Outline of neuroscience

Last updated

The following outline is provided as an overview of and topical guide to neuroscience:

Contents

Neuroscience is the scientific study of the structure and function of the nervous system. [1] [2] It encompasses the branch of biology [3] that deals with the anatomy, biochemistry, molecular biology, and physiology of neurons and neural circuits. It also encompasses cognition, and human behavior. [2] Neuroscience has multiple concepts that each relate to learning abilities and memory functions. Additionally, the brain is able to transmit signals that cause conscious/unconscious behaviors that are responses verbal or non-verbal. This allows people to communicate with one another. [4]

Branches of neuroscience

Neurophysiology

Neurophysiology is the study of the function (as opposed to structure) of the nervous system.

Neuroanatomy

Neuroanatomy is the study of the anatomy of nervous tissue and neural structures of the nervous system.

Neuropharmacology

Neuropharmacology is the study of how drugs affect cellular function in the nervous system.

Behavioral neuroscience

Behavioral neuroscience, also known as biological psychology, biopsychology, or psychobiology, is the application of the principles of biology to the study of mental processes and behavior in human and non-human animals.

Developmental neuroscience

Developmental neuroscience aims to describe the cellular basis of brain development and to address the underlying mechanisms. The field draws on both neuroscience and developmental biology to provide insight into the cellular and molecular mechanisms by which complex nervous systems develop.

Cognitive neuroscience

Cognitive neuroscience is concerned with the scientific study of biological substrates underlying cognition, with a focus on the neural substrates of mental processes.

Systems neuroscience

Systems neuroscience is a subdiscipline of neuroscience which studies the function of neural circuits and systems. It is an umbrella term, encompassing a number of areas of study concerned with how nerve cells behave when connected together to form neural networks.

Molecular neuroscience

Molecular neuroscience is a branch of neuroscience that examines the biology of the nervous system with molecular biology, molecular genetics, protein chemistry and related methodologies.

Computational neuroscience

Computational neuroscience includes both the study of the information processing functions of the nervous system, and the use of digital computers to study the nervous system. It is an interdisciplinary science that links the diverse fields of neuroscience, cognitive science and psychology, electrical engineering, computer science, physics and mathematics.

Neurophilosophy

Neurophilosophy or "philosophy of neuroscience" is the interdisciplinary study of neuroscience and philosophy. Work in this field is often separated into two distinct approaches. The first approach attempts to solve problems in philosophy of mind with empirical information from the neurosciences. The second approach attempts to clarify neuroscientific results using the conceptual rigor and methods of philosophy of science.

Neurology

Neurology is the medical specialty dealing with disorders of the nervous system. It deals with the diagnosis and treatment of all categories of disease involving the central, peripheral, and autonomic nervous systems.

Neuropsychology

Neuropsychology studies the structure and function of the brain related to psychological processes and behaviors. The term is used most frequently with reference to studies of the effects of brain damage in humans and animals.

Neuroevolution and neuroeconomics

History of neuroscience

Nervous system

Outline of the human nervous system

Neuroscience organizations

Persons influential in the field of neuroscience

See also

Related Research Articles

<span class="mw-page-title-main">Brain</span> Organ that controls the nervous system in vertebrates and most invertebrates

The brain is an organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. In vertebrates, a small part of the brain called the hypothalamus is the neural control center for all endocrine systems. The brain is the largest cluster of neurons in the body and is typically located in the head, usually near organs for special senses such as vision, hearing and olfaction. It is the most energy-consuming organ of the body, and the most specialized, responsible for endocrine regulation, sensory perception, motor control, and the development of intelligence.

<span class="mw-page-title-main">Outline of biology</span> Outline of subdisciplines within biology

Biology – The natural science that studies life. Areas of focus include structure, function, growth, origin, evolution, distribution, and taxonomy.

<span class="mw-page-title-main">Neuroscience</span> Scientific study of the nervous system

Neuroscience is the scientific study of the nervous system, its functions and disorders. It is a multidisciplinary science that combines physiology, anatomy, molecular biology, developmental biology, cytology, psychology, physics, computer science, chemistry, medicine, statistics, and mathematical modeling to understand the fundamental and emergent properties of neurons, glia and neural circuits. The understanding of the biological basis of learning, memory, behavior, perception, and consciousness has been described by Eric Kandel as the "epic challenge" of the biological sciences.

<span class="mw-page-title-main">Neural Darwinism</span> Theory in neurology

Neural Darwinism is a biological, and more specifically Darwinian and selectionist, approach to understanding global brain function, originally proposed by American biologist, researcher and Nobel-Prize recipient Gerald Maurice Edelman. Edelman's 1987 book Neural Darwinism introduced the public to the theory of neuronal group selection (TNGS) – which is the core theory underlying Edelman's explanation of global brain function.

<span class="mw-page-title-main">Cognitive neuroscience</span> Scientific field

Cognitive neuroscience is the scientific field that is concerned with the study of the biological processes and aspects that underlie cognition, with a specific focus on the neural connections in the brain which are involved in mental processes. It addresses the questions of how cognitive activities are affected or controlled by neural circuits in the brain. Cognitive neuroscience is a branch of both neuroscience and psychology, overlapping with disciplines such as behavioral neuroscience, cognitive psychology, physiological psychology and affective neuroscience. Cognitive neuroscience relies upon theories in cognitive science coupled with evidence from neurobiology, and computational modeling.

