Bees | |
---|---|
![]() | |
The sugarbag bee, Tetragonula carbonaria | |
Scientific classification ![]() | |
Kingdom: | Animalia |
Phylum: | Arthropoda |
Class: | Insecta |
Order: | Hymenoptera |
(unranked): | Unicalcarida |
Suborder: | Apocrita |
Superfamily: | Apoidea |
Clade: | Anthophila |
Families | |
Synonyms | |
Apiformes (from Latin 'apis' ) |
Bees are winged insects closely related to wasps and ants, known for their roles in pollination and, in the case of the best-known bee species, the western honey bee, for producing honey. Bees are a monophyletic lineage within the superfamily Apoidea. They are presently considered a clade, called Anthophila. There are over 16,000 known species of bees in seven recognized biological families. [1] [2] Some species –including honey bees, bumblebees, and stingless bees –live socially in colonies while most species (>90%) –including mason bees, carpenter bees, leafcutter bees, and sweat bees –are solitary.
Bees are found on every continent except Antarctica, in every habitat on the planet that contains insect-pollinated flowering plants. The most common bees in the Northern Hemisphere are the Halictidae, or sweat bees, but they are small and often mistaken for wasps or flies. Bees range in size from tiny stingless bee species, whose workers are less than 2 millimetres (0.08 in) long, [3] to Megachile pluto , the largest species of leafcutter bee, whose females can attain a length of 39 millimetres (1.54 in).
Bees feed on nectar and pollen, the former primarily as an energy source and the latter primarily for protein and other nutrients. Most pollen is used as food for their larvae. Vertebrate predators of bees include primates and birds such as bee-eaters; insect predators include beewolves and dragonflies.
Bee pollination is important both ecologically and commercially, and the decline in wild bees has increased the value of pollination by commercially managed hives of honey bees. The analysis of 353 wild bee and hoverfly species across Britain from 1980 to 2013 found the insects have been lost from a quarter of the places they inhabited in 1980. [4]
Human beekeeping or apiculture (meliponiculture for stingless bees) has been practised for millennia, since at least the times of Ancient Egypt and Ancient Greece. Bees have appeared in mythology and folklore, through all phases of art and literature from ancient times to the present day, although primarily focused in the Northern Hemisphere where beekeeping is far more common. In Mesoamerica, the Mayans have practiced large-scale intensive meliponiculture since pre-Columbian times. [3]
The immediate ancestors of bees were stinging wasps in the family Crabronidae, which were predators of other insects. The switch from insect prey to pollen may have resulted from the consumption of prey insects which were flower visitors and were partially covered with pollen when they were fed to the wasp larvae. This same evolutionary scenario may have occurred within the vespoid wasps, where the pollen wasps evolved from predatory ancestors. The oldest non-compression bee fossil is found in New Jersey amber, Cretotrigona prisca , a corbiculate bee of Cretaceous age (~65 mya). [5] A fossil from the early Cretaceous (~100 mya), Melittosphex burmensis , was initially considered "an extinct lineage of pollen-collecting Apoidea sister to the modern bees", [6] but subsequent research has rejected the claim that Melittosphex is a bee, or even a member of the superfamily Apoidea to which bees belong, instead treating the lineage as incertae sedis within the Aculeata. [7] By the Eocene (~45 mya) there was already considerable diversity among eusocial bee lineages. [8] [lower-alpha 1]
The highly eusocial corbiculate Apidae appeared roughly 87 Mya, and the Allodapini (within the Apidae) around 53 Mya. [11] The Colletidae appear as fossils only from the late Oligocene (~25 Mya) to early Miocene. [12] The Melittidae are known from Palaeomacropis eocenicus in the Early Eocene. [13] The Megachilidae are known from trace fossils (characteristic leaf cuttings) from the Middle Eocene. [14] The Andrenidae are known from the Eocene-Oligocene boundary, around 34 Mya, of the Florissant shale. [15] The Halictidae first appear in the Early Eocene [16] with species [17] [18] found in amber. The Stenotritidae are known from fossil brood cells of Pleistocene age. [19]
The earliest animal-pollinated flowers were shallow, cup-shaped blooms pollinated by insects such as beetles, so the syndrome of insect pollination was well established before the first appearance of bees. The novelty is that bees are specialized as pollination agents, with behavioral and physical modifications that specifically enhance pollination, and are the most efficient pollinating insects. In a process of coevolution, flowers developed floral rewards [20] such as nectar and longer tubes, and bees developed longer tongues to extract the nectar. [21] Bees also developed structures known as scopal hairs and pollen baskets to collect and carry pollen. The location and type differ among and between groups of bees. Most species have scopal hairs on their hind legs or on the underside of their abdomens. Some species in the family Apidae have pollen baskets on their hind legs, while very few lack these and instead collect pollen in their crops. [2] The appearance of these structures drove the adaptive radiation of the angiosperms, and, in turn, bees themselves. [9] Bees coevolved not only with flowers but it is believed that some species coevolved with mites. Some provide tufts of hairs called acarinaria that appear to provide lodgings for mites; in return, it is believed that mites eat fungi that attack pollen, so the relationship in this case may be mutualistic. [22] [23]
This phylogenetic tree is based on Debevic et al, 2012, which used molecular phylogeny to demonstrate that the bees (Anthophila) arose from deep within the Crabronidae, which is therefore paraphyletic. The placement of the Heterogynaidae is uncertain. [24] The small subfamily Mellininae was not included in this analysis.
