agriculture, causing dangerous changes in the colony fitness and perturbing bees' health.” (Yordanova, M. et al., 2022) [102]
With the research provided on the positive impact of mycelium on bees, the relationship between mycelium and honey bees is symbiotic in that the survival of bees and the mycelium's ability to help boost bee pollination, boosts the ability of the fungi to grow because bee pollination improves air and soil quality, thus boosting plant life. Allowing for a higher survivability rate for both bees and mycelium if they are able to perform their environmental roles properly without the interruption of harmful government approved pesticides. The recent studies done on the symbiotic relationship between mycelium and honey bees will prove to be vital in the argument towards lessening the types of chemicals legally allowed to be sprayed on produce. The use of pesticides on lawns and for other agricultural uses destroy the livelihood of mycelium by killing the soil it grows in, inhibiting bees from ingesting the necessary nutrients mycelium provides to survive.
Homer's Hymn to Hermes describes three bee-maidens with the power of divination and thus speaking truth, and identifies the food of the gods as honey. Sources associated the bee maidens with Apollo and, until the 1980s, scholars followed Gottfried Hermann (1806) in incorrectly identifying the bee-maidens with the Thriae. [103] Honey, according to a Greek myth, was discovered by a nymph called Melissa ("Bee"); and honey was offered to the Greek gods from Mycenean times. Bees were also associated with the Delphic oracle and the prophetess was sometimes called a bee. [104]
The image of a community of honey bees has been used from ancient to modern times, in Aristotle and Plato; in Virgil and Seneca; in Erasmus and Shakespeare; Tolstoy, and by political and social theorists such as Bernard Mandeville and Karl Marx as a model for human society. [105] In English folklore, bees would be told of important events in the household, in a custom known as "Telling the bees". [106]
Some of the oldest examples of bees in art are rock paintings in Spain which have been dated to 15,000 BC. [107]
W. B. Yeats's poem The Lake Isle of Innisfree (1888) contains the couplet "Nine bean rows will I have there, a hive for the honey bee, / And live alone in the bee loud glade." At the time he was living in Bedford Park in the West of London. [108] Beatrix Potter's illustrated book The Tale of Mrs Tittlemouse (1910) features Babbity Bumble and her brood (pictured). Kit Williams' treasure hunt book The Bee on the Comb (1984) uses bees and beekeeping as part of its story and puzzle. Sue Monk Kidd's The Secret Life of Bees (2004), and the 2009 film starring Dakota Fanning, tells the story of a girl who escapes her abusive home and finds her way to live with a family of beekeepers, the Boatwrights.
The 2007 animated comedy film Bee Movie used Jerry Seinfeld's first script and was his first work for children; he starred as a bee named Barry B. Benson, alongside Renée Zellweger. Critics found its premise awkward and its delivery tame. [109] Dave Goulson's A Sting in the Tale (2014) describes his efforts to save bumblebees in Britain, as well as much about their biology. The playwright Laline Paull's fantasy The Bees (2015) tells the tale of a hive bee named Flora 717 from hatching onwards. [110]
Humans have kept honey bee colonies, commonly in hives, for millennia. Beekeepers collect honey, beeswax, propolis, pollen, and royal jelly from hives; bees are also kept to pollinate crops and to produce bees for sale to other beekeepers.
Depictions of humans collecting honey from wild bees date to 15,000 years ago; efforts to domesticate them are shown in Egyptian art around 4,500 years ago. [111] Simple hives and smoke were used; [112] [113] jars of honey were found in the tombs of pharaohs such as Tutankhamun.
