Neurogenesis

Last updated
Neurogenesis
Journal.pone.0001604.g001 small.jpg
A neurosphere of neural stem cells in rat embryo spreads out into a single layer of cells. A) Neurosphere of subventricular zone cells after two days in culture. B) Shows the neurosphere at four days in culture and cells migrating away. C) Cells at the periphery of the neurosphere mostly having extending processes.
Identifiers
MeSH D055495
Anatomical terminology

Neurogenesis is the process by which nervous system cells, the neurons, are produced by neural stem cells (NSCs). [1] This occurs in all species of animals except the porifera (sponges) and placozoans. [2] Types of NSCs include neuroepithelial cells (NECs), radial glial cells (RGCs), basal progenitors (BPs), intermediate neuronal precursors (INPs), subventricular zone astrocytes, and subgranular zone radial astrocytes, among others. [2]

Contents

Neurogenesis is most active during embryonic development and is responsible for producing all the various types of neurons of the organism, but it continues throughout adult life in a variety of organisms. [2] Once born, neurons do not divide (see mitosis), and many will live the lifespan of the animal, except under extraordinary and usually pathogenic circumstances. [3]

In mammals

Developmental neurogenesis

Stages of neuronal development in the fetal cerebral cortex The developing cerebral cortex.jpg
Stages of neuronal development in the fetal cerebral cortex
Model of mammalian neurogenesis Model of inhibitory neurogenesis.png
Model of mammalian neurogenesis

During embryonic development, the mammalian central nervous system (CNS; brain and spinal cord) is derived from the neural tube, which contains NSCs that will later generate neurons. [3] However, neurogenesis doesn't begin until a sufficient population of NSCs has been achieved. These early stem cells are called neuroepithelial cells (NEC)s, but soon take on a highly elongated radial morphology and are then known as radial glial cells (RGC)s. [3] RGCs are the primary stem cells of the mammalian CNS, and reside in the embryonic ventricular zone, which lies adjacent to the central fluid-filled cavity (ventricular system) of the neural tube. [5] [6] Following RGC proliferation, neurogenesis involves a final cell division of the parent RGC, which produces one of two possible outcomes. First, this may generate a subclass of neuronal progenitors called intermediate neuronal precursors (INP)s, which will divide one or more times to produce neurons. Alternatively, daughter neurons may be produced directly. Neurons do not immediately form neural circuits through the growth of axons and dendrites. Instead, newborn neurons must first migrate long distances to their final destinations, maturing and finally generating neural circuitry. For example, neurons born in the ventricular zone migrate radially to the cortical plate, which is where neurons accumulate to form the cerebral cortex. [5] [6] Thus, the generation of neurons occurs in a specific tissue compartment or 'neurogenic niche' occupied by their parent stem cells.

The rate of neurogenesis and the type of neuron generated (broadly, excitatory or inhibitory) are principally determined by molecular and genetic factors. These factors notably include the Notch signaling pathway, and many genes have been linked to Notch pathway regulation. [7] [8] The genes and mechanisms involved in regulating neurogenesis are the subject of intensive research in academic, pharmaceutical, and government settings worldwide.

The amount of time required to generate all the neurons of the CNS varies widely across mammals, and brain neurogenesis is not always complete by the time of birth. [3] For example, mice undergo cortical neurogenesis from about embryonic day (post-conceptional day) (E)11 to E17, and are born at about E19.5. [9] Ferrets are born at E42, although their period of cortical neurogenesis does not end until a few days after birth. [10] In contrast, neurogenesis in humans generally begins around gestational week (GW) 10 and ends around GW 25 with birth about GW 38–40. [11]

Epigenetic modification

As embryonic development of the mammalian brain unfolds, neural progenitor and stem cells switch from proliferative divisions to differentiative divisions. This progression leads to the generation of neurons and glia that populate cortical layers. Epigenetic modifications play a key role in regulating gene expression in the cellular differentiation of neural stem cells. Epigenetic modifications include DNA cytosine methylation to form 5-methylcytosine and 5-methylcytosine demethylation. [12] [13] These modifications are critical for cell fate determination in the developing and adult mammalian brain.