Apoidea |
| ||||||||||||||||||||||||||||||||||||||||||||||||
This cladogram of the bee families is based on Hedtke et al., 2013, which places the former families Dasypodaidae and Meganomiidae as subfamilies inside the Melittidae. [25] English names, where available, are given in parentheses.
Anthophila (bees) |
| |||||||||||||||||||||||||||||||||||||||
Bees differ from closely related groups such as wasps by having branched or plume-like setae (hairs), combs on the forelimbs for cleaning their antennae, small anatomical differences in limb structure, and the venation of the hind wings; and in females, by having the seventh dorsal abdominal plate divided into two half-plates. [26]
Bees have the following characteristics:
The largest species of bee is thought to be Wallace's giant bee Megachile pluto , whose females can attain a length of 39 millimetres (1.54 in). [28] The smallest species may be dwarf stingless bees in the tribe Meliponini whose workers are less than 2 millimetres (0.08 in) in length. [29]
According to inclusive fitness theory, organisms can gain fitness not just through increasing their own reproductive output, but also that of close relatives. In evolutionary terms, individuals should help relatives when Cost < Relatedness * Benefit. The requirements for eusociality are more easily fulfilled by haplodiploid species such as bees because of their unusual relatedness structure. [30]
In haplodiploid species, females develop from fertilized eggs and males from unfertilized eggs. Because a male is haploid (has only one copy of each gene), his daughters (which are diploid, with two copies of each gene) share 100% of his genes and 50% of their mother's. Therefore, they share 75% of their genes with each other. This mechanism of sex determination gives rise to what W. D. Hamilton termed "supersisters", more closely related to their sisters than they would be to their own offspring. [31] Workers often do not reproduce, but they can pass on more of their genes by helping to raise their sisters (as queens) than they would by having their own offspring (each of which would only have 50% of their genes), assuming they would produce similar numbers. This unusual situation has been proposed as an explanation of the multiple (at least nine) evolutions of eusociality within Hymenoptera. [32] [33]
Haplodiploidy is neither necessary nor sufficient for eusociality. Some eusocial species such as termites are not haplodiploid. Conversely, all bees are haplodiploid but not all are eusocial, and among eusocial species many queens mate with multiple males, creating half-sisters that share only 25% of each-other's genes. [34] But, monogamy (queens mating singly) is the ancestral state for all eusocial species so far investigated, so it is likely that haplodiploidy contributed to the evolution of eusociality in bees. [32]
Bees may be solitary or may live in various types of communities. Eusociality appears to have originated from at least three independent origins in halictid bees. [35] The most advanced of these are species with eusocial colonies; these are characterised by cooperative brood care and a division of labour into reproductive and non-reproductive adults, plus overlapping generations. [36] This division of labour creates specialized groups within eusocial societies which are called castes. In some species, groups of cohabiting females may be sisters, and if there is a division of labour within the group, they are considered semisocial. The group is called eusocial if, in addition, the group consists of a mother (the queen) and her daughters (workers). When the castes are purely behavioural alternatives, with no morphological differentiation other than size, the system is considered primitively eusocial, as in many paper wasps; when the castes are morphologically discrete, the system is considered highly eusocial. [21]
True honey bees (genus Apis , of which eight species are currently recognized) are highly eusocial, and are among the best known insects. Their colonies are established by swarms, consisting of a queen and several thousand workers. There are 29 subspecies of one of these species, Apis mellifera , native to Europe, the Middle East, and Africa. Africanized bees are a hybrid strain of A. mellifera that escaped from experiments involving crossing European and African subspecies; they are extremely defensive. [37]
Stingless bees are also highly eusocial. They practise mass provisioning, with complex nest architecture and perennial colonies also established via swarming. [3] [38]
Many bumblebees are eusocial, similar to the eusocial Vespidae such as hornets in that the queen initiates a nest on her own rather than by swarming. Bumblebee colonies typically have from 50 to 200 bees at peak population, which occurs in mid to late summer. Nest architecture is simple, limited by the size of the pre-existing nest cavity, and colonies rarely last more than a year. [39] In 2011, the International Union for Conservation of Nature set up the Bumblebee Specialist Group to review the threat status of all bumblebee species worldwide using the IUCN Red List criteria. [40]
There are many more species of primitively eusocial than highly eusocial bees, but they have been studied less often. Most are in the family Halictidae, or "sweat bees". Colonies are typically small, with a dozen or fewer workers, on average. Queens and workers differ only in size, if at all. Most species have a single season colony cycle, even in the tropics, and only mated females hibernate. A few species have long active seasons and attain colony sizes in the hundreds, such as Halictus hesperus . [41] Some species are eusocial in parts of their range and solitary in others, [42] or have a mix of eusocial and solitary nests in the same population. [43] The orchid bees (Apidae) include some primitively eusocial species with similar biology. Some allodapine bees (Apidae) form primitively eusocial colonies, with progressive provisioning: a larva's food is supplied gradually as it develops, as is the case in honey bees and some bumblebees. [44]
