Neuroblast

Last updated

In vertebrates, a neuroblast or primitive nerve cell [1] is a postmitotic cell that does not divide further, [2] and which will develop into a neuron after a migration phase. [3] In invertebrates such as Drosophila, neuroblasts are neural progenitor cells which divide asymmetrically to produce a neuroblast, and a daughter cell of varying potency depending on the type of neuroblast. Vertebrate neuroblasts differentiate from radial glial cells and are committed to becoming neurons. [4] Neural stem cells, which only divide symmetrically to produce more neural stem cells, transition gradually into radial glial cells. [5] Radial glial cells, also called radial glial progenitor cells, divide asymmetrically to produce a neuroblast and another radial glial cell that will re-enter the cell cycle. [5] [3]

Contents

This mitosis occurs in the germinal neuroepithelium (or germinal zone), when a radial glial cell divides to produce the neuroblast. The neuroblast detaches from the epithelium and migrates while the radial glial progenitor cell produced stays in the lumenal epithelium. The migrating cell will not divide further and this is called the neuron's birthday. Cells with the earliest birthdays will only migrate a short distance. Those cells with later birthdays will migrate further to the more outer regions of the cerebral cortex. The positions that the migrated cells occupy will determine their neuronal differentiation. [6]

Formation

Neuroblasts are formed by the asymmetric division of radial glial cells. They start to migrate as soon as they are born. Neurogenesis can only take place when neural stem cells have transitioned into radial glial cells. [5]

Differentiation

Neuroblasts are mainly present as precursors of neurons during embryonic development; however, they also constitute one of the cell types involved in adult neurogenesis. Adult neurogenesis is characterized by neural stem cell differentiation and integration in the mature adult mammalian brain. This process occurs in the dentate gyrus of the hippocampus and in the subventricular zones of the adult mammalian brain. Neuroblasts are formed when a neural stem cell, which can differentiate into any type of mature neural cell (i.e. neurons, oligodendrocytes, astrocytes, etc.), divides and becomes a transit amplifying cell. Transit amplifying cells are slightly more differentiated than neural stem cells and can divide asymmetrically to produce postmitotic neuroblasts and glioblasts, as well as other transit amplifying cells. A neuroblast, a daughter cell of a transit amplifying cell, is initially a neural stem cell that has reached the "point of no return." A neuroblast has differentiated such that it will mature into a neuron and not any other neural cell type. [7] Neuroblasts are being studied extensively as they have the potential to be used therapeutically to combat cell loss due to injury or disease in the brain, although their potential effectiveness is debated.

Migration

In the embryo neuroblasts form the middle mantle layer of the neural tube wall which goes on to form the grey matter of the spinal cord. The outer layer to the mantle layer is the marginal layer and this contains the myelinated axons from the neuroblasts forming the white matter of the spinal cord. [1] The inner layer is the ependymal layer that will form the lining of the ventricles and central canal of the spinal cord. [8]

In humans, neuroblasts produced by stem cells in the adult subventricular zone migrate into damaged areas after brain injuries. However, they are restricted to the subtype of small interneuron-like cells, and it is unlikely that they contribute to functional recovery of striatal circuits. [9]

Clinical significance

There are several disorders known as neuronal migration disorders that can cause serious problems. These arise from a disruption in the pattern of migration of the neuroblasts on their way to their target destinations. The disorders include, lissencephaly, microlissencephaly, pachygyria, and several types of gray matter heterotopia.

Neuroblast development in Drosophila

In the fruit fly model organism Drosophila melanogaster, a neuroblast is a neural progenitor cell which divides asymmetrically to produce a neuroblast and either a neuron, a ganglion mother cell (GMC), or an intermediate neural progenitor, depending on the type of neuroblast. [10] [11] During embryogenesis, embryonic neuroblasts delaminate from either the procephalic neuroectoderm (for brain neuroblasts), or the ventral nerve cord neuroectoderm (for abdominal neuroblasts). During larval development, optic lobe neuroblasts are generated from a neuroectoderm called the Outer Proliferation Center. [12] There are more than 800 optic lobe neuroblasts, 105 central brain neuroblasts, and 30 abdominal neuroblasts per hemisegment (a bilateral half of a segment). [11]

Neuroblasts undergo three known division types. Type 0 neuroblasts divide to give rise to a neuroblast, and a daughter cell which directly differentiates into a single neuron or glia. Type I neuroblasts give rise to a neuroblast and a ganglion mother cell (GMC), which undergoes a terminal division to generate a pair of sibling neurons. This is the most common form of cell division, and is observed in abdominal, optic lobe, and central brain neuroblasts. Type II neuroblasts give rise to a neuroblast and a transit amplifying Intermediate Neural Progenitor (INP). INPs divide in a manner similar to type I neuroblasts, producing an INP and a ganglion mother cell. While only 8 type II neuroblasts exist in the central brain, their lineages are both much larger and more complex than type I neuroblasts. [11] The switch from pluripotent neuroblast to differentiated cell fate is facilitated by the proteins Prospero, Numb, and Miranda. Prospero is a transcription factor that triggers differentiation. It is expressed in neuroblasts, but is kept out of the nucleus by Miranda, which tethers it to the cell basal cortex. This also results in asymmetric division, where Prospero localizes in only one out of the two daughter cells. After division, Prospero enters the nucleus, and the cell it is present in becomes the GMC.

