Royal jelly is a honey bee secretion that is used in the nutrition of larvae and adult queens. [1] It is secreted from the glands in the hypopharynx of nurse bees, and fed to all larvae in the colony, regardless of sex or caste. [2]
During the process of creating new queens, the workers construct special queen cells. The larvae in these cells are fed with copious amounts of royal jelly. This type of feeding triggers the development of queen morphology, including the fully developed ovaries needed to lay eggs. [3]
Royal jelly is sometimes used in alternative medicine under the category apitherapy. It is often sold as a dietary supplement for humans, but the European Food Safety Authority has concluded that current evidence does not support the claim that consuming royal jelly offers health benefits to humans. [4] In the United States, the Food and Drug Administration has taken legal action against companies that have marketed royal jelly products using unfounded claims of health benefits. [5] [6]
Royal jelly is secreted from the glands in the heads of worker bees and is fed to all bee larvae, whether they are destined to become drones (males), workers (sterile females), or queens (fertile females). After three days, the drone and worker larvae are no longer fed with royal jelly, but queen larvae continue to be fed this special substance throughout their development. [7]
Royal jelly is 67% water, 12.5% protein, 11% simple sugars (monosaccharides), 6% fatty acids and 3.5% 10-hydroxy-2-decenoic acid (10-HDA). It also contains trace minerals, antibacterial and antibiotic components, pantothenic acid (vitamin B5), pyridoxine (vitamin B6) and trace amounts of vitamin C, [2] but none of the fat-soluble vitamins: A, D, E or K. [8]
Major royal jelly proteins (MRJPs) are a family of proteins secreted by honey bees. The family consists of nine proteins, of which MRJP1 (also called royalactin), MRJP2, MRJP3, MRJP4, and MRJP5 are present in the royal jelly secreted by worker bees. MRJP1 is the most abundant, and largest in size. The five proteins constitute 83–90% of the total proteins in royal jelly. [9] [10] They are synthesised by a family of nine genes (mrjp genes), which are in turn members of the yellow family of genes such as in the fruitfly ( Drosophila ) and bacteria. They are attributed to be involved in differential development of queen larva and worker larvae, thus establishing division of labour in the bee colony. [9]
The honey bee queens and workers represent one of the most striking examples of environmentally controlled phenotypic polymorphism. Even if two larvae had identical DNA, one raised to be a worker, the other a queen, the two adults would be strongly differentiated across a wide range of characteristics including anatomical and physiological differences, longevity, and reproductive capacity. [11] Queens constitute the female sexual caste and have large active ovaries, whereas female workers have only rudimentary, inactive ovaries and are functionally sterile. The queen–worker developmental divide is controlled epigenetically by differential feeding with royal jelly; this appears to be due specifically to the protein royalactin. A female larva destined to become a queen is fed large quantities of royal jelly; this triggers a cascade of molecular events resulting in development of a queen. [3] It has been shown that this phenomenon is mediated by an epigenetic modification of DNA known as CpG methylation. [12] Silencing the expression of an enzyme that methylates DNA in newly hatched larvae led to a royal jelly-like effect on the larval developmental trajectory; the majority of individuals with reduced DNA methylation levels emerged as queens with fully developed ovaries. This finding suggests that DNA methylation in honey bees allows the expression of epigenetic information to be differentially altered by nutritional input. [13]
Royal jelly is harvested by stimulating colonies with movable frame hives to produce queen bees. Royal jelly is collected from each individual queen cell (honeycomb) when the queen larvae are about four days old. These are the only cells in which large amounts are deposited. This is because when royal jelly is fed to worker larvae, it is fed directly to them, and they consume it as it is produced, while the cells of queen larvae are "stocked" with royal jelly much faster than the larvae can consume it. Therefore, only in queen cells is the harvest of royal jelly practical.
A well-managed hive during a season of 5–6 months can produce approximately 500 g (18 oz) of royal jelly. [7] Since the product is perishable, producers must have immediate access to proper cold storage (e.g., a household refrigerator or freezer) in which the royal jelly is stored until it is sold or conveyed to a collection center. Sometimes honey or beeswax is added to the royal jelly, which is thought to aid its preservation. [7]
The Vegetarian Society considers royal jelly to be non-vegan. [14]
Royal jelly may cause allergic reactions in humans, ranging from hives or asthma (or both), to even fatal anaphylaxis. [15] [16] [17] [18] [19] [20] The incidence of allergic side effects in people who consume royal jelly is unknown. The risk of having an allergy to royal jelly is higher in people who have other allergies. [15]
In biology, epigenetics is the study of heritable traits, or a stable change of cell function, that happen without changes to the DNA sequence. The Greek prefix epi- in epigenetics implies features that are "on top of" or "in addition to" the traditional genetic mechanism of inheritance. Epigenetics usually involves a change that is not erased by cell division, and affects the regulation of gene expression. Such effects on cellular and physiological phenotypic traits may result from environmental factors, or be part of normal development. Epigenetic factors can also lead to cancer.