Most other bees, including familiar insects such as carpenter bees, leafcutter bees and mason bees are solitary in the sense that every female is fertile, and typically inhabits a nest she constructs herself. There is no division of labor so these nests lack queens and worker bees for these species. Solitary bees typically produce neither honey nor beeswax. Bees collect pollen to feed their young, and have the necessary adaptations to do this. However, certain wasp species such as pollen wasps have similar behaviours, and a few species of bee scavenge from carcases to feed their offspring. [26] Solitary bees are important pollinators; they gather pollen to provision their nests with food for their brood. Often it is mixed with nectar to form a paste-like consistency. Some solitary bees have advanced types of pollen-carrying structures on their bodies. Very few species of solitary bee are being cultured for commercial pollination. Most of these species belong to a distinct set of genera which are commonly known by their nesting behavior or preferences, namely: carpenter bees, sweat bees, mason bees, plasterer bees, squash bees, dwarf carpenter bees, leafcutter bees, alkali bees and digger bees. [45]
Most solitary bees are fossorial, digging nests in the ground in a variety of soil textures and conditions, while others create nests in hollow reeds or twigs, or holes in wood. The female typically creates a compartment (a "cell") with an egg and some provisions for the resulting larva, then seals it off. A nest may consist of numerous cells. When the nest is in wood, usually the last (those closer to the entrance) contain eggs that will become males. The adult does not provide care for the brood once the egg is laid, and usually dies after making one or more nests. The males typically emerge first and are ready for mating when the females emerge. Solitary bees are very unlikely to sting (only in self-defense, if ever), and some (esp. in the family Andrenidae) are stingless. [46] [47]
While solitary, females each make individual nests. [48] Some species, such as the European mason bee Hoplitis anthocopoides , [49] and the Dawson's Burrowing bee, Amegilla dawsoni, [50] are gregarious, preferring to make nests near others of the same species, and giving the appearance of being social. Large groups of solitary bee nests are called aggregations, to distinguish them from colonies. In some species, multiple females share a common nest, but each makes and provisions her own cells independently. This type of group is called "communal" and is not uncommon. The primary advantage appears to be that a nest entrance is easier to defend from predators and parasites when multiple females use that same entrance regularly. [49]
The life cycle of a bee, be it a solitary or social species, involves the laying of an egg, the development through several moults of a legless larva, a pupation stage during which the insect undergoes complete metamorphosis, followed by the emergence of a winged adult. The number of eggs laid by a female during her lifetime can vary from eight or less in some solitary bees, to more than a million in highly social species. [51] Most solitary bees and bumble bees in temperate climates overwinter as adults or pupae and emerge in spring when increasing numbers of flowering plants come into bloom. The males usually emerge first and search for females with which to mate. Like the other members of Hymenoptera bees are haplodiploid; the sex of a bee is determined by whether or not the egg is fertilised. After mating, a female stores the sperm, and determines which sex is required at the time each individual egg is laid, fertilised eggs producing female offspring and unfertilised eggs, males. Tropical bees may have several generations in a year and no diapause stage. [52] [53] [54] [55]
The egg is generally oblong, slightly curved and tapering at one end. Solitary bees, lay each egg in a separate cell with a supply of mixed pollen and nectar next to it. This may be rolled into a pellet or placed in a pile and is known as mass provisioning. Social bee species provision progressively, that is, they feed the larva regularly while it grows. The nest varies from a hole in the ground or in wood, in solitary bees, to a substantial structure with wax combs in bumblebees and honey bees. [56]
In most species, larvae are whitish grubs, roughly oval and bluntly-pointed at both ends. They have 15 segments and spiracles in each segment for breathing. They have no legs but move within the cell, helped by tubercles on their sides. They have short horns on the head, jaws for chewing food and an appendage on either side of the mouth tipped with a bristle. There is a gland under the mouth that secretes a viscous liquid which solidifies into the silk they use to produce a cocoon. The cocoon is semi-transparent and the pupa can be seen through it. Over the course of a few days, the larva undergoes metamorphosis into a winged adult. When ready to emerge, the adult splits its skin dorsally and climbs out of the exuviae and breaks out of the cell. [56]