Among Classical Era authors, beekeeping with the use of smoke is described in Aristotle's History of Animals Book 9. [114] The account mentions that bees die after stinging; that workers remove corpses from the hive, and guard it; castes including workers and non-working drones, but "kings" rather than queens; predators including toads and bee-eaters; and the waggle dance, with the "irresistible suggestion" of άροσειονται ("aroseiontai", it waggles) and παρακολουθούσιν ("parakolouthousin", they watch). [115] [b]
Beekeeping is described in detail by Virgil in his Georgics ; it is also mentioned in his Aeneid , and in Pliny's Natural History . [115]
From the 18th century, European understanding of the colonies and biology of bees allowed the construction of the moveable comb hive so that honey could be harvested without destroying the colony. [116] [117]
Bees play an important role in pollinating flowering plants, and are the major type of pollinator in many ecosystems that contain flowering plants. It is estimated that one third of the human food supply depends on pollination by insects, birds and bats, most of which is accomplished by bees, whether wild or domesticated. [118] [119]
Contract pollination has overtaken the role of honey production for beekeepers in many countries. After the introduction of Varroa mites, feral honey bees declined dramatically in the US, though their numbers have since recovered. [120] [121] The number of colonies kept by beekeepers declined slightly, through urbanization, systematic pesticide use, tracheal and Varroa mites, and the closure of beekeeping businesses. In 2006 and 2007 the rate of attrition increased, and was described as colony collapse disorder. [122] In 2010 invertebrate iridescent virus and the fungus Nosema ceranae were shown to be in every killed colony, and deadly in combination. [123] [124] [125] [126] Winter losses increased to about 1/3. [127] [128] Varroa mites were thought to be responsible for about half the losses. [129]
Apart from colony collapse disorder, losses outside the US have been attributed to causes including pesticide seed dressings, using neonicotinoids such as clothianidin, imidacloprid and thiamethoxam. [130] [131] From 2013 the European Union restricted some pesticides to stop bee populations from declining further. [132] In 2014 the Intergovernmental Panel on Climate Change report warned that bees faced increased risk of extinction because of global warming. [133] In 2018 the European Union decided to ban field use of all three major neonicotinoids; they remain permitted in veterinary, greenhouse, and vehicle transport usage. [134]
Farmers have focused on alternative solutions to mitigate these problems. By raising native plants, they provide food for native bee pollinators like Lasioglossum vierecki [135] and L. leucozonium , [136] leading to less reliance on honey bee populations.
Honey is a natural product produced by bees and stored for their own use, but its sweetness has always appealed to humans. Before domestication of bees was even attempted, humans were raiding their nests for their honey. Smoke was often used to subdue the bees and such activities are depicted in rock paintings in Spain dated to 15,000 BC. [107]
Honey bees are used commercially to produce honey. [137] They also produce some substances used as dietary supplements with possible health benefits, pollen, [138] propolis, [139] and royal jelly, [140] though all of these can also cause allergic reactions.
Bees are considered edible insects. People in some countries eat insects, including the larvae and pupae of bees, mostly stingless species. They also gather larvae, pupae and surrounding cells, known as bee brood, for consumption. [141] In the Indonesian dish botok tawon from Central and East Java, bee larvae are eaten as a companion to rice, after being mixed with shredded coconut, wrapped in banana leaves, and steamed. [142] [143]
Bee brood (pupae and larvae) although low in calcium, has been found to be high in protein and carbohydrate, and a useful source of phosphorus, magnesium, potassium, and trace minerals iron, zinc, copper, and selenium. In addition, while bee brood was high in fat, it contained no fat soluble vitamins (such as A, D, and E) but it was a good source of most of the water-soluble B vitamins including choline as well as vitamin C. The fat was composed mostly of saturated and monounsaturated fatty acids with 2.0% being polyunsaturated fatty acids. [144] [145]
Apitherapy is a branch of alternative medicine that uses honey bee products, including raw honey, royal jelly, pollen, propolis, beeswax and apitoxin (Bee venom). [146] The claim that apitherapy treats cancer, which some proponents of apitherapy make, remains unsupported by evidence-based medicine. [147] [148]
The painful stings of bees are mostly associated with the poison gland and the Dufour's gland which are abdominal exocrine glands containing various chemicals. In Lasioglossum leucozonium , the Dufour's Gland mostly contains octadecanolide as well as some eicosanolide. There is also evidence of n-triscosane, n-heptacosane, [149] and 22-docosanolide. [150] However, the secretions of these glands could also be used for nest construction. [149]
Over the last half century, there has been a general decline in the species richness of wild bees and other pollinators, probably attributable to stress from increased parasites and disease, the use of pesticides, and a general decrease in the number of wild flowers. Climate change probably exacerbates the problem. [151] This is a major cause of concern, as it can cause biodiversity loss and ecosystem degradation as well as increase climate change. [152]
A honey bee is a eusocial flying insect within the genus Apis of the bee clade, all native to mainland Afro-Eurasia. After bees spread naturally throughout Africa and Eurasia, humans became responsible for the current cosmopolitan distribution of honey bees, introducing multiple subspecies into South America, North America, and Australia.