A honey bee is a eusocial flying insect within the genus Apis of the bee clade, all native to mainland Afro-Eurasia. After bees spread naturally throughout Africa and Eurasia, humans became responsible for the current cosmopolitan distribution of honey bees, introducing multiple subspecies into South America, North America, and Australia.
Methylation, in the chemical sciences, is the addition of a methyl group on a substrate, or the substitution of an atom by a methyl group. Methylation is a form of alkylation, with a methyl group replacing a hydrogen atom. These terms are commonly used in chemistry, biochemistry, soil science, and biology.
A maternal effect is a situation where the phenotype of an organism is determined not only by the environment it experiences and its genotype, but also by the environment and genotype of its mother. In genetics, maternal effects occur when an organism shows the phenotype expected from the genotype of the mother, irrespective of its own genotype, often due to the mother supplying messenger RNA or proteins to the egg. Maternal effects can also be caused by the maternal environment independent of genotype, sometimes controlling the size, sex, or behaviour of the offspring. These adaptive maternal effects lead to phenotypes of offspring that increase their fitness. Further, it introduces the concept of phenotypic plasticity, an important evolutionary concept. It has been proposed that maternal effects are important for the evolution of adaptive responses to environmental heterogeneity.
In beekeeping, bee brood or brood refers to the eggs, larvae and pupae of honeybees. The brood of Western honey bees develops within a bee hive. In man-made, removable frame hives, such as Langstroth hives, each frame which is mainly occupied by brood is called a brood frame. Brood frames usually have some pollen and nectar or honey in the upper corners of the frame. The rest of the brood frame cells may be empty or occupied by brood in various developmental stages. During the brood raising season, the bees may reuse the cells from which brood has emerged for additional brood or convert it to honey or pollen storage. Bees show remarkable flexibility in adapting cells to a use best suited for the hive's survival.
A queen bee is typically an adult, mated female (gyne) that lives in a colony or hive of honey bees. With fully developed reproductive organs, the queen is usually the mother of most, if not all, of the bees in the beehive. Queens are developed from larvae selected by worker bees and specially fed in order to become sexually mature. There is normally only one adult, mated queen in a hive, in which case the bees will usually follow and fiercely protect her.
Bee pollen, also known as bee bread and ambrosia, is a ball or pellet of field-gathered flower pollen packed by worker honeybees, and used as the primary food source for the hive. It consists of simple sugars, protein, minerals and vitamins, fatty acids, and a small percentage of other components. Bee pollen is stored in brood cells, mixed with saliva, and sealed with a drop of honey. Bee pollen is harvested as food for humans and marketed as having various, but yet unproven, health benefits.
In biology, reprogramming refers to erasure and remodeling of epigenetic marks, such as DNA methylation, during mammalian development or in cell culture. Such control is also often associated with alternative covalent modifications of histones.
Methyltransferases are a large group of enzymes that all methylate their substrates but can be split into several subclasses based on their structural features. The most common class of methyltransferases is class I, all of which contain a Rossmann fold for binding S-Adenosyl methionine (SAM). Class II methyltransferases contain a SET domain, which are exemplified by SET domain histone methyltransferases, and class III methyltransferases, which are membrane associated. Methyltransferases can also be grouped as different types utilizing different substrates in methyl transfer reactions. These types include protein methyltransferases, DNA/RNA methyltransferases, natural product methyltransferases, and non-SAM dependent methyltransferases. SAM is the classical methyl donor for methyltransferases, however, examples of other methyl donors are seen in nature. The general mechanism for methyl transfer is a SN2-like nucleophilic attack where the methionine sulfur serves as the leaving group and the methyl group attached to it acts as the electrophile that transfers the methyl group to the enzyme substrate. SAM is converted to S-Adenosyl homocysteine (SAH) during this process. The breaking of the SAM-methyl bond and the formation of the substrate-methyl bond happen nearly simultaneously. These enzymatic reactions are found in many pathways and are implicated in genetic diseases, cancer, and metabolic diseases. Another type of methyl transfer is the radical S-Adenosyl methionine (SAM) which is the methylation of unactivated carbon atoms in primary metabolites, proteins, lipids, and RNA.