Antoine Magnan's 1934 book Le vol des insectes says that he and André Sainte-Laguë had applied the equations of air resistance to insects and found that their flight could not be explained by fixed-wing calculations, but that "One shouldn't be surprised that the results of the calculations don't square with reality". [57] This has led to a common misconception that bees "violate aerodynamic theory". In fact it merely confirms that bees do not engage in fixed-wing flight, and that their flight is explained by other mechanics, such as those used by helicopters. [58] In 1996 it was shown that vortices created by many insects' wings helped to provide lift. [59] High-speed cinematography [60] and robotic mock-up of a bee wing [61] showed that lift was generated by "the unconventional combination of short, choppy wing strokes, a rapid rotation of the wing as it flops over and reverses direction, and a very fast wing-beat frequency". Wing-beat frequency normally increases as size decreases, but as the bee's wing beat covers such a small arc, it flaps approximately 230 times per second, faster than a fruitfly (200 times per second) which is 80 times smaller. [62]
The ethologist Karl von Frisch studied navigation in the honey bee. He showed that honey bees communicate by the waggle dance, in which a worker indicates the location of a food source to other workers in the hive. He demonstrated that bees can recognize a desired compass direction in three different ways: by the sun, by the polarization pattern of the blue sky, and by the earth's magnetic field. He showed that the sun is the preferred or main compass; the other mechanisms are used under cloudy skies or inside a dark beehive. [63] Bees navigate using spatial memory with a "rich, map-like organization". [64]
The gut of bees is relatively simple, but multiple metabolic strategies exist in the gut microbiota. [65] Pollinating bees consume nectar and pollen, which require different digestion strategies by somewhat specialized bacteria. While nectar is a liquid of mostly monosaccharide sugars and so easily absorbed, pollen contains complex polysaccharides: branching pectin and hemicellulose. [66] Approximately five groups of bacteria are involved in digestion. Three groups specialize in simple sugars ( Snodgrassella and two groups of Lactobacillus ), and two other groups in complex sugars ( Gilliamella and Bifidobacterium ). Digestion of pectin and hemicellulose is dominated by bacterial clades Gilliamella and Bifidobacterium respectively. Bacteria that cannot digest polysaccharides obtain enzymes from their neighbors, and bacteria that lack certain amino acids do the same, creating multiple ecological niches. [67]
Although most bee species are nectarivorous and palynivorous, some are not. Particularly unusual are vulture bees in the genus Trigona, which consume carrion and wasp brood, turning meat into a honey-like substance. [68]
Most bees are polylectic (generalist) meaning they collect pollen from a range of flowering plants, but some are oligoleges (specialists), in that they only gather pollen from one or a few species or genera of closely related plants. [69] Specialist pollinators also include bee species which gather floral oils instead of pollen, and male orchid bees, which gather aromatic compounds from orchids (one of the few cases where male bees are effective pollinators). Bees are able to sense the presence of desirable flowers through ultraviolet patterning on flowers, floral odors, [70] and even electromagnetic fields. [71] Once landed, a bee then uses nectar quality [70] and pollen taste [72] to determine whether to continue visiting similar flowers.
In rare cases, a plant species may only be effectively pollinated by a single bee species, and some plants are endangered at least in part because their pollinator is also threatened. But, there is a pronounced tendency for oligolectic bees to be associated with common, widespread plants visited by multiple pollinator species. For example, the creosote bush in the arid parts of the United States southwest is associated with some 40 oligoleges. [73]
Many bees are aposematically coloured, typically orange and black, warning of their ability to defend themselves with a powerful sting. As such they are models for Batesian mimicry by non-stinging insects such as bee-flies, robber flies and hoverflies, [74] all of which gain a measure of protection by superficially looking and behaving like bees. [74]
Bees are themselves Müllerian mimics of other aposematic insects with the same colour scheme, including wasps, lycid and other beetles, and many butterflies and moths (Lepidoptera) which are themselves distasteful, often through acquiring bitter and poisonous chemicals from their plant food. All the Müllerian mimics, including bees, benefit from the reduced risk of predation that results from their easily recognised warning coloration. [75]
Bees are also mimicked by plants such as the bee orchid which imitates both the appearance and the scent of a female bee; male bees attempt to mate (pseudocopulation) with the furry lip of the flower, thus pollinating it. [76]
Brood parasites occur in several bee families including the apid subfamily Nomadinae. [77] Females of these species lack pollen collecting structures (the scopa) and do not construct their own nests. They typically enter the nests of pollen collecting species, and lay their eggs in cells provisioned by the host bee. When the "cuckoo" bee larva hatches, it consumes the host larva's pollen ball, and often the host egg also. [78] In particular, the Arctic bee species, Bombus hyperboreus is an aggressive species that attacks and enslaves other bees of the same subgenus. However, unlike many other bee brood parasites, they have pollen baskets and often collect pollen. [79]