A bumblebee is any of over 250 species in the genus Bombus, part of Apidae, one of the bee families. This genus is the only extant group in the tribe Bombini, though a few extinct related genera are known from fossils. They are found primarily in higher altitudes or latitudes in the Northern Hemisphere, although they are also found in South America, where a few lowland tropical species have been identified. European bumblebees have also been introduced to New Zealand and Tasmania. Female bumblebees can sting repeatedly, but generally ignore humans and other animals.
Apidae is the largest family within the superfamily Apoidea, containing at least 5700 species of bees. The family includes some of the most commonly seen bees, including bumblebees and honey bees, but also includes stingless bees, carpenter bees, orchid bees, cuckoo bees, and a number of other less widely known groups. Many are valuable pollinators in natural habitats and for agricultural crops.
Halictidae is the second-largest family of bees with nearly 4,500 species. They are commonly called sweat bees, as they are often attracted to perspiration. Halictid species are an extremely diverse group that can vary greatly in appearance. These bees occur all over the world and are found on every continent except Antarctica. Usually dark-colored and often metallic, halictids are found in various sizes, colors and patterns. Several species are all or partly green and a few are red, purple, or blue. A number of them have yellow markings, especially the males, which commonly have yellow faces, a pattern widespread among the various families of bees. The family is one of many with short tongues and is best distinguished by the arcuate basal vein found on the wing. Females in this family tend to be larger than the males. They are the group for which the term 'eusocial' was first coined by entomologist, Suzanne Batra.
Stingless bees (SB), sometimes called stingless honey bees or simply meliponines, are a large group of bees (from about 462 to 552 described species), comprising the tribe Meliponini (or subtribe Meliponina according to other authors). They belong in the family Apidae (subfamily Apinae), and are closely related to common honey bees (HB, tribe Apini), orchid bees (tribe Euglossini), and bumblebees (tribe Bombini). These four bee tribes belong to the corbiculate bees monophyletic group. Meliponines have stingers, but they are highly reduced and cannot be used for defense, though these bees exhibit other defensive behaviors and mechanisms. Meliponines are not the only type of bee incapable of stinging: all male bees and many female bees of several other families, such as Andrenidae and Megachilidae (tribe Dioxyini), also cannot sting.
Bombus terrestris, the buff-tailed bumblebee or large earth bumblebee, is one of the most numerous bumblebee species in Europe. It is one of the main species used in greenhouse pollination, and so can be found in many countries and areas where it is not native, such as Tasmania. Moreover, it is a eusocial insect with an overlap of generations, a division of labour, and cooperative brood care. The queen is monogamous which means she mates with only one male. B. terrestris workers learn flower colours and forage efficiently.
Halictus rubicundus, the orange-legged furrow bee, is a species of sweat bee found throughout the Northern Hemisphere. H. rubicundus entered North America from the Old World during one of two main invasions of Halictus subgenera. These invasions likely occurred via the Bering land bridge at times of low sea level during the Pleistocene epoch.
Mass provisioning is a form of parental investment in which an adult insect, most commonly a hymenopteran such as a bee or wasp, stocks all the food for each of her offspring in a small chamber before she lays the egg. This behavior is common in both solitary and eusocial bees, though essentially absent in eusocial wasps.
Eusociality is the highest level of organization of sociality. It is defined by the following characteristics: cooperative brood care, overlapping generations within a colony of adults, and a division of labor into reproductive and non-reproductive groups. The division of labor creates specialized behavioral groups within an animal society, sometimes called castes. Eusociality is distinguished from all other social systems because individuals of at least one caste usually lose the ability to perform behaviors characteristic of individuals in another caste. Eusocial colonies can be viewed as superorganisms.
Tetragonula carbonaria is a stingless bee, endemic to the north-east coast of Australia. Its common name is sugarbag bee. They are also occasionally referred to as bush bees. The bee is known to pollinate orchid species, such as Dendrobium lichenastrum, D. toressae, and D. speciosum. It has been identified as an insect that collects pollen from the cycad Cycas media. They are also known for their small body size, reduced wing venation, and highly developed social structure comparable to honey bees.
