Insect physiology includes the physiology and biochemistry of insect organ systems. [1]
Although diverse, insects are quite similar in overall design, internally and externally. The insect is made up of three main body regions (tagmata), the head, thorax and abdomen. The head comprises six fused segments with compound eyes, ocelli, antennae and mouthparts, which differ according to the insect's particular diet, e.g. grinding, sucking, lapping and chewing. The thorax is made up of three segments: the pro, meso and meta thorax, each supporting a pair of legs which may also differ, depending on function, e.g. jumping, digging, swimming and running. Usually the middle and the last segment of the thorax have paired wings. The abdomen generally comprises eleven segments and contains the digestive and reproductive organs. [2] A general overview of the internal structure and physiology of the insect is presented, including digestive, circulatory, respiratory, muscular, endocrine and nervous systems, as well as sensory organs, temperature control, flight and molting.
An insect uses its digestive system to extract nutrients and other substances from the food it consumes. [3]
Most of this food is ingested in the form of macromolecules and other complex substances (such as proteins, polysaccharides, fats, and nucleic acids) which must be broken down by catabolic reactions into smaller molecules (i.e. amino acids, simple sugars, etc.) before being used by cells of the body for energy, growth, or reproduction. This break-down process is known as digestion.
The insect's digestive system is a closed system, with one long enclosed coiled tube called the alimentary canal which runs lengthwise through the body. The alimentary canal only allows food to enter the mouth, and then gets processed as it travels toward the anus. The alimentary canal has specific sections for grinding and food storage, enzyme production, and nutrient absorption. [2]
[4] Sphincters control the food and fluid movement between three regions. The three regions include the foregut (stomatodeum)(27,) the midgut (mesenteron)(13), and the hindgut (proctodeum)(16).
In addition to the alimentary canal, insects also have paired salivary glands and salivary reservoirs. These structures usually reside in the thorax (adjacent to the fore-gut). The salivary glands (30) produce saliva; the salivary ducts lead from the glands to the reservoirs and then forward through the head to an opening called the salivarium behind the hypopharynx; which movements of the mouthparts help mix saliva with food in the buccal cavity. Saliva mixes with food, which travels through salivary tubes into the mouth, beginning the process of breaking it down. [3] [5]
The stomatodeum and proctodeum are invaginations of the epidermis and are lined with cuticle (intima). The mesenteron is not lined with cuticle but with rapidly dividing and therefore constantly replaced, epithelial cells. [2] [4] The cuticle sheds with every moult along with the exoskeleton. [4] Food is moved down the gut by muscular contractions called peristalsis. [6]
The main function of insect blood, hemolymph, is that of transport and it bathes the insect's body organs. Making up usually less than 25% of an insect's body weight, it transports hormones, nutrients and wastes and has a role in osmoregulation, temperature control, immunity, storage (water, carbohydrates and fats) and skeletal function. It also plays an essential part in the moulting process. [2] [4] An additional role of the hemolymph in some orders, can be that of predatory defence. It can contain unpalatable and malodourous chemicals that will act as a deterrent to predators. [7]
Hemolymph contains molecules, ions and cells. [7] Regulating chemical exchanges between tissues, hemolymph is encased in the insect body cavity or haemocoel. [6] [7] It is transported around the body by combined heart (posterior) and aorta (anterior) pulsations which are located dorsally just under the surface of the body. [2] [4] [7] It differs from vertebrate blood in that it doesn't contain any red blood cells and therefore is without high oxygen carrying capacity, and is more similar to lymph found in vertebrates. [6] [7]
Body fluids enter through one way valved ostia which are openings situated along the length of the combined aorta and heart organ. Pumping of the hemolymph occurs by waves of peristaltic contraction, originating at the body's posterior end, pumping forwards into the dorsal vessel, out via the aorta and then into the head where it flows out into the haemocoel. [6] [7] The hemolymph is circulated to the appendages unidirectionally with the aid of muscular pumps or accessory pulsatile organs which are usually found at the base of the antennae or wings and sometimes in the legs. [7] Pumping rate accelerates due to periods of increased activity. [4] Movement of hemolymph is particularly important for thermoregulation in orders such as Odonata, Lepidoptera, Hymenoptera and Diptera. [7]
Insect respiration is accomplished without lungs using a system of internal tubes and sacs through which gases either diffuse or are actively pumped, delivering oxygen directly to tissues that need oxygen and eliminate carbon dioxide via their cells. [7] Since oxygen is delivered directly, the circulatory system is not used to carry oxygen, and is therefore greatly reduced; it has no closed vessels (i.e., no veins or arteries), consisting of little more than a single, perforated dorsal tube which pulses peristaltically, and in doing so helps circulate the hemolymph inside the body cavity. [7]