Neurophysiology is a branch of physiology and neuroscience that studies nervous system function rather than nervous system architecture. This area aids in the diagnosis and monitoring of neurological diseases. Historically, it has been dominated by electrophysiology—the electrical recording of neural activity ranging from the molar to the cellular, such as patch clamp, voltage clamp, extracellular single-unit recording and recording of local field potentials. However, since the neuron is an electrochemical machine, it is difficult to isolate electrical events from the metabolic and molecular processes that cause them. Thus, neurophysiologists currently utilise tools from chemistry, physics, and molecular biology to examine brain activity.

<span class="mw-page-title-main">Human brain</span> Central organ of the human nervous system

The brain is the central organ of the human nervous system, and with the spinal cord makes up the central nervous system. The brain consists of the cerebrum, the brainstem and the cerebellum. It controls most of the activities of the body, processing, integrating, and coordinating the information it receives from the sense organs, and making decisions as to the instructions sent to the rest of the body. The brain is contained in, and protected by, the skull bones of the head.

<span class="mw-page-title-main">Glia</span> Support cells in the nervous system

Glia, also called glial cells(gliocytes) or neuroglia, are non-neuronal cells in the central nervous system (brain and spinal cord) and the peripheral nervous system that do not produce electrical impulses. The neuroglia make up more than one half the volume of neural tissue in our body. They maintain homeostasis, form myelin in the peripheral nervous system, and provide support and protection for neurons. In the central nervous system, glial cells include oligodendrocytes, astrocytes, ependymal cells and microglia, and in the peripheral nervous system they include Schwann cells and satellite cells.

Neurochemistry is the study of chemicals, including neurotransmitters and other molecules such as psychopharmaceuticals and neuropeptides, that control and influence the physiology of the nervous system. This particular field within neuroscience examines how neurochemicals influence the operation of neurons, synapses, and neural networks. Neurochemists analyze the biochemistry and molecular biology of organic compounds in the nervous system, and their roles in such neural processes including cortical plasticity, neurogenesis, and neural differentiation.

<span class="mw-page-title-main">Behavioral neuroscience</span> Field of study

Behavioral neuroscience, also known as biological psychology, biopsychology, or psychobiology, is the application of the principles of biology to the study of physiological, genetic, and developmental mechanisms of behavior in humans and other animals.

<span class="mw-page-title-main">Neuroscientist</span> Individual who studies neuroscience

A neuroscientist is a scientist who has specialised knowledge in neuroscience, a branch of biology that deals with the physiology, biochemistry, psychology, anatomy and molecular biology of neurons, neural circuits, and glial cells and especially their behavioral, biological, and psychological aspect in health and disease.

Systems neuroscience is a subdiscipline of neuroscience and systems biology that studies the structure and function of neural circuits and systems. Systems neuroscience encompasses a number of areas of study concerned with how nerve cells behave when connected together to form neural pathways, neural circuits, and larger brain networks. At this level of analysis, neuroscientists study how different neural circuits analyze sensory information, form perceptions of the external world, make decisions, and execute movements. Researchers in systems neuroscience are concerned with the relation between molecular and cellular approaches to understanding brain structure and function, as well as with the study of high-level mental functions such as language, memory, and self-awareness. Systems neuroscientists typically employ techniques for understanding networks of neurons as they are seen to function, by way of electrophysiology using either single-unit recording or multi-electrode recording, functional magnetic resonance imaging (fMRI), and PET scans. The term is commonly used in an educational framework: a common sequence of graduate school neuroscience courses consists of cellular/molecular neuroscience for the first semester, then systems neuroscience for the second semester. It is also sometimes used to distinguish a subdivision within a neuroscience department in a university.

Integrative neuroscience is the study of neuroscience that works to unify functional organization data to better understand complex structures and behaviors. The relationship between structure and function, and how the regions and functions connect to each other. Different parts of the brain carrying out different tasks, interconnecting to come together allowing complex behavior. Integrative neuroscience works to fill gaps in knowledge that can largely be accomplished with data sharing, to create understanding of systems, currently being applied to simulation neuroscience: Computer Modeling of the brain that integrates functional groups together.

Nervous system diseases, also known as nervous system or neurological disorders, refers to a small class of medical conditions affecting the nervous system. This category encompasses over 600 different conditions, including genetic disorders, infections, cancer, seizure disorders, conditions with a cardiovascular origin, congenital and developmental disorders, and degenerative disorders.

The Journal of Neurophysiology is a monthly peer-reviewed scientific journal established in 1938. It is published by the American Physiological Society with Jan "Nino" Ramirez as its editor-in-chief. Ramirez is the Director for the Center for Integrative Brain Research at the University of Washington.

The NAS Award in the Neurosciences is awarded by the U.S. National Academy of Sciences "in recognition of extraordinary contributions to progress in the fields of neuroscience, including neurochemistry, neurophysiology, neuropharmacology, developmental neuroscience, neuroanatomy, and behavioral and clinical neuroscience." It was first awarded in 1988.

The following outline is provided as an overview of and topical guide to brain mapping:

The following outline is provided as an overview of and topical guide to the human brain:

<span class="mw-page-title-main">Princeton Neuroscience Institute</span>

The Princeton Neuroscience Institute (PNI) is a center for neuroscience research at Princeton University. Founded in the spring of 2004, the PNI serves as a "stimulus for teaching and research in neuroscience and related fields" and "places particular emphasis on the close connection between theory, modeling, and experimentation using the most advanced technologies." It often partners with Princeton University's departments of Psychology and Molecular Biology.

References

  1. "Neuroscience". Merriam-Webster Medical Dictionary.
  2. 1 2 "Neuroscience | Psychology Today Canada". Psychology Today. Retrieved 2020-03-10.
  3. "the definition of neurobiology". Dictionary.com. Retrieved 2017-06-21.
  4. "Neuroscience Core Concepts". www.brainfacts.org. Retrieved 2022-04-27.