Ventral nerve cord

Last updated
The anatomy of an insect, with the brain (#5) in teal green and ventral nerve cord (#19) in dark blue Insect anatomy diagram.svg
The anatomy of an insect, with the brain (#5) in teal green and ventral nerve cord (#19) in dark blue
Left, a schematic of the Drosophila central nervous system, including the brain and ventral nerve cord. Right, a cross section of the ventral nerve cord, illustrating sensory input and motor output. Adapted with permission from. Ventral nerve cord of Drosophila.png
Left, a schematic of the Drosophila central nervous system, including the brain and ventral nerve cord. Right, a cross section of the ventral nerve cord, illustrating sensory input and motor output. Adapted with permission from.

The ventral nerve cord is a major structure of the invertebrate central nervous system. It is the functional equivalent of the vertebrate spinal cord. [2] The ventral nerve cord coordinates neural signaling from the brain to the body and vice versa, integrating sensory input and locomotor output. [1] Because arthropods have an open circulatory system, decapitated insects can still walk, groom, and mate — illustrating that the circuitry of the ventral nerve cord is sufficient to perform complex motor programs without brain input. [3]

Contents

Structure

The ventral nerve cord runs down the ventral ("belly", as opposed to back) plane of the organism. It is made of nervous tissue and is connected to the brain.

Ventral nerve cord neurons are physically organized into neuromeres that process signals for each body segment. [4]  Anterior neuromeres control the anterior body segments, such as the forelegs, and more posterior neuromeres control the posterior body segments, such as the hind legs. Neuromeres are connected longitudinally, anterior to posterior, by fibrous nerve tracts called connectives. Pairs of hemisegments, corresponding to the left and right side of the ventral nerve cord, are connected horizontally by fibrous tracts called commissures. [4] [5]

In the small worm Meara stichopi there is a pair of dorsal nerve cords instead. [6]

Function

Like the vertebrate spinal cord, the function of the ventral nerve cord is to integrate and transmit nerve signals. It contains ascending and descending neurons that relay information to and from the brain, motor neurons that project into the body and synapse onto muscles, axons from sensory neurons that receive information from the body and environment, and interneurons that coordinate circuitry of all of these neurons. [3] In addition to spiking neurons which transmit action potentials, some neural information is transmitted via non-spiking interneurons. These interneurons filter, amplify, and integrate internal and external neural signals to guide and control movement and behavior. [7]

Evolution

Ventral nerve cords are found in some phyla of the bilaterians, particularly within the nematodes, annelids and the arthropods. Ventral nerve cords are well-studied within insects, have been described in over 300 species covering all the major orders, and have remarkable morphological diversity. Many insects have a rope-ladder-like ventral nervous cord, composed of physically separated segmental ganglia. In contrast, in Drosophila, the thoracic and abdominal neuromeres are contiguous and the whole ventral nerve cord is considered to be one ganglion. [5] The presumed common ancestral structure is rarely observed; instead the ventral nerve cords of most insects show extensive modification as well as convergence. Modifications include shifts in neuromere positions, their fusion to form composite ganglia, and, potentially, their separation to revert to individual ganglia. [4] In organisms with fused neuromeres, the connectives are still there but are very reduced in length. [4]

Development

The insect ventral nerve cord develops according to a body plan based on a segmental set of 30 paired and one unpaired neuroblasts. [8] A neuroblast can be uniquely identified based on its position in the array, its pattern of molecular expression, and the suite of early neurons that it produces. [9] [10] Each neuroblast gives rise to two hemilineages: an "A" hemilineage characterized by active Notch signalling, and a "B" hemilineage characterized by an absence of active Notch signalling. [11] Research in the fruit fly D. melanogaster suggests that all neurons of a given hemilineage release the same primary neurotransmitter. [12]

Engrailed is a transcription factor that helps regulate the gene frazzled in order to separate neuroblasts during embryonic development. The segregation of neuroblasts is essential for the formation and development of the ventral nerve cord. [13]

See also

Related Research Articles

<span class="mw-page-title-main">Central nervous system</span> Brain and spinal cord

The central nervous system (CNS) is the part of the nervous system consisting of the brain and spinal cord, the retina and optic nerve, and the olfactory nerve and epithelia. The CNS is so named because the brain integrates the received information and coordinates and influences the activity of all parts of the bodies of bilaterally symmetric and triploblastic animals—that is, all multicellular animals except sponges and diploblasts. It is a structure composed of nervous tissue positioned along the rostral to caudal axis of the body and may have an enlarged section at the rostral end which is a brain. Only arthropods, cephalopods and vertebrates have a true brain, though precursor structures exist in onychophorans, gastropods and lancelets.