DNA cytosine methylation is catalyzed by DNA methyltransferases (DNMTs). Methylcytosine demethylation is catalyzed in several stages by TET enzymes that carry out oxidative reactions (e.g. 5-methylcytosine to 5-hydroxymethylcytosine) and enzymes of the DNA base excision repair (BER) pathway. [12]

Adult neurogenesis

Neurogenesis can be a complex process in some mammals. In rodents for example, neurons in the central nervous system arise from three types of neural stem and progenitor cells: neuroepithelial cells, radial glial cells and basal progenitors, which go through three main divisions: symmetric proliferative division; asymmetric neurogenic division; and symmetric neurogenic division. Out of all the three cell types, neuroepithelial cells that pass through neurogenic divisions have a much more extended cell cycle than those that go through proliferative divisions, such as the radial glial cells and basal progenitors. [14] In the human, adult neurogenesis has been shown to occur at low levels compared with development, and in only three regions of the brain: the adult subventricular zone (SVZ) of the lateral ventricles, the amygdala and the dentate gyrus of the hippocampus. [15] [16] [17]

Subventricular zone

In many mammals, including rodents, the olfactory bulb is a brain region containing cells that detect smell, featuring integration of adult-born neurons, which migrate from the SVZ of the striatum to the olfactory bulb through the rostral migratory stream (RMS). [15] [18] The migrating neuroblasts in the olfactory bulb become interneurons that help the brain communicate with these sensory cells. The majority of those interneurons are inhibitory granule cells, but a small number are periglomerular cells. In the adult SVZ, the primary neural stem cells are SVZ astrocytes rather than RGCs. Most of these adult neural stem cells lie dormant in the adult, but in response to certain signals, these dormant cells, or B cells, go through a series of stages, first producing proliferating cells, or C cells. The C cells then produce neuroblasts, or A cells, that will become neurons. [16]

Hippocampus

Significant neurogenesis also occurs during adulthood in the hippocampus of many mammals, from rodents to some primates, although its existence in adult humans is debated. [19] [20] [21] The hippocampus plays a crucial role in the formation of new declarative memories, and it has been theorized that the reason human infants cannot form declarative memories is because they are still undergoing extensive neurogenesis in the hippocampus and their memory-generating circuits are immature. [22] Many environmental factors, such as exercise, stress, and antidepressants have been reported to change the rate of neurogenesis within the hippocampus of rodents. [23] [24] Some evidence indicates postnatal neurogenesis in the human hippocampus decreases sharply in newborns for the first year or two after birth, dropping to "undetectable levels in adults." [19]

In other organisms

Neurogenesis has been best characterized in model organisms such as the fruit fly Drosophila melanogaster . Neurogenesis in these organisms occur in the medulla cortex region of their optic lobes. These organisms can represent a model for the genetic analysis of adult neurogenesis and brain regeneration. There has been research that discuss how the study of “damage-responsive progenitor cells” in Drosophila can help to identify regenerative neurogenesis and how to find new ways to increase brain rebuilding. Recently, a study was made to show how “low-level adult neurogenesis” has been identified in Drosophila, specifically in the medulla cortex region, in which neural precursors could increase the production of new neurons, making neurogenesis occur. [25] [26] [27] In Drosophila, Notch signaling was first described, controlling a cell-to-cell signaling process called lateral inhibition, in which neurons are selectively generated from epithelial cells. [28] [29] In some vertebrates, regenerative neurogenesis has also been shown to occur. [30]

Substance-induced neurogenesis

An in vitro and in vivo study found that DMT present in the ayahuasca infusion promotes neurogenesis on the subgranular zone of the dentate gyrus in the hippocampus. [31] A study showed that a low dose (0.1 mg/kg) of psilocybin given to mice increased neurogenesis in the hippocampus 2 weeks after administration, while a high dose (1 mg/kg) significantly decreased neurogenesis. [32] No orally-available drugs are known to elicit neurogenesis outside of the already neurogenic niches.

Other findings

There is evidence that new neurons are produced in the dentate gyrus of the adult mammalian hippocampus, the brain region important for learning, motivation, memory, and emotion. A study reported that newly made cells in the adult mouse hippocampus can display passive membrane properties, action potentials and synaptic inputs similar to the ones found in mature dentate granule cells. These findings suggested that these newly made cells can mature into more practical and useful neurons in the adult mammalian brain. [33] Recent studies confirm that microglia, the resident immune cell of the brain, establish direct contacts with the cell bodies of developing neurons, and through these connections, regulate neurogenesis, migration, integration and the formation of neuronal networks. [34]

See also

Related Research Articles

<span class="mw-page-title-main">Dentate gyrus</span> Region of the hippocampus in the brain

The dentate gyrus (DG) is part of the hippocampal formation in the temporal lobe of the brain, which also includes the hippocampus and the subiculum. The dentate gyrus is part of the hippocampal trisynaptic circuit and is thought to contribute to the formation of new episodic memories, the spontaneous exploration of novel environments and other functions.