In Southern Africa, hives of African honeybees (A. mellifera scutellata) are being destroyed by parasitic workers of the Cape honeybee, A. m. capensis. These lay diploid eggs ("thelytoky"), escaping normal worker policing, leading to the colony's destruction; the parasites can then move to other hives. [80]
The cuckoo bees in the Bombus subgenus Psithyrus are closely related to, and resemble, their hosts in looks and size. This common pattern gave rise to the ecological principle "Emery's rule". Others parasitize bees in different families, like Townsendiella , a nomadine apid, two species of which are cleptoparasites of the dasypodaid genus Hesperapis , [81] while the other species in the same genus attacks halictid bees. [82]
Four bee families (Andrenidae, Colletidae, Halictidae, and Apidae) contain some species that are crepuscular. Most are tropical or subtropical, but some live in arid regions at higher latitudes. These bees have greatly enlarged ocelli, which are extremely sensitive to light and dark, though incapable of forming images. Some have refracting superposition compound eyes: these combine the output of many elements of their compound eyes to provide enough light for each retinal photoreceptor. Their ability to fly by night enables them to avoid many predators, and to exploit flowers that produce nectar only or also at night. [83]
Vertebrate predators of bees include bee-eaters, shrikes and flycatchers, which make short sallies to catch insects in flight. [84] Swifts and swallows [84] fly almost continually, catching insects as they go. The honey buzzard attacks bees' nests and eats the larvae. [85] The greater honeyguide interacts with humans by guiding them to the nests of wild bees. The humans break open the nests and take the honey and the bird feeds on the larvae and the wax. [86] Among mammals, predators such as the badger dig up bumblebee nests and eat both the larvae and any stored food. [87]
Specialist ambush predators of visitors to flowers include crab spiders, which wait on flowering plants for pollinating insects; predatory bugs, and praying mantises, [84] some of which (the flower mantises of the tropics) wait motionless, aggressive mimics camouflaged as flowers. [88] Beewolves are large wasps that habitually attack bees; [84] the ethologist Niko Tinbergen estimated that a single colony of the beewolf Philanthus triangulum might kill several thousand honeybees in a day: all the prey he observed were honeybees. [89] Other predatory insects that sometimes catch bees include robber flies and dragonflies. [84] Honey bees are affected by parasites including tracheal and Varroa mites. [90] However, some bees are believed to have a mutualistic relationship with mites. [23]
Some mites of genus Tarsonemus are associated with bees. They live in bee nests and ride on adult bees for dispersal. They are presumed to feed on fungi, nest materials or pollen. However, the impact they have on bees remains uncertain. [91]
Homer's Hymn to Hermes describes three bee-maidens with the power of divination and thus speaking truth, and identifies the food of the gods as honey. Sources associated the bee maidens with Apollo and, until the 1980s, scholars followed Gottfried Hermann (1806) in incorrectly identifying the bee-maidens with the Thriae. [92] Honey, according to a Greek myth, was discovered by a nymph called Melissa ("Bee"); and honey was offered to the Greek gods from Mycenean times. Bees were also associated with the Delphic oracle and the prophetess was sometimes called a bee. [93]
The image of a community of honey bees has been used from ancient to modern times, in Aristotle and Plato; in Virgil and Seneca; in Erasmus and Shakespeare; Tolstoy, and by political and social theorists such as Bernard Mandeville and Karl Marx as a model for human society. [94] In English folklore, bees would be told of important events in the household, in a custom known as "Telling the bees". [95]
Some of the oldest examples of bees in art are rock paintings in Spain which have been dated to 15,000 BC. [96]
W. B. Yeats's poem The Lake Isle of Innisfree (1888) contains the couplet "Nine bean rows will I have there, a hive for the honey bee, / And live alone in the bee loud glade." At the time he was living in Bedford Park in the West of London. [97] Beatrix Potter's illustrated book The Tale of Mrs Tittlemouse (1910) features Babbity Bumble and her brood (pictured). Kit Williams' treasure hunt book The Bee on the Comb (1984) uses bees and beekeeping as part of its story and puzzle. Sue Monk Kidd's The Secret Life of Bees (2004), and the 2009 film starring Dakota Fanning, tells the story of a girl who escapes her abusive home and finds her way to live with a family of beekeepers, the Boatwrights.
The 2007 animated comedy film Bee Movie used Jerry Seinfeld's first script and was his first work for children; he starred as a bee named Barry B. Benson, alongside Renée Zellweger. Critics found its premise awkward and its delivery tame. [98] Dave Goulson's A Sting in the Tale (2014) describes his efforts to save bumblebees in Britain, as well as much about their biology. The playwright Laline Paull's fantasy The Bees (2015) tells the tale of a hive bee named Flora 717 from hatching onwards. [99]
Humans have kept honey bee colonies, commonly in hives, for millennia. Beekeepers collect honey, beeswax, propolis, pollen, and royal jelly from hives; bees are also kept to pollinate crops and to produce bees for sale to other beekeepers.