Air is taken in through spiracles, openings which are positioned laterally in the pleural wall, usually a pair on the anterior margin of the meso and meta thorax, and pairs on each of the eight or less abdominal segments, Numbers of spiracles vary from 1 to 10 pairs. [2] [4] [6] [7] The oxygen passes through the tracheae to the tracheoles, and enters the body by the process of diffusion. Carbon dioxide leaves the body by the same process. [4]
The major tracheae are thickened spirally like a flexible vacuum hose to prevent them from collapsing and often swell into air sacs. Larger insects can augment the flow of air through their tracheal system, with body movement and rhythmic flattening of the tracheal air sacs. [4] Spiracles are closed and opened by means of valves and can remain partly or completely closed for extended periods in some insects, which minimises water loss. [2] [4]
There are many different patterns of gas exchange demonstrated by different groups of insects. Gas exchange patterns in insects can range from continuous, diffusive ventilation, to discontinuous gas exchange. [7]
Terrestrial and a large proportion of aquatic insects perform gaseous exchange as previously mentioned under an open system. Other smaller numbers of aquatic insects have a closed tracheal system, for example, Odonata, Trichoptera, Ephemeroptera, which have tracheal gills and no functional spiracles. Endoparasitic larvae are without spiracles and also operate under a closed system. Here the tracheae separate peripherally, covering the general body surface which results in a cutaneous form of gaseous exchange. This peripheral tracheal division may also lie within the tracheal gills where gaseous exchange may also take place. [7]
Many insects, such as the rhinoceros beetle, are able to lift many times their own body weight and may jump distances that are many times greater than their own length. This is because their energy output is high in relation to their body mass. [4] [6]
The muscular system of insects ranges from a few hundred muscles to a few thousand. [4] Unlike vertebrates that have both smooth and striated muscles, insects have only striated muscles. Muscle cells are amassed into muscle fibers and then into the functional unit, the muscle. [6] Muscles are attached to the body wall, with attachment fibers running through the cuticle and to the epicuticle, where they can move different parts of the body including appendages such as wings. [4] [7] The muscle fiber has many cells with a plasma membrane and outer sheath or sarcolemma. [7] The sarcolemma is invaginated and can make contact with the tracheole carrying oxygen to the muscle fiber. Arranged in sheets or cylindrically, contractile myofibrils run the length of the muscle fiber. Myofibrils comprising a fine actin filament enclosed between a thick pair of myosin filaments slide past each other instigated by nerve impulses. [7]
Muscles can be divided into four categories:
Flight has allowed the insect to disperse, escape from enemies and environmental harm, and colonise new habitats. [2] One of the insect's key adaptations is flight, the mechanics of which differ from those of other flying animals because their wings are not modified appendages. [2] [6] Fully developed and functional wings occur only in adult insects. [7] To fly, gravity and drag (air resistance to movement) have to be overcome. [7] Most insects fly by beating their wings and to power their flight they have either direct flight muscles attached to the wings, or an indirect system where there is no muscle-to-wing connection and instead they are attached to a highly flexible box-like thorax. [7]
Direct flight muscles generate the upward stroke by the contraction of the muscles attached to the base of the wing inside the pivotal point. Outside the pivotal point the downward stroke is generated through contraction of muscles that extend from the sternum to the wing. Indirect flight muscles are attached to the tergum and sternum. Contraction makes the tergum and base of the wing pull down. In turn this movement lever the outer or main part of the wing in strokes upward. Contraction of the second set of muscles, which run from the back to the front of the thorax, powers the downbeat. This deforms the box and lifts the tergum. [7]
Hormones are the chemical substances that are transported in the insect's body fluids (haemolymph) that carry messages away from their point of synthesis to sites where physiological processes are influenced. These hormones are produced by glandular, neuroglandular and neuronal centres. [7] Insects have several organs that produce hormones, controlling reproduction, metamorphosis and moulting. [4] It has been suggested that a brain hormone is responsible for caste determination in termites and diapause interruption in some insects. [4]
Four endocrine centers have been identified:
Insects have a complex nervous system which incorporates a variety of internal physiological information as well as external sensory information. [7] As in the case of vertebrates, the basic component is the neuron or nerve cell. This is made up of a dendrite with two projections that receive stimuli and an axon, which transmits information to another neuron or organ, like a muscle. As with vertebrates, chemicals (neurotransmitters such as acetylcholine and dopamine) are released at synapses. [7]
An insect's sensory, motor and physiological processes are controlled by the central nervous system along with the endocrine system. [7] Being the principal division of the nervous system, it consists of a brain, a ventral nerve cord and a subesophageal ganglion which is connected to the brain by two nerves, extending around each side of the oesophagus.
The brain has three lobes:
The ventral nerve cord extends from the suboesophageal ganglion posteriorly. [4] A layer of connective tissue called the neurolemma covers the brain, ganglia, major peripheral nerves and ventral nerve cords.