Neuroblasts are capable of giving rise to the vast neural diversity present in the fly brain using a combination of spatial and temporal restriction of gene expression that give progeny born from each neuroblast a unique identity depending both their parent neuroblast and their birth date. [13] This is partly based on the position of the neuroblast along the Anterior/Posterior and Dorsal/Ventral axes, and partly on a temporal sequence of transcription factors that are expressed in a specific order as neuroblasts undergo sequential divisions. [14]

See also

Related Research Articles

<span class="mw-page-title-main">Cerebral cortex</span> Outer layer of the cerebrum of the mammalian brain

The cerebral cortex, also known as the cerebral mantle, is the outer layer of neural tissue of the cerebrum of the brain in humans and other mammals. It is the largest site of neural integration in the central nervous system, and plays a key role in attention, perception, awareness, thought, memory, language, and consciousness. The cerebral cortex is the part of the brain responsible for cognition.

The development of the nervous system, or neural development (neurodevelopment), refers to the processes that generate, shape, and reshape the nervous system of animals, from the earliest stages of embryonic development to adulthood. The field of neural development draws on both neuroscience and developmental biology to describe and provide insight into the cellular and molecular mechanisms by which complex nervous systems develop, from nematodes and fruit flies to mammals.

<span class="mw-page-title-main">Rostral migratory stream</span> One path neural stem cells take to reach the olfactory bulb


The rostral migratory stream (RMS) is a specialized migratory route found in the brain of some animals along which neuronal precursors that originated in the subventricular zone (SVZ) of the brain migrate to reach the main olfactory bulb (OB). The importance of the RMS lies in its ability to refine and even change an animal's sensitivity to smells, which explains its importance and larger size in the rodent brain as compared to the human brain, as our olfactory sense is not as developed. This pathway has been studied in the rodent, rabbit, and both the squirrel monkey and rhesus monkey. When the neurons reach the OB they differentiate into GABAergic interneurons as they are integrated into either the granule cell layer or periglomerular layer.

Neuroepithelial cells, or neuroectodermal cells, form the wall of the closed neural tube in early embryonic development. The neuroepithelial cells span the thickness of the tube's wall, connecting with the pial surface and with the ventricular or lumenal surface. They are joined at the lumen of the tube by junctional complexes, where they form a pseudostratified layer of epithelium called neuroepithelium.

Neural stem cells (NSCs) are self-renewing, multipotent cells that firstly generate the radial glial progenitor cells that generate the neurons and glia of the nervous system of all animals during embryonic development. Some neural progenitor stem cells persist in highly restricted regions in the adult vertebrate brain and continue to produce neurons throughout life. Differences in the size of the central nervous system are among the most important distinctions between the species and thus mutations in the genes that regulate the size of the neural stem cell compartment are among the most important drivers of vertebrate evolution.

<span class="mw-page-title-main">Radial glial cell</span> Bipolar-shaped progenitor cells of all neurons in the cerebral cortex and some glia

Radial glial cells, or radial glial progenitor cells (RGPs), are bipolar-shaped progenitor cells that are responsible for producing all of the neurons in the cerebral cortex. RGPs also produce certain lineages of glia, including astrocytes and oligodendrocytes. Their cell bodies (somata) reside in the embryonic ventricular zone, which lies next to the developing ventricular system.

<span class="mw-page-title-main">Subventricular zone</span> Region outside each lateral ventricle of the brain

The subventricular zone (SVZ) is a region situated on the outside wall of each lateral ventricle of the vertebrate brain. It is present in both the embryonic and adult brain. In embryonic life, the SVZ refers to a secondary proliferative zone containing neural progenitor cells, which divide to produce neurons in the process of neurogenesis. The primary neural stem cells of the brain and spinal cord, termed radial glial cells, instead reside in the ventricular zone (VZ).

An asymmetric cell division produces two daughter cells with different cellular fates. This is in contrast to symmetric cell divisions which give rise to daughter cells of equivalent fates. Notably, stem cells divide asymmetrically to give rise to two distinct daughter cells: one copy of the original stem cell as well as a second daughter programmed to differentiate into a non-stem cell fate.

<span class="mw-page-title-main">Subgranular zone</span>

The subgranular zone (SGZ) is a brain region in the hippocampus where adult neurogenesis occurs. The other major site of adult neurogenesis is the subventricular zone (SVZ) in the brain.