<span class="mw-page-title-main">Adult neurogenesis</span> Generating of neurons from neural stem cells in adults

Adult neurogenesis is the process in which neurons are generated from neural stem cells in the adult. This process differs from prenatal neurogenesis.

In vertebrates, a neuroblast or primitive nerve cell is a postmitotic cell that does not divide further, and which will develop into a neuron after a migration phase. In invertebrates such as Drosophila, neuroblasts are neural progenitor cells which divide asymmetrically to produce a neuroblast, and a daughter cell of varying potency depending on the type of neuroblast. Vertebrate neuroblasts differentiate from radial glial cells and are committed to becoming neurons. Neural stem cells, which only divide symmetrically to produce more neural stem cells, transition gradually into radial glial cells. Radial glial cells, also called radial glial progenitor cells, divide asymmetrically to produce a neuroblast and another radial glial cell that will re-enter the cell cycle.

<span class="mw-page-title-main">Rostral migratory stream</span> One path neural stem cells take to reach the olfactory bulb


The rostral migratory stream (RMS) is a specialized migratory route found in the brain of some animals along which neuronal precursors that originated in the subventricular zone (SVZ) of the brain migrate to reach the main olfactory bulb (OB). The importance of the RMS lies in its ability to refine and even change an animal's sensitivity to smells, which explains its importance and larger size in the rodent brain as compared to the human brain, as our olfactory sense is not as developed. This pathway has been studied in the rodent, rabbit, and both the squirrel monkey and rhesus monkey. When the neurons reach the OB they differentiate into GABAergic interneurons as they are integrated into either the granule cell layer or periglomerular layer.

Neuroepithelial cells, or neuroectodermal cells, form the wall of the closed neural tube in early embryonic development. The neuroepithelial cells span the thickness of the tube's wall, connecting with the pial surface and with the ventricular or lumenal surface. They are joined at the lumen of the tube by junctional complexes, where they form a pseudostratified layer of epithelium called neuroepithelium.

Neural stem cells (NSCs) are self-renewing, multipotent cells that firstly generate the radial glial progenitor cells that generate the neurons and glia of the nervous system of all animals during embryonic development. Some neural progenitor stem cells persist in highly restricted regions in the adult vertebrate brain and continue to produce neurons throughout life. Differences in the size of the central nervous system are among the most important distinctions between the species and thus mutations in the genes that regulate the size of the neural stem cell compartment are among the most important drivers of vertebrate evolution.

<span class="mw-page-title-main">Radial glial cell</span> Bipolar-shaped progenitor cells of all neurons in the cerebral cortex and some glia

Radial glial cells, or radial glial progenitor cells (RGPs), are bipolar-shaped progenitor cells that are responsible for producing all of the neurons in the cerebral cortex. RGPs also produce certain lineages of glia, including astrocytes and oligodendrocytes. Their cell bodies (somata) reside in the embryonic ventricular zone, which lies next to the developing ventricular system.

Neuropoiesis is the process by which neural stem cells differentiate to form mature neurons, astrocytes, and oligodendrocytes in the adult mammal. This process is also referred to as adult neurogenesis.

<span class="mw-page-title-main">Subventricular zone</span> Region outside each lateral ventricle of the brain

The subventricular zone (SVZ) is a region situated on the outside wall of each lateral ventricle of the vertebrate brain. It is present in both the embryonic and adult brain. In embryonic life, the SVZ refers to a secondary proliferative zone containing neural progenitor cells, which divide to produce neurons in the process of neurogenesis. The primary neural stem cells of the brain and spinal cord, termed radial glial cells, instead reside in the ventricular zone (VZ).

<span class="mw-page-title-main">Subgranular zone</span>

The subgranular zone (SGZ) is a brain region in the hippocampus where adult neurogenesis occurs. The other major site of adult neurogenesis is the subventricular zone (SVZ) in the brain.