<span class="mw-page-title-main">Nervous system</span> Part of an animal that coordinates actions and senses

In biology, the nervous system is the highly complex part of an animal that coordinates its actions and sensory information by transmitting signals to and from different parts of its body. The nervous system detects environmental changes that impact the body, then works in tandem with the endocrine system to respond to such events. Nervous tissue first arose in wormlike organisms about 550 to 600 million years ago. In vertebrates, it consists of two main parts, the central nervous system (CNS) and the peripheral nervous system (PNS). The CNS consists of the brain and spinal cord. The PNS consists mainly of nerves, which are enclosed bundles of the long fibers, or axons, that connect the CNS to every other part of the body. Nerves that transmit signals from the brain are called motor nerves or efferent nerves, while those nerves that transmit information from the body to the CNS are called sensory nerves or afferent. Spinal nerves are mixed nerves that serve both functions. The PNS is divided into three separate subsystems, the somatic, autonomic, and enteric nervous systems. Somatic nerves mediate voluntary movement. The autonomic nervous system is further subdivided into the sympathetic and the parasympathetic nervous systems. The sympathetic nervous system is activated in cases of emergencies to mobilize energy, while the parasympathetic nervous system is activated when organisms are in a relaxed state. The enteric nervous system functions to control the gastrointestinal system. Both autonomic and enteric nervous systems function involuntarily. Nerves that exit from the cranium are called cranial nerves while those exiting from the spinal cord are called spinal nerves.

<span class="mw-page-title-main">Motor neuron</span> Nerve cell sending impulse to muscle

A motor neuron is a neuron whose cell body is located in the motor cortex, brainstem or the spinal cord, and whose axon (fiber) projects to the spinal cord or outside of the spinal cord to directly or indirectly control effector organs, mainly muscles and glands. There are two types of motor neuron – upper motor neurons and lower motor neurons. Axons from upper motor neurons synapse onto interneurons in the spinal cord and occasionally directly onto lower motor neurons. The axons from the lower motor neurons are efferent nerve fibers that carry signals from the spinal cord to the effectors. Types of lower motor neurons are alpha motor neurons, beta motor neurons, and gamma motor neurons.

<span class="mw-page-title-main">Medulla oblongata</span> Structure of the brain stem

The medulla oblongata or simply medulla is a long stem-like structure which makes up the lower part of the brainstem. It is anterior and partially inferior to the cerebellum. It is a cone-shaped neuronal mass responsible for autonomic (involuntary) functions, ranging from vomiting to sneezing. The medulla contains the cardiac, respiratory, vomiting and vasomotor centers, and therefore deals with the autonomic functions of breathing, heart rate and blood pressure as well as the sleep–wake cycle.

<span class="mw-page-title-main">Neuroanatomy</span> Branch of neuroscience

Neuroanatomy is the study of the structure and organization of the nervous system. In contrast to animals with radial symmetry, whose nervous system consists of a distributed network of cells, animals with bilateral symmetry have segregated, defined nervous systems. Their neuroanatomy is therefore better understood. In vertebrates, the nervous system is segregated into the internal structure of the brain and spinal cord and the series of nerves that connect the CNS to the rest of the body. Breaking down and identifying specific parts of the nervous system has been crucial for figuring out how it operates. For example, much of what neuroscientists have learned comes from observing how damage or "lesions" to specific brain areas affects behavior or other neural functions.

<span class="mw-page-title-main">Nerve net</span> Nervous systems lacking a brain

A nerve net consists of interconnected neurons lacking a brain or any form of cephalization. While organisms with bilateral body symmetry are normally associated with a condensation of neurons or, in more advanced forms, a central nervous system, organisms with radial symmetry are associated with nerve nets, and are found in members of the Ctenophora, Cnidaria, and Echinodermata phyla, all of which are found in marine environments. In the Xenacoelomorpha, a phylum of bilaterally symmetrical animals, members of the subphylum Xenoturbellida also possess a nerve net. Nerve nets can provide animals with the ability to sense objects through the use of the sensory neurons within the nerve net.

<span class="mw-page-title-main">Somatic nervous system</span> Part of the peripheral nervous system

The somatic nervous system (SNS) is made up of nerves that link the brain and spinal cord to voluntary or skeletal muscles that are under conscious control as well as to skin sensory receptors. Specialized nerve fiber ends called sensory receptors are responsible for detecting information within and outside of the body.