Depictions of humans collecting honey from wild bees date to 15,000 years ago; efforts to domesticate them are shown in Egyptian art around 4,500 years ago. [100] Simple hives and smoke were used; [101] [102] jars of honey were found in the tombs of pharaohs such as Tutankhamun. From the 18th century, European understanding of the colonies and biology of bees allowed the construction of the moveable comb hive so that honey could be harvested without destroying the colony. [103] [104] Among Classical Era authors, beekeeping with the use of smoke is described in Aristotle's History of Animals Book 9. [105] The account mentions that bees die after stinging; that workers remove corpses from the hive, and guard it; castes including workers and non-working drones, but "kings" rather than queens; predators including toads and bee-eaters; and the waggle dance, with the "irresistible suggestion" of άροσειονται ("aroseiontai", it waggles) and παρακολουθούσιν ("parakolouthousin", they watch). [106] [lower-alpha 2]
Beekeeping is described in detail by Virgil in his Georgics ; it is also mentioned in his Aeneid , and in Pliny's Natural History . [106]
Bees play an important role in pollinating flowering plants, and are the major type of pollinator in many ecosystems that contain flowering plants. It is estimated that one third of the human food supply depends on pollination by insects, birds and bats, most of which is accomplished by bees, whether wild or domesticated. [107] [108] Over the last half century, there has been a general decline in the species richness of wild bees and other pollinators, probably attributable to stress from increased parasites and disease, the use of pesticides, and a general decrease in the number of wild flowers. Climate change probably exacerbates the problem. [109]
Contract pollination has overtaken the role of honey production for beekeepers in many countries. After the introduction of Varroa mites, feral honey bees declined dramatically in the US, though their numbers have since recovered. [110] [111] The number of colonies kept by beekeepers declined slightly, through urbanization, systematic pesticide use, tracheal and Varroa mites, and the closure of beekeeping businesses. In 2006 and 2007 the rate of attrition increased, and was described as colony collapse disorder. [112] In 2010 invertebrate iridescent virus and the fungus Nosema ceranae were shown to be in every killed colony, and deadly in combination. [113] [114] [115] [116] Winter losses increased to about 1/3. [117] [118] Varroa mites were thought to be responsible for about half the losses. [119]
Apart from colony collapse disorder, losses outside the US have been attributed to causes including pesticide seed dressings, using neonicotinoids such as clothianidin, imidacloprid and thiamethoxam. [120] [121] From 2013 the European Union restricted some pesticides to stop bee populations from declining further. [122] In 2014 the Intergovernmental Panel on Climate Change report warned that bees faced increased risk of extinction because of global warming. [123] In 2018 the European Union decided to ban field use of all three major neonicotinoids; they remain permitted in veterinary, greenhouse, and vehicle transport usage. [124]
Farmers have focused on alternative solutions to mitigate these problems. By raising native plants, they provide food for native bee pollinators like Lasioglossum vierecki [125] and L. leucozonium , [126] leading to less reliance on honey bee populations.
Honey is a natural product produced by bees and stored for their own use, but its sweetness has always appealed to humans. Before domestication of bees was even attempted, humans were raiding their nests for their honey. Smoke was often used to subdue the bees and such activities are depicted in rock paintings in Spain dated to 15,000 BC. [96]
Honey bees are used commercially to produce honey. [127] They also produce some substances used as dietary supplements with possible health benefits, pollen, [128] propolis, [129] and royal jelly, [130] though all of these can also cause allergic reactions.
Bees are considered edible insects. People in some countries eat insects, including the larvae and pupae of bees, mostly stingless species. They also gather larvae, pupae and surrounding cells, known as bee brood, for consumption. [131] In the Indonesian dish botok tawon from Central and East Java, bee larvae are eaten as a companion to rice, after being mixed with shredded coconut, wrapped in banana leaves, and steamed. [132] [133]
Bee brood (pupae and larvae) although low in calcium, has been found to be high in protein and carbohydrate, and a useful source of phosphorus, magnesium, potassium, and trace minerals iron, zinc, copper, and selenium. In addition, while bee brood was high in fat, it contained no fat soluble vitamins (such as A, D, and E) but it was a good source of most of the water-soluble B vitamins including choline as well as vitamin C. The fat was composed mostly of saturated and monounsaturated fatty acids with 2.0% being polyunsaturated fatty acids. [134] [135]
Apitherapy is a branch of alternative medicine that uses honey bee products, including raw honey, royal jelly, pollen, propolis, beeswax and apitoxin (Bee venom). [136] The claim that apitherapy treats cancer, which some proponents of apitherapy make, remains unsupported by evidence-based medicine. [137] [138]
The painful stings of bees are mostly associated with the poison gland and the Dufour's gland which are abdominal exocrine glands containing various chemicals. In Lasioglossum leucozonium , the Dufour's Gland mostly contains octadecanolide as well as some eicosanolide. There is also evidence of n-triscosane, n-heptacosane, [139] and 22-docosanolide. [140] However, the secretions of these glands could also be used for nest construction. [139]
A bumblebee is any of over 250 species in the genus Bombus, part of Apidae, one of the bee families. This genus is the only extant group in the tribe Bombini, though a few extinct related genera are known from fossils. They are found primarily in higher altitudes or latitudes in the Northern Hemisphere, although they are also found in South America, where a few lowland tropical species have been identified. European bumblebees have also been introduced to New Zealand and Tasmania. Female bumblebees can sting repeatedly, but generally ignore humans and other animals.