<span class="mw-page-title-main">NUMB (gene)</span> Protein-coding gene in the species Homo sapiens

Protein numb homolog is a protein that in humans is encoded by the NUMB gene. The protein encoded by this gene plays a role in the determination of cell fates during development. The encoded protein, whose degradation is induced in a proteasome-dependent manner by MDM2, is a membrane-bound protein that has been shown to associate with EPS15, LNX1, and NOTCH1. Four transcript variants encoding different isoforms have been found for this gene.

<span class="mw-page-title-main">Ganglion mother cell</span>

Ganglion mother cells (GMCs) are cells involved in neurogenesis, in non-mammals, that divide only once to give rise to two neurons, or one neuron and one glial cell or two glial cells, and are present only in the central nervous system. They are also responsible for transcription factor expression. While each ganglion mother cell necessarily gives rise to two neurons, a neuroblast can asymmetrically divide multiple times. GMCs are the progeny of type I neuroblasts. Neuroblasts asymmetrically divide during embryogenesis to create GMCs. GMCs are only present in certain species and only during the embryonic and larval stages of life. Recent research has shown that there is an intermediate stage between a GMC and two neurons. The GMC forms two ganglion cells which then develop into neurons or glial cells. Embryonic neurogenesis has been extensively studied in Drosophila melanogaster embryos and larvae.

<span class="mw-page-title-main">Eomesodermin</span> Protein-coding gene in the species Homo sapiens

Eomesodermin also known as T-box brain protein 2 (Tbr2) is a protein that in humans is encoded by the EOMES gene.

Endogenous regeneration in the brain is the ability of cells to engage in the repair and regeneration process. While the brain has a limited capacity for regeneration, endogenous neural stem cells, as well as numerous pro-regenerative molecules, can participate in replacing and repairing damaged or diseased neurons and glial cells. Another benefit that can be achieved by using endogenous regeneration could be avoiding an immune response from the host.

The development of the cerebral cortex, known as corticogenesis is the process during which the cerebral cortex of the brain is formed as part of the development of the nervous system of mammals including its development in humans. The cortex is the outer layer of the brain and is composed of up to six layers. Neurons formed in the ventricular zone migrate to their final locations in one of the six layers of the cortex. The process occurs from embryonic day 10 to 17 in mice and between gestational weeks seven to 18 in humans.

Proneural genes encode transcription factors of the basic helix-loop-helix (bHLH) class which are responsible for the development of neuroectodermal progenitor cells. Proneural genes have multiple functions in neural development. They integrate positional information and contribute to the specification of progenitor-cell identity. From the same ectodermal cell types, neural or epidermal cells can develop based on interactions between proneural and neurogenic genes. Neurogenic genes are so called because loss of function mutants show an increase number of developed neural precursors. On the other hand, proneural genes mutants fail to develop neural precursor cells.

<span class="mw-page-title-main">Neuronal lineage marker</span> Endogenous tag expressed in different cells along neurogenesis and differentiated cells

A neuronal lineage marker is an endogenous tag that is expressed in different cells along neurogenesis and differentiated cells such as neurons. It allows detection and identification of cells by using different techniques. A neuronal lineage marker can be either DNA, mRNA or RNA expressed in a cell of interest. It can also be a protein tag, as a partial protein, a protein or an epitope that discriminates between different cell types or different states of a common cell. An ideal marker is specific to a given cell type in normal conditions and/or during injury. Cell markers are very valuable tools for examining the function of cells in normal conditions as well as during disease. The discovery of various proteins specific to certain cells led to the production of cell-type-specific antibodies that have been used to identify cells.

<span class="mw-page-title-main">Ventricular zone</span> Transient embryonic layer of tissue containing neural stem cells

In vertebrates, the ventricular zone (VZ) is a transient embryonic layer of tissue containing neural stem cells, principally radial glial cells, of the central nervous system (CNS). The VZ is so named because it lines the ventricular system, which contains cerebrospinal fluid (CSF). The embryonic ventricular system contains growth factors and other nutrients needed for the proper function of neural stem cells. Neurogenesis, or the generation of neurons, occurs in the VZ during embryonic and fetal development as a function of the Notch pathway, and the newborn neurons must migrate substantial distances to their final destination in the developing brain or spinal cord where they will establish neural circuits. A secondary proliferative zone, the subventricular zone (SVZ), lies adjacent to the VZ. In the embryonic cerebral cortex, the SVZ contains intermediate neuronal progenitors that continue to divide into post-mitotic neurons. Through the process of neurogenesis, the parent neural stem cell pool is depleted and the VZ disappears. The balance between the rates of stem cell proliferation and neurogenesis changes during development, and species from mouse to human show large differences in the number of cell cycles, cell cycle length, and other parameters, which is thought to give rise to the large diversity in brain size and structure.