<span class="mw-page-title-main">Protein BTG2</span> Protein-coding gene in the species Homo sapiens

Protein BTG2 also known as BTG family member 2 or NGF-inducible anti-proliferative protein PC3 or NGF-inducible protein TIS21, is a protein that in humans is encoded by the BTG2 gene and in other mammals by the homologous Btg2 gene. This protein controls cell cycle progression and proneural genes expression by acting as a transcription coregulator that enhances or inhibits the activity of transcription factors.

Gyrification is the process of forming the characteristic folds of the cerebral cortex.

<span class="mw-page-title-main">Eomesodermin</span> Protein-coding gene in the species Homo sapiens

Eomesodermin also known as T-box brain protein 2 (Tbr2) is a protein that in humans is encoded by the EOMES gene.

Endogenous regeneration in the brain is the ability of cells to engage in the repair and regeneration process. While the brain has a limited capacity for regeneration, endogenous neural stem cells, as well as numerous pro-regenerative molecules, can participate in replacing and repairing damaged or diseased neurons and glial cells. Another benefit that can be achieved by using endogenous regeneration could be avoiding an immune response from the host.

Epigenetic regulation of neurogenesis is the role that epigenetics plays in the regulation of neurogenesis.

<span class="mw-page-title-main">Neuronal lineage marker</span> Endogenous tag expressed in different cells along neurogenesis and differentiated cells

A neuronal lineage marker is an endogenous tag that is expressed in different cells along neurogenesis and differentiated cells such as neurons. It allows detection and identification of cells by using different techniques. A neuronal lineage marker can be either DNA, mRNA or RNA expressed in a cell of interest. It can also be a protein tag, as a partial protein, a protein or an epitope that discriminates between different cell types or different states of a common cell. An ideal marker is specific to a given cell type in normal conditions and/or during injury. Cell markers are very valuable tools for examining the function of cells in normal conditions as well as during disease. The discovery of various proteins specific to certain cells led to the production of cell-type-specific antibodies that have been used to identify cells.

<span class="mw-page-title-main">Ventricular zone</span> Transient embryonic layer of tissue containing neural stem cells

In vertebrates, the ventricular zone (VZ) is a transient embryonic layer of tissue containing neural stem cells, principally radial glial cells, of the central nervous system (CNS). The VZ is so named because it lines the ventricular system, which contains cerebrospinal fluid (CSF). The embryonic ventricular system contains growth factors and other nutrients needed for the proper function of neural stem cells. Neurogenesis, or the generation of neurons, occurs in the VZ during embryonic and fetal development as a function of the Notch pathway, and the newborn neurons must migrate substantial distances to their final destination in the developing brain or spinal cord where they will establish neural circuits. A secondary proliferative zone, the subventricular zone (SVZ), lies adjacent to the VZ. In the embryonic cerebral cortex, the SVZ contains intermediate neuronal progenitors that continue to divide into post-mitotic neurons. Through the process of neurogenesis, the parent neural stem cell pool is depleted and the VZ disappears. The balance between the rates of stem cell proliferation and neurogenesis changes during development, and species from mouse to human show large differences in the number of cell cycles, cell cycle length, and other parameters, which is thought to give rise to the large diversity in brain size and structure.

Intermediate progenitor cells (IPCs) are a type of progenitor cell in the developing cerebral cortex. They are multipolar cells produced by radial glial cells who have undergone asymmetric division. IPCs can produce neuron cells via neurogenesis and are responsible for ensuring the proper quantity of cortical neurons are produced. In mammals, neural stem cells are the primary progenitors during embryogenesis whereas intermediate progenitor cells are the secondary progenitors.

Adult neurogenesis is the process in which new neurons are born and subsequently integrate into functional brain circuits after birth and into adulthood. Avian species including songbirds are among vertebrate species that demonstrate particularly robust adult neurogenesis throughout their telencephalon, in contrast with the more limited neurogenic potential that are observed in adult mammals after birth. Adult neurogenesis in songbirds is observed in brain circuits that underlie complex specialized behavior, including the song control system and the hippocampus. The degree of postnatal and adult neurogenesis in songbirds varies between species, shows sexual dimorphism, fluctuates seasonally, and depends on hormone levels, cell death rates, and social environment. The increased extent of adult neurogenesis in birds compared to other vertebrates, especially in circuits that underlie complex specialized behavior, makes birds an excellent animal model to study this process and its functionality. Methods used in research to track adult neurogenesis in birds include the use of thymidine analogues and identifying endogenous markers of neurogenesis. Historically, the discovery of adult neurogenesis in songbirds substantially contributed to establishing the presence of adult neurogenesis and to progressing a line of research tightly associated with many potential clinical applications.