Apidae is the largest family within the superfamily Apoidea, containing at least 5700 species of bees. The family includes some of the most commonly seen bees, including bumblebees and honey bees, but also includes stingless bees, carpenter bees, orchid bees, cuckoo bees, and a number of other less widely known groups. Many are valuable pollinators in natural habitats and for agricultural crops.
Halictidae is the second-largest family of bees with nearly 4,500 species. Halictid species are an extremely diverse group that can vary greatly in appearance. These bees occur all over the world and are found on every continent except Antarctica. Usually dark-colored and often metallic, halictids are found in various sizes, colors and patterns. Several species are all or partly green and a few are red, purple, or blue. A number of them have yellow markings, especially the males, which commonly have yellow faces, a pattern widespread among the various families of bees. The family is one of many with short tongues and is best distinguished by the arcuate basal vein found on the wing. Females in this family tend to be larger than the males.
Stingless bees, sometimes called stingless honey bees or simply meliponines, are a large group of bees, comprising the tribe Meliponini. They belong in the family Apidae, and are closely related to common honey bees, carpenter bees, orchid bees, and bumblebees. Meliponines have stingers, but they are highly reduced and cannot be used for defense, though these bees exhibit other defensive behaviors and mechanisms. Meliponines are not the only type of bee incapable of stinging: all male bees and many female bees of several other families, such as Andrenidae, also cannot sting. Some stingless bees have powerful mandibles and can inflict painful bites.
Bombus terrestris, the buff-tailed bumblebee or large earth bumblebee, is one of the most numerous bumblebee species in Europe. It is one of the main species used in greenhouse pollination, and so can be found in many countries and areas where it is not native, such as Tasmania. Moreover, it is a eusocial insect with an overlap of generations, a division of labor, and cooperative brood care. The queen is monandrous which means she mates with only one male. B. terrestris workers learn flower colors and forage efficiently.
Mass provisioning is a form of parental investment in which an adult insect, most commonly a hymenopteran such as a bee or wasp, stocks all the food for each of her offspring in a small chamber before she lays the egg. This behavior is common in both solitary and eusocial bees, though essentially absent in eusocial wasps.
Eusociality, the highest level of organization of sociality, is defined by the following characteristics: cooperative brood care, overlapping generations within a colony of adults, and a division of labor into reproductive and non-reproductive groups. The division of labor creates specialized behavioral groups within an animal society which are sometimes referred to as 'castes'. Eusociality is distinguished from all other social systems because individuals of at least one caste usually lose the ability to perform at least one behavior characteristic of individuals in another caste. Eusocial colonies can be viewed as superorganisms.
Tetragonula carbonaria is a stingless bee, endemic to the north-east coast of Australia. Its common name is sugarbag bee. They are also occasionally referred to as bush bees. The bee is known to pollinate orchid species, such as Dendrobium lichenastrum, D. toressae, and D. speciosum. It has been identified as an insect that collects pollen from the cycad Cycas media. They are also known for their small body size, reduced wing venation, and highly developed social structure comparable to honey bees.
Trigona spinipes is a species of stingless bee. It occurs in Brazil, where it is called arapuá, aripuá, irapuá, japurá or abelha-cachorro ("dog-bee"). The species name means "spiny feet" in Latin. Trigona spinipes builds its nest on trees, out of mud, resin, wax, and assorted debris, including dung. Therefore, its honey is not fit for consumption, even though it is reputed to be of good quality by itself, and is used in folk medicine. Colonies may have from 5,000 to over 100,000 workers.
Bombus fervidus, the golden northern bumble bee or yellow bumblebee, is a species of bumblebee native to North America. It has a yellow-colored abdomen and thorax. Its range includes the North American continent, excluding much of the southern United States, Alaska, and the northern parts of Canada. It is common in cities and farmland, with populations concentrated in the Northeastern part of the United States. It is similar in color and range to its sibling species, Bombus californicus, though sometimes also confused with the American bumblebee or black and gold bumblebee. It has complex behavioral traits, which includes a coordinated nest defense to ward off predators. B. fervidus is an important pollinator, so recent population decline is a particular concern.
Within the insect order Hymenoptera, the Halictinae are the largest, most diverse, and most recently diverged of the four halictid subfamilies. They comprise over 2400 bee species belonging to the five taxonomic tribes Augochlorini, Thrinchostomini, Caenohalictini, Sphecodini, and Halictini, which some entomologists alternatively organize into the two tribes Augochlorini and Halictini.
Tetragonisca angustula is a small eusocial stingless bee found in México, Central and South America. It is known by a variety of names in different regions. A subspecies, Tetragonisca angustula fiebrigi, occupies different areas in South America and has a slightly different coloration.