Agouti-signaling protein is a protein that in humans is encoded by the ASIP gene. It is responsible for the distribution of melanin pigment in mammals. Agouti interacts with the melanocortin 1 receptor to determine whether the melanocyte produces phaeomelanin, or eumelanin. This interaction is responsible for making distinct light and dark bands in the hairs of animals such as the agouti, which the gene is named after. In other species such as horses, agouti signalling is responsible for determining which parts of the body will be red or black. Mice with wildtype agouti will be grey-brown, with each hair being partly yellow and partly black. Loss of function mutations in mice and other species cause black fur coloration, while mutations causing expression throughout the whole body in mice cause yellow fur and obesity.
Apis andreniformis, or the black dwarf honey bee, is a relatively rare species of honey bee whose native habitat is the tropical and subtropical regions of Southeast Asia.
Histone-modifying enzymes are enzymes involved in the modification of histone substrates after protein translation and affect cellular processes including gene expression. To safely store the eukaryotic genome, DNA is wrapped around four core histone proteins, which then join to form nucleosomes. These nucleosomes further fold together into highly condensed chromatin, which renders the organism's genetic material far less accessible to the factors required for gene transcription, DNA replication, recombination and repair. Subsequently, eukaryotic organisms have developed intricate mechanisms to overcome this repressive barrier imposed by the chromatin through histone modification, a type of post-translational modification which typically involves covalently attaching certain groups to histone residues. Once added to the histone, these groups elicit either a loose and open histone conformation, euchromatin, or a tight and closed histone conformation, heterochromatin. Euchromatin marks active transcription and gene expression, as the light packing of histones in this way allows entry for proteins involved in the transcription process. As such, the tightly packed heterochromatin marks the absence of current gene expression.
The western honey bee or European honey bee is the most common of the 7–12 species of honey bees worldwide. The genus name Apis is Latin for 'bee', and mellifera is the Latin for 'honey-bearing' or 'honey-carrying', referring to the species' production of honey.
Eusociality is the highest level of organization of sociality. It is defined by the following characteristics: cooperative brood care, overlapping generations within a colony of adults, and a division of labor into reproductive and non-reproductive groups. The division of labor creates specialized behavioral groups within an animal society which are sometimes referred to as 'castes'. Eusociality is distinguished from all other social systems because individuals of at least one caste usually lose the ability to perform behaviors characteristic of individuals in another caste. Eusocial colonies can be viewed as superorganisms.
Nutriepigenomics is the study of food nutrients and their effects on human health through epigenetic modifications. There is now considerable evidence that nutritional imbalances during gestation and lactation are linked to non-communicable diseases, such as obesity, cardiovascular disease, diabetes, hypertension, and cancer. If metabolic disturbances occur during critical time windows of development, the resulting epigenetic alterations can lead to permanent changes in tissue and organ structure or function and predispose individuals to disease.
Behavioral epigenetics is the field of study examining the role of epigenetics in shaping animal and human behavior. It seeks to explain how nurture shapes nature, where nature refers to biological heredity and nurture refers to virtually everything that occurs during the life-span. Behavioral epigenetics attempts to provide a framework for understanding how the expression of genes is influenced by experiences and the environment to produce individual differences in behaviour, cognition, personality, and mental health.
Epigenetics in insects is the role that epigenetics plays in insects.
Major royal jelly proteins (MRJPs) are a family of proteins secreted by honey bees. The family consists of nine proteins, of which MRJP1, MRJP2, MRJP3, MRJP4, and MRJP5 are present in the royal jelly secreted by worker bees. MRJP1 is the most abundant, and largest in volume. The five proteins constitute 82–90% of the total proteins in royal jelly. Royal jelly is a nutrient-rich mixture of vitamins, sugars, fats, proteins, and enzymes. It is used for feeding larvae. Royal jelly has been used in traditional medicine since ancient times, and the MRJPs are shown to be the main medicinal components. They are synthesised by a family of nine genes, which are in turn members of the yellow family of genes, such as in the fruitfly (Drosophila) and bacteria. They are involved in the differential development of queen larva and worker larvae, thus establishing division of labour in the bee colony.
The first 1,000 days describes the period from conception to 24 months of age in child development. This is considered a "critical period" in which sufficient nutrition and environmental factors have life-long effects on a child's overall health. While adequate nutrition can be exceptionally beneficial during this critical period, inadequate nutrition may also be detrimental to the child. This is because children establish many of their lifetime epigenetic characteristics in their first 1,000 days. Medical and public health interventions early on in child development during the first 1,000 days may have higher rates of success compared to those achieved outside of this period.
Nutritional epigenetics is a science that studies the effects of nutrition on gene expression and chromatin accessibility. It is a subcategory of nutritional genomics that focuses on the effects of bioactive food components on epigenetic events.