<span class="mw-page-title-main">Neurogenesis hypothesis of depression</span> Theory of depression

Adult neurogenesis is the process by which functional, mature neurons are produced from neural stem cells (NSCs) in the adult brain. In most mammals, including humans, it only occurs in the subgranular zone of the hippocampus, and in the olfactory bulb. The neurogenesis hypothesis of depression proposes that major depressive disorder is caused, at least partly, by impaired neurogenesis in the subgranular zone of the hippocampus.

References

  1. Purves, Dale (2012). Neuroscience (5. ed.). Sunderland, Mass: Sinauer. p. 492. ISBN   9780878936953.
  2. 1 2 3 Eric R. Kandel, ed. (2006). Principles of neural science (5. ed.). Appleton and Lange: McGraw Hill. ISBN   978-0071390118.
  3. 1 2 3 4 Gilbert, Scott F.; College, Swarthmore; Helsinki, the University of (2014). Developmental biology (Tenth ed.). Sunderland, Mass.: Sinauer. ISBN   978-0878939787.
  4. Schmitz, Matthew T.; Sandoval, Kadellyn; Chen, Christopher; Mostajo-Radji, Mohammed A.; Seeley, William W.; Nowakowski, Tomasz; Ye, Chun Jimmie; Paredes, Mercedes F.; Pollen, Alex A. (2022-03-23). "The development and evolution of inhibitory neurons in primate cerebrum". Nature. 603 (7903): 871–877. Bibcode:2022Natur.603..871S. doi:10.1038/S41586-022-04510-W. PMC   8967711 . PMID   35322231.
  5. 1 2 Rakic, P (October 2009). "Evolution of the neocortex: a perspective from developmental biology". Nature Reviews. Neuroscience. 10 (10): 724–35. doi:10.1038/nrn2719. PMC   2913577 . PMID   19763105.
  6. 1 2 Lui, JH; Hansen, DV; Kriegstein, AR (8 July 2011). "Development and evolution of the human neocortex". Cell. 146 (1): 18–36. doi:10.1016/j.cell.2011.06.030. PMC   3610574 . PMID   21729779.
  7. Kageyama, R; Ohtsuka, T; Shimojo, H; Imayoshi, I (November 2008). "Dynamic Notch signaling in neural progenitor cells and a revised view of lateral inhibition". Nature Neuroscience. 11 (11): 1247–51. doi:10.1038/nn.2208. PMID   18956012. S2CID   24613095.
  8. Rash, BG; Lim, HD; Breunig, JJ; Vaccarino, FM (26 October 2011). "FGF signaling expands embryonic cortical surface area by regulating Notch-dependent neurogenesis". The Journal of Neuroscience. 31 (43): 15604–17. doi:10.1523/jneurosci.4439-11.2011. PMC   3235689 . PMID   22031906.
  9. Abbott, David M. Jacobowitz, Louise C. (1998). Chemoarchitectonic atlas of the developing mouse brain. Boca Raton: CRC Press. ISBN   9780849326677.{{cite book}}: CS1 maint: multiple names: authors list (link)
  10. Kroenke, CD; Bayly, PV (24 January 2018). "How Forces Fold the Cerebral Cortex". The Journal of Neuroscience. 38 (4): 767–775. doi:10.1523/JNEUROSCI.1105-17.2017. PMC   5783962 . PMID   29367287.
  11. Malik, S; Vinukonda, G; Vose, LR; Diamond, D; Bhimavarapu, BB; Hu, F; Zia, MT; Hevner, R; Zecevic, N; Ballabh, P (9 January 2013). "Neurogenesis continues in the third trimester of pregnancy and is suppressed by premature birth". The Journal of Neuroscience. 33 (2): 411–23. doi:10.1523/JNEUROSCI.4445-12.2013. PMC   3711635 . PMID   23303921.
  12. 1 2 Wang, Zhiqin; Tang, Beisha; He, Yuquan; Jin, Peng (2016). "DNA methylation dynamics in neurogenesis". Epigenomics. 8 (3): 401–414. doi:10.2217/epi.15.119. PMC   4864063 . PMID   26950681.