A mechanoreceptor, also called mechanoceptor, is a sensory receptor that responds to mechanical pressure or distortion. Mechanoreceptors are innervated by sensory neurons that convert mechanical pressure into electrical signals that, in animals, are sent to the central nervous system.

In vertebrates, a neuroblast or primitive nerve cell is a postmitotic cell that does not divide further, and which will develop into a neuron after a migration phase. In invertebrates such as Drosophila, neuroblasts are neural progenitor cells which divide asymmetrically to produce a neuroblast, and a daughter cell of varying potency depending on the type of neuroblast. Vertebrate neuroblasts differentiate from radial glial cells and are committed to becoming neurons. Neural stem cells, which only divide symmetrically to produce more neural stem cells, transition gradually into radial glial cells. Radial glial cells, also called radial glial progenitor cells, divide asymmetrically to produce a neuroblast and another radial glial cell that will re-enter the cell cycle.

<span class="mw-page-title-main">Neuromere</span>

Neuromeres are distinct groups of neural crest cells, forming segments in the neural tube of the early embryonic development of the brain. There are three classes of neuromeres in the central nervous system – prosomeres, mesomeres and rhombomeres that will develop the forebrain, midbrain, and hindbrain respectively.

<span class="mw-page-title-main">Octopamine</span> Group of stereoisomers

Octopamine (molecular formula C8H11NO2; also known as OA, and also norsynephrine, para-octopamine and others) is an organic chemical closely related to norepinephrine, and synthesized biologically by a homologous pathway. Octopamine is often considered the major "fight-or-flight" neurohormone of invertebrates. Its name is derived from the fact that it was first identified in the salivary glands of the octopus.

<span class="mw-page-title-main">Supraesophageal ganglion</span> Arthropod nervous system component

The supraesophageal ganglion is the first part of the arthropod, especially insect, central nervous system. It receives and processes information from the first, second, and third metameres. The supraesophageal ganglion lies dorsal to the esophagus and consists of three parts, each a pair of ganglia that may be more or less pronounced, reduced, or fused depending on the genus:

<span class="mw-page-title-main">Vestibulospinal tract</span> Neural tract in the central nervous system

The vestibulospinal tract is a neural tract in the central nervous system. Specifically, it is a component of the extrapyramidal system and is classified as a component of the medial pathway. Like other descending motor pathways, the vestibulospinal fibers of the tract relay information from nuclei to motor neurons. The vestibular nuclei receive information through the vestibulocochlear nerve about changes in the orientation of the head. The nuclei relay motor commands through the vestibulospinal tract. The function of these motor commands is to alter muscle tone, extend, and change the position of the limbs and head with the goal of supporting posture and maintaining balance of the body and head.

<span class="mw-page-title-main">Lateral grey column</span>

The lateral grey column is one of the three grey columns of the spinal cord ; the others being the anterior and posterior grey columns. The lateral grey column is primarily involved with activity in the sympathetic division of the autonomic motor system. It projects to the side as a triangular field in the thoracic and upper lumbar regions of the postero-lateral part of the anterior grey column.

<span class="mw-page-title-main">Spinal cord</span> Long, tubular central nervous system structure in the vertebral column

The spinal cord is a long, thin, tubular structure made up of nervous tissue that extends from the medulla oblongata in the brainstem to the lumbar region of the vertebral column (backbone) of vertebrate animals. The center of the spinal cord is hollow and contains a structure called central canal, which contains cerebrospinal fluid. The spinal cord is also covered by meninges and enclosed by the neural arches. Together, the brain and spinal cord make up the central nervous system.

<span class="mw-page-title-main">Nervous system of gastropods</span>

The nervous system of gastropods consists of a series of paired ganglia connected by major nerve cords, and a number of smaller branching nerves. It is sometimes called ganglionic.

The evolution of nervous systems dates back to the first development of nervous systems in animals. Neurons developed as specialized electrical signaling cells in multicellular animals, adapting the mechanism of action potentials present in motile single-celled and colonial eukaryotes. Primitive systems, like those found in protists, use chemical signalling for movement and sensitivity; data suggests these were precursors to modern neural cell types and their synapses. When some animals started living a mobile lifestyle and eating larger food particles externally, they developed ciliated epithelia, contractile muscles and coordinating & sensitive neurons for it in their outer layer.

James "Jim" William Truman is an American chronobiologist known for his seminal research on circadian rhythms in silkmoth (Saturniidae) eclosion, particularly the restoration of rhythm and phase following brain transplantation. He is a professor emeritus at the University of Washington and a former senior fellow at Howard Hughes Medical Institution Janelia Research Campus.