Neurogenesis is the process by which nervous system cells, the neurons, are produced by neural stem cells (NSCs). This occurs in all species of animals except the porifera (sponges) and placozoans. Types of NSCs include neuroepithelial cells (NECs), radial glial cells (RGCs), basal progenitors (BPs), intermediate neuronal precursors (INPs), subventricular zone astrocytes, and subgranular zone radial astrocytes, among others.

Intermediate progenitor cells (IPCs) are a type of progenitor cell in the developing cerebral cortex. They are multipolar cells produced by radial glial cells who have undergone asymmetric division. IPCs can produce neuron cells via neurogenesis and are responsible for ensuring the proper quantity of cortical neurons are produced. In mammals, neural stem cells are the primary progenitors during embryogenesis whereas intermediate progenitor cells are the secondary progenitors.

Arnold Richard Kriegstein is a neurologist and neuroscientist at the University of California, San Francisco, where he served as director of the UCSF Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research from 2004 to 2021. His main research interests include neural stem cell and brain development. He is a member of the National Academy of Medicine.

References

  1. 1 2 Sadler, T. (2010). Langman's medical embryology (11th ed.). Philadelphia: Lippincott William & Wilkins. pp.  296–297. ISBN   978-07817-9069-7.
  2. Williams, S. Mark (2001). "The Initial Formation of the Nervous System: Gastrulation and Neurulation". Neuroscience. 2nd edition. Retrieved 5 January 2019.
  3. 1 2 Purves, Dale (2012). Neuroscience (5th ed.). Sinauer Associates. p. 490. ISBN   9780878936953.
  4. "wberesford.hsc.wvu.edu" . Retrieved 2010-04-08.
  5. 1 2 3 Johnson, CA; Wright, CE; Ghashghaei, HT (December 2017). "Regulation of cytokinesis during corticogenesis: focus on the midbody". FEBS Letters. 591 (24): 4009–4026. doi: 10.1002/1873-3468.12676 . PMID   28493553.
  6. Gilbert, Scott (2006). Developmental biology (8th ed.). Sinauer Associates Publishers. pp.  386–387. ISBN   9780878932504.
  7. Purves, D; et al. (2007). Neuroscience (4th ed.). New York: W. H. Freeman. ISBN   978-0-87893-697-7.[ page needed ]
  8. Tortora, G; Derrickson, B (2011). Principles of anatomy & physiology (13th. ed.). Wiley. p. 571. ISBN   9780470646083.
  9. Liu, F; You, Y; Li, X; Ma, T; Nie, Y; Wei, B; Li, T; Lin, H; Yang, Z (April 2009). "Brain Injury Does Not Alter the Intrinsic Differentiation Potential of Adult Neuroblasts". The Journal of Neuroscience. 29 (16): 5075–5087. doi: 10.1523/JNEUROSCI.0201-09.2009 . PMC   6665479 . PMID   19386903.
  10. Gallaud, E; Pham, T; Cabernard, C (2017). "Drosophila melanogaster Neuroblasts: A Model for Asymmetric Stem Cell Divisions". Asymmetric Cell Division in Development, Differentiation and Cancer. Results and Problems in Cell Differentiation. Vol. 61. pp. 183–210. doi:10.1007/978-3-319-53150-2_8. ISBN   978-3-319-53149-6. PMID   28409305.
  11. 1 2 3 Doe, Chris Q. (2017-10-06). "Temporal Patterning in the Drosophila CNS". Annual Review of Cell and Developmental Biology. 33 (1): 219–240. doi: 10.1146/annurev-cellbio-111315-125210 . ISSN   1081-0706. PMID   28992439.
  12. Courgeon, Maximilien; Desplan, Claude (2019-06-01). "Coordination of neural patterning in the Drosophila visual system". Current Opinion in Neurobiology. Neuronal Identity. 56: 153–159. doi:10.1016/j.conb.2019.01.024. ISSN   0959-4388. PMC   6551251 . PMID   30849690.
  13. Sen, Sonia Q; Chanchani, Sachin; Southall, Tony D; Doe, Chris Q (2019-01-29). Mandel, Gail; Struhl, Kevin; Desplan, Claude; Eisen, Michael B (eds.). "Neuroblast-specific open chromatin allows the temporal transcription factor, Hunchback, to bind neuroblast-specific loci". eLife. 8: e44036. doi: 10.7554/eLife.44036 . ISSN   2050-084X. PMC   6377230 . PMID   30694180.
  14. Kohwi, M; Hiebert, LS; Doe, CQ (May 2011). "The pipsqueak-domain proteins Distal antenna and Distal antenna-related restrict Hunchback neuroblast expression and early-born neuronal identity". Development. 138 (9): 1727–35. doi:10.1242/dev.061499. PMC   3074449 . PMID   21429984.