  13. Noack, Florian; Pataskar, Abhijeet; Schneider, Martin; Buchholz, Frank; Tiwari, Vijay K.; Calegari, Federico (2019). "Assessment and site-specific manipulation of DNA (Hydroxy-)methylation during mouse corticogenesis". Life Science Alliance. 2 (2): e201900331. doi:10.26508/lsa.201900331. PMC   6394126 . PMID   30814272.
  14. Götz, Magdalena; Huttner, Wieland B. (October 2005). "The cell biology of neurogenesis". Nature Reviews Molecular Cell Biology. 6 (10): 777–788. doi:10.1038/nrm1739. ISSN   1471-0080. PMID   16314867. S2CID   16955231.
  15. 1 2 Ernst, A; Alkass, K; Bernard, S; Salehpour, M; Perl, S; Tisdale, J; Possnert, G; Druid, H; Frisén, J (27 February 2014). "Neurogenesis in the striatum of the adult human brain". Cell. 156 (5): 1072–83. doi: 10.1016/j.cell.2014.01.044 . PMID   24561062.
  16. 1 2 Lim, DA; Alvarez-Buylla, A (2 May 2016). "The Adult Ventricular-Subventricular Zone (V-SVZ) and Olfactory Bulb (OB) Neurogenesis". Cold Spring Harbor Perspectives in Biology. 8 (5): a018820. doi:10.1101/cshperspect.a018820. PMC   4852803 . PMID   27048191.
  17. Alvarez-Buylla, A; Lim, DA (4 March 2004). "For the long run: maintaining germinal niches in the adult brain". Neuron. 41 (5): 683–6. doi: 10.1016/S0896-6273(04)00111-4 . PMID   15003168. S2CID   17319636.
  18. Ming, GL; Song, H (May 26, 2011). "Adult neurogenesis in the mammalian brain: significant answers and significant questions". Neuron. 70 (4): 687–702. doi:10.1016/j.neuron.2011.05.001. PMC   3106107 . PMID   21609825.
  19. 1 2 Sorrells, SF; Paredes, MF; Cebrian-Silla, A; Sandoval, K; Qi, D; Kelley, KW; James, D; Mayer, S; Chang, J; Auguste, KI; Chang, EF; Gutierrez, AJ; Kriegstein, AR; Mathern, GW; Oldham, MC; Huang, EJ; Garcia-Verdugo, JM; Yang, Z; Alvarez-Buylla, A (15 March 2018). "Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults". Nature. 555 (7696): 377–381. Bibcode:2018Natur.555..377S. doi:10.1038/nature25975. PMC   6179355 . PMID   29513649.
  20. Boldrini, M; Fulmore, CA; Tartt, AN; Simeon, LR; Pavlova, I; Poposka, V; Rosoklija, GB; Stankov, A; Arango, V; Dwork, AJ; Hen, R; Mann, JJ (5 April 2018). "Human Hippocampal Neurogenesis Persists throughout Aging". Cell Stem Cell. 22 (4): 589–599.e5. doi:10.1016/j.stem.2018.03.015. PMC   5957089 . PMID   29625071.
  21. Zhou, Yi; Su, Yijing; Li, Shiying; Kennedy, Benjamin C.; Zhang, Daniel Y.; Bond, Allison M.; Sun, Yusha; Jacob, Fadi; Lu, Lu; Hu, Peng; Viaene, Angela N.; Helbig, Ingo; Kessler, Sudha K.; Lucas, Timothy; Salinas, Ryan D. (July 2022). "Molecular landscapes of human hippocampal immature neurons across lifespan". Nature. 607 (7919): 527–533. Bibcode:2022Natur.607..527Z. doi:10.1038/s41586-022-04912-w. ISSN   1476-4687. PMC   9316413 . PMID   35794479.
  22. Josselyn, Sheena A.; Frankland, Paul W. (2012-09-01). "Infantile amnesia: A neurogenic hypothesis". Learning & Memory. 19 (9): 423–433. doi: 10.1101/lm.021311.110 . ISSN   1072-0502. PMID   22904373.
  23. Hanson, Nicola D.; Owens, Michael J.; Nemeroff, Charles B. (2011-12-01). "Depression, Antidepressants, and Neurogenesis: A Critical Reappraisal". Neuropsychopharmacology. 36 (13): 2589–2602. doi:10.1038/npp.2011.220. ISSN   0893-133X. PMC   3230505 . PMID   21937982.