A descending neuron is a neuron that conveys signals from the brain to neural circuits in the spinal cord (vertebrates) or ventral nerve cord (invertebrates). As the sole conduits of information between the brain and the body, descending neurons play a key role in behavior. Their activity can initiate, maintain, modulate, and terminate behaviors such as locomotion. Because the number of descending neurons is several orders of magnitude smaller than the number of neurons in either the brain or spinal cord/ventral nerve cord, this class of cells represents a critical bottleneck in the flow of information from sensory systems to motor circuits.

References

  1. 1 2 Tuthill JC, Wilson RI (October 2016). "Mechanosensation and Adaptive Motor Control in Insects". Current Biology. 26 (20): R1022–R1038. doi:10.1016/j.cub.2016.06.070. PMC   5120761 . PMID   27780045.
  2. Hickman C, Roberts L, Keen S, Larson A, Eisenhour D (2007). Animal Diversity (4th ed.). New York: McGraw Hill. ISBN   978-0-07-252844-2.
  3. 1 2 Venkatasubramanian L, Mann RS (June 2019). "The development and assembly of the Drosophila adult ventral nerve cord". Current Opinion in Neurobiology. 56: 135–143. doi:10.1016/j.conb.2019.01.013. PMC   6551290 . PMID   30826502.
  4. 1 2 3 4 Niven JE, Graham CM, Burrows M (2008). "Diversity and evolution of the insect ventral nerve cord". Annual Review of Entomology. 53 (1): 253–271. doi:10.1146/annurev.ento.52.110405.091322. PMID   17803455.
  5. 1 2 Court R, Namiki S, Armstrong JD, Börner J, Card G, Costa M, et al. (September 2020). "A Systematic Nomenclature for the Drosophila Ventral Nerve Cord". Neuron. 107 (6): 1071–1079.e2. doi: 10.1016/j.neuron.2020.08.005 . PMC   7611823 . PMID   32931755.
  6. Martín-Durán JM, Pang K, Børve A, Lê HS, Furu A, Cannon JT, Jondelius U, Hejnol A (January 2018). "Convergent evolution of bilaterian nerve cords". Nature. 553 (7686): 45–50. Bibcode:2018Natur.553...45M. doi:10.1038/nature25030. PMC   5756474 . PMID   29236686.
  7. Agrawal S, Dickinson ES, Sustar A, Gurung P, Shepherd D, Truman JW, Tuthill JC (December 2020). Calabrese RL, Marder E, Fujiwara T (eds.). "Central processing of leg proprioception in Drosophila". eLife. 9: e60299. doi: 10.7554/eLife.60299 . PMC   7752136 . PMID   33263281.
  8. Thomas JB, Bastiani MJ, Bate M, Goodman CS (1984). "From grasshopper to Drosophila: a common plan for neuronal development". Nature. 310 (5974): 203–207. Bibcode:1984Natur.310..203T. doi:10.1038/310203a0. PMID   6462206. S2CID   4321262.
  9. Harris RM, Pfeiffer BD, Rubin GM, Truman JW (July 2015). "Neuron hemilineages provide the functional ground plan for the Drosophila ventral nervous system". eLife. 4: e04493. doi: 10.7554/eLife.04493 . PMC   4525104 . PMID   26193122.
  10. Broadus J, Doe CQ (December 1995). "Evolution of neuroblast identity: seven-up and prospero expression reveal homologous and divergent neuroblast fates in Drosophila and Schistocerca". Development. 121 (12): 3989–3996. doi:10.1242/dev.121.12.3989. PMID   8575299.
  11. Truman JW, Moats W, Altman J, Marin EC, Williams DW (January 2010). "Role of Notch signaling in establishing the hemilineages of secondary neurons in Drosophila melanogaster". Development. 137 (1): 53–61. doi:10.1242/dev.041749. PMC   2796924 . PMID   20023160.
  12. Lacin H, Chen HM, Long X, Singer RH, Lee T, Truman JW (March 2019). "Neurotransmitter identity is acquired in a lineage-restricted manner in the Drosophila CNS". eLife. 8: e43701. doi: 10.7554/eLife.43701 . PMC   6504232 . PMID   30912745.
  13. Joly W, Mugat B, Maschat F (January 2007). "Engrailed controls the organization of the ventral nerve cord through frazzled regulation". Developmental Biology. 301 (2): 542–554. doi: 10.1016/j.ydbio.2006.10.019 . PMID   17126316.