The head capsule (made up of six fused segments) has six pairs of ganglia. The first three pairs are fused into the brain, while the three following pairs are fused into the subesophageal ganglion. [7] The thoracic segments have one ganglion on each side, which are connected into a pair, one pair per segment. This arrangement is also seen in the abdomen but only in the first eight segments. Many species of insects have reduced numbers of ganglia due to fusion or reduction. [8] Some cockroaches have just six ganglia in the abdomen, whereas the wasp Vespa crabro has only two in the thorax and three in the abdomen. And some, like the house fly Musca domestica , have all the body ganglia fused into a single large thoracic ganglion. The ganglia of the central nervous system act as the coordinating centres with their own specific autonomy where each may coordinate impulses in specified regions of the insect's body. [4]
This consists of motor neuron axons that branch out to the muscles from the ganglia of the central nervous system, parts of the sympathetic nervous system and the sensory neurons of the cuticular sense organs that receive chemical, thermal, mechanical or visual stimuli from the insect's environment. [7] The sympathetic nervous system includes nerves and the ganglia that innervate the gut both posteriorly and anteriorly, some endocrine organs, the spiracles of the tracheal system and the reproductive organs. [7]
Chemical senses include the use of chemoreceptors, related to taste and smell, affecting mating, habitat selection, feeding and parasite-host relationships. Taste is usually located on the mouthparts of the insect but in some insects, such as bees, wasps and ants, taste organs can also be found on the antennae. Taste organs can also be found on the tarsi of moths, butterflies and flies. Olfactory sensilla enable insects to smell and are usually found in the antennae. [2] Chemoreceptor sensitivity related to smell in some substances, is very high and some insects can detect particular odours that are at low concentrations miles from their original source. [4]
Mechanical senses provide the insect with information that may direct orientation, general movement, flight from enemies, reproduction and feeding and are elicited from the sense organs that are sensitive to mechanical stimuli such as pressure, touch and vibration. [4] Hairs (setae) on the cuticle are responsible for this as they are sensitive to vibration touch and sound. [2]
Hearing structures or tympanal organs are located on different body parts such as, wings, abdomen, legs and antennae. These can respond to various frequencies ranging from 100 Hz to 240 kHz depending on insect species. [4] Many of the joints of the insect have tactile setae that register movement. Hair beds and groups of small hair like sensilla, determine proprioreception or information about the position of a limb, and are found on the cuticle at the joints of segments and legs. Pressure on the body wall or strain gauges are detected by the campiniform sensilla and internal stretch receptors sense muscle distension and digestive system stretching. [2] [4]
The compound eye and the ocelli supply insect vision. The compound eye consists of individual light receptive units called ommatidia. Some ants may have only one or two, however dragonflies may have over 10,000. The more ommatidia the greater the visual acuity. These units have a clear lens system and light sensitive retina cells. By day, the image flying insects receive is made up of a mosaic of specks of differing light intensity from all the different ommatidia. At night or dusk, visual acuity is sacrificed for light sensitivity. [2] The ocelli are unable to form focused images but are sensitive mainly, to differences in light intensity. [4] Colour vision occurs in all orders of insects. Generally insects see better at the blue end of the spectrum than at the red end. In some orders sensitivity ranges can include ultraviolet. [2]
A number of insects have temperature and humidity sensors [2] and insects being small, cool more quickly than larger animals. Insects are generally considered cold-blooded or ectothermic, their body temperature rising and falling with the environment. However, flying insects raise their body temperature through the action of flight, above environmental temperatures. [4] [6]
The body temperature of butterflies and grasshoppers in flight may be 5 °C or 10 °C above environmental temperature, however moths and bumblebees, insulated by scales and hair, during flight, may raise flight muscle temperature 20–30 °C above the environment temperature. Most flying insects have to maintain their flight muscles above a certain temperature to gain power enough to fly. Shivering, or vibrating the wing muscles allow larger insects to actively increase the temperature of their flight muscles, enabling flight. [4]
Until very recently, no one had ever documented the presence of nociceptors (the cells that detect and transmit sensations of pain) in insects, [9] though recent findings of nociception in larval fruit flies challenges this [10] and proves that all insects are very likely to feel pain.
Most insects have a high reproductive rate. With a short generation time, they evolve faster and can adjust to environmental changes more rapidly than other slower breeding animals. [2] Although there are many forms of reproductive organs in insects, there remains a basic design and function for each reproductive part. These individual parts may vary in shape (gonads), position (accessory gland attachment), and number (testicular and ovarian glands), with different insect groups. [7]
The female insect's main reproductive function is to produce eggs, including the egg's protective coating, and to store the male spermatozoa until egg fertilisation is ready. The female reproductive organs include paired ovaries which empty their eggs (oocytes) via the calyces into lateral oviducts, joining to form the common oviduct. The opening (gonopore) of the common oviduct is concealed in a cavity called the genital chamber and this serves as a copulatory pouch (bursa copulatrix) when mating. [7] The external opening to this is the vulva. Often in insects the vulva is narrow and the genital chamber becomes pouch or tube like and is called the vagina. Related to the vagina is a saclike structure, the spermatheca, where spermatozoa are stored ready for egg fertilisation. A secretory gland nourishes the contained spermatozoa in the vagina. [4]
Egg development is mostly completed by the insect's adult stage and is controlled by hormones that