  24. Santarelli, Luca; Saxe, Michael; Gross, Cornelius; Surget, Alexandre; Battaglia, Fortunato; Dulawa, Stephanie; Weisstaub, Noelia; Lee, James; Duman, Ronald (2003-08-08). "Requirement of Hippocampal Neurogenesis for the Behavioral Effects of Antidepressants". Science. 301 (5634): 805–809. Bibcode:2003Sci...301..805S. doi:10.1126/science.1083328. ISSN   0036-8075. PMID   12907793. S2CID   9699898.
  25. Fernández-Hernández, Ismael; Rhiner, Christa; Moreno, Eduardo (2013-06-27). "Adult neurogenesis in Drosophila". Cell Reports. 3 (6): 1857–1865. doi: 10.1016/j.celrep.2013.05.034 . ISSN   2211-1247. PMID   23791523.
  26. Simões, Anabel R.; Rhiner, Christa (2017). "A Cold-Blooded View on Adult Neurogenesis". Frontiers in Neuroscience. 11: 327. doi: 10.3389/fnins.2017.00327 . ISSN   1662-453X. PMC   5462949 . PMID   28642678.
  27. Eriksson, Peter S.; Perfilieva, Ekaterina; Björk-Eriksson, Thomas; Alborn, Ann-Marie; Nordborg, Claes; Peterson, Daniel A.; Gage, Fred H. (November 1998). "Neurogenesis in the adult human hippocampus". Nature Medicine. 4 (11): 1313–1317. doi: 10.1038/3305 . ISSN   1546-170X. PMID   9809557.
  28. Axelrod, JD (26 October 2010). "Delivering the lateral inhibition punchline: it's all about the timing". Science Signaling. 3 (145): pe38. doi:10.1126/scisignal.3145pe38. PMID   20978236. S2CID   38362848.
  29. Huang, C; Chan, JA; Schuurmans, C (2014). "Proneural bHLH Genes in Development and Disease". BHLH Transcription Factors in Development and Disease. Current Topics in Developmental Biology. Vol. 110. pp. 75–127. doi:10.1016/B978-0-12-405943-6.00002-6. ISBN   9780124059436. PMID   25248474.
  30. Alunni, A; Bally-Cuif, L (1 March 2016). "A comparative view of regenerative neurogenesis in vertebrates". Development. 143 (5): 741–753. doi:10.1242/dev.122796. PMC   4813331 . PMID   26932669.
  31. Morales-Garcia, JA; Calleja-Conde, J; Lopez-Moreno, JA; Alonso-Gil, S; Sanz-SanCristobal, M; Riba, J; Perez-Castillo, A (28 September 2020). "N,N-dimethyltryptamine compound found in the hallucinogenic tea ayahuasca, regulates adult neurogenesis in vitro and in vivo". Translational Psychiatry. 10 (1): 331. doi:10.1038/s41398-020-01011-0. PMC   7522265 . PMID   32989216.
  32. Catlow, Briony J.; Song, Shijie; Paredes, Daniel A.; Kirstein, Cheryl L.; Sanchez-Ramos, Juan (August 2013). "Effects of psilocybin on hippocampal neurogenesis and extinction of trace fear conditioning". Experimental Brain Research. 228 (4): 481–491. doi:10.1007/s00221-013-3579-0. ISSN   1432-1106. PMID   23727882. S2CID   9577760.
  33. van Praag, Henriette; Schinder, Alejandro F.; Christie, Brian R.; Toni, Nicolas; Palmer, Theo D.; Gage, Fred H. (February 2002). "Functional neurogenesis in the adult hippocampus". Nature. 415 (6875): 1030–1034. Bibcode:2002Natur.415.1030V. doi:10.1038/4151030a. ISSN   1476-4687. PMC   9284568 . PMID   11875571. S2CID   4403779.
  34. Cserép, Csaba; Schwarcz, Anett D.; Pósfai, Balázs; László, Zsófia I.; Kellermayer, Anna; Környei, Zsuzsanna; Kisfali, Máté; Nyerges, Miklós; Lele, Zsolt; Katona, István; Dénes, Ádám (20 September 2022). "Microglial control of neuronal development via somatic purinergic junctions". Cell Reports. 40 (12): 111369. doi:10.1016/j.celrep.2022.111369. PMC   9513806 . PMID   36130488. S2CID   252416407.