Trigona spinipes is a species of stingless bee. It occurs in Brazil, where it is called arapuá, aripuá, irapuá, japurá or abelha-cachorro ("dog-bee"). The species name means "spiny feet" in Latin. Trigona spinipes builds its nest on trees, out of mud, resin, wax, and assorted debris, including dung. Therefore, its honey is not fit for consumption, even though it is reputed to be of good quality by itself, and is used in folk medicine. Colonies may have from 5,000 to over 100,000 workers.
The two-spotted bumble bee is a species of social bumble bee found in the eastern half of the United States and the adjacent south-eastern part of Canada. In older literature this bee is often referred to as Bremus bimaculatus, Bremus being a synonym for Bombus. The bee's common name comes from the two yellow spots on its abdomen. Unlike many of the other species of bee in the genus Bombus,B. bimaculatus is not on the decline, but instead is very stable. They are abundant pollinators that forage at a variety of plants.
Bombus fervidus, the golden northern bumble bee or yellow bumblebee, is a species of bumblebee native to North America. It has a yellow-colored abdomen and thorax. Its range includes the North American continent, excluding much of the southern United States, Alaska, and the northern parts of Canada. It is common in cities and farmland, with populations concentrated in the Northeastern part of the United States. It is similar in color and range to its sibling species, Bombus californicus, though sometimes also confused with the American bumblebee or black and gold bumblebee. It has complex behavioral traits, which includes a coordinated nest defense to ward off predators. B. fervidus is an important pollinator, so recent population decline is a particular concern.
Within the insect order Hymenoptera, the Halictinae are the largest, most diverse, and most recently diverged of the four halictid subfamilies. They comprise over 2400 bee species belonging to the five taxonomic tribes Augochlorini, Thrinchostomini, Caenohalictini, Sphecodini, and Halictini, which some entomologists alternatively organize into the two tribes Augochlorini and Halictini.
Tetragonisca angustula is a small eusocial stingless bee found in México, Central and South America. It is known by a variety of names in different regions. A subspecies, Tetragonisca angustula fiebrigi, occupies different areas in South America and has a slightly different coloration.
Bombus frigidus, the frigid bumblebee, is a rare species of bumblebee largely found in Canada and parts of the United States.
Halictus ligatus is a species of sweat bee from the family Halictidae, among the species that mine or burrow into the ground to create their nests. H. ligatus, like Lasioglossum zephyrus, is a primitively eusocial bee species, in which aggression is one of the most influential behaviors for establishing hierarchy within the colony, and H. ligatus exhibits both reproductive division of labor and overlapping generations.
Melipona beecheii is a species of eusocial stingless bee. It is native to Central America from the Yucatán Peninsula in the north to Costa Rica in the south. M. beecheii was cultivated in the Yucatán Peninsula starting in the pre-Columbian era by the ancient Maya civilization. The Mayan name for M. beecheii is xunan kab, which translates roughly to "regal lady bee". M. beecheii serves as the subject of various Mayan religious ceremonies.
Augochlorella is a genus in the bee family Halictidae, commonly called sweat bees. They display metallic coloration, ranging from reddish to gold to bluish green, as is typical for other genera in the tribe Augochlorini.
Megalopta is a widespread neotropical genus of bees in the tribe Augochlorini in family Halictidae, known as the sweat bees. They are the largest of the five nocturnal genera in Augochlorini. Most have pale integumentary pigmentation, and all have large ocelli, most likely a feature of their nocturnal behavior. They live in tropical Central America and the entirety of South America. The subgenus Noctoraptor is cleptoparasitic. They are not known from the fossil record.
Of the forms of mimicry, two relate to Bombini. Batesian mimicry .. is exemplified by members of several families of flies: Syrphidae, Asilidae, Tabanidae, Oestridae, and Bombyliidae (Gabritschevsky, 1926).
the color of the orchid mantis was indistinguishable from 13 species of wild flowers in the areas the predator lived. ... The orchid mantis is unique in that the mantis itself is the attractive stimulus.
Wild bees have become as important as domesticated honeybees in pollinating food crops around the world due to the dramatic decline in number of healthy honeybee colonies over the past half century, a study has found.
{{cite journal}}
: CS1 maint: multiple names: authors list (link)