Eulaema meriana is a large-bodied bee species in the tribe Euglossini, otherwise known as the orchid bees. The species is a solitary bee and is native to tropical Central and South America. The male collects fragrances from orchid flowers, which it stores in hollows in its hind legs. Orchids can be deceptive by mimicking the form of a female and her sex pheromone, thus luring male bees or wasps. Pollination will take place as the males attempt to mate with the labellum, or the tip petal of the flower. Male E. meriana are territorial and have a particular perch on a tree trunk where it displays to attract a female. After mating, the female builds a nest with urn-shaped cells made with mud, feces, and plant resin, and provisions these with nectar and pollen before laying an egg in each. These bees also have complex foraging and wing buzzing behaviors and are part of a mimicry complex.
Ptilothrix is a genus within the tribe Emphorini of the family Apidae. Bees of this genus can range from 7 to 15 mm. Ptilothrix species are solitary, ground-nesting bees. These bees have especially prominent hairs in the scopae of their hind legs, to help gather pollen to provision their nests. Ptilothrix species specialize on certain families of plants for their pollen, including the families Malvaceae, Convolvulaceae, Onagraceae, Cactaceae, Pontederiaceae, and Asteraceae. The genus is found in the New World, with species ranging across the Americas.
Euglossa cordata is a primitively eusocial orchid bee of the American tropics. The species is known for its green body color and ability to fly distances of over 50 km. Males mostly disperse and leave their home nests, while females have been observed to possess philopatric behavior. Because of this, sightings are rare and little is known about the species. However, it has been observed that adults who pollinate certain species of orchids will become intoxicated during the pollination.
Melipona bicolorLepeletier, 1836, commonly known as Guaraipo or Guarupu, is a eusocial bee found primarily in South America. It is an inhabitant of the Araucaria Forest and the Atlantic Rainforest, and is most commonly found from South to East Brazil, Bolivia, Argentina, and Paraguay. It prefers to nest close to the soil, in hollowed trunks or roots of trees. M. bicolor is a member of the tribe Meliponini, and is therefore a stingless bee. This species is unique among the stingless bees species because it is polygynous, which is rare for eusocial bees.
Trigona corvina is a species of stingless bee that lives primarily in Central and South America. In Panama, they are sometimes known as zagañas. They live in protective nests high in the trees, but they can be extremely aggressive and territorial over their resources. They use their pheromones to protect their food sources and to signal their location to nest mates. This black stingless bees of the tribe Meliponini can be parasitic toward citrus trees but also helpful for crop pollination.
Scaptotrigona postica is a species of stingless bee that lives mainly in Brazil. It is a eusocial bee in the tribe Meliponini. S. postica is one of 25 species in the genus Scaptotrigona and is a critical pollinator of the tropical rain forests of Brazil. They construct their nests in hollowed sections of tree trunks, allowing for effective guarding at the nest entrance. This species shows colony structure similar to most members of the Meliponini tribe with three roles within the colony: queen, worker, and male. S. postica individuals have different forms of communication from cuticular hydrocarbons to pheromones and scent trails. Communication is especially useful during worker foraging for nectar and pollen through the Brazilian tropical rain forests. S. postica is a very important pollinator of the Brazilian tropical rain forests and is widely appreciated for its honey. Stingless bees account for approximately 30% of all pollination of the Brazilian Caatinga and Pantanal ecosystems and up to 90% of the pollination for many species of the Brazilian Atlantic Forest and the Amazon.
Melipona quadrifasciata is a species of eusocial, stingless bee of the order Hymenoptera. It is native to the southeastern coastal states of Brazil, where it is more commonly known as mandaçaia, which means "beautiful guard," as there is always a bee at the narrow entrance of the nest. M. quadrifasciata constructs mud hives in the hollows of trees to create thin passages that only allow one bee to pass at a time. Because they are stingless bees, M. quadrifasciata is often used as pollinators in greenhouses, outperforming honey bees in efficiency and leading to overall larger yields of fruits that were heavier, larger, and contained more seeds.
Austroplebeia essingtoni is a small eusocial stingless bee first described by Cockerell in 1905 and it is found in Australia. They are one of the smallest stingless bees in Australia and can survive in very arid areas with annual rainfalls down to 300 mm.
Of the forms of mimicry, two relate to Bombini. Batesian mimicry .. is exemplified by members of several families of flies: Syrphidae, Asilidae, Tabanidae, Oestridae, and Bombyliidae (Gabritschevsky, 1926).
the color of the orchid mantis was indistinguishable from 13 species of wild flowers in the areas the predator lived. ... The orchid mantis is unique in that the mantis itself is the attractive stimulus.
Wild bees have become as important as domesticated honeybees in pollinating food crops around the world due to the dramatic decline in number of healthy honeybee colonies over the past half century, a study has found.
{{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite web}}
: CS1 maint: archived copy as title (link). (Accessed: 22 September 2015).{{cite book}}
: CS1 maint: uses authors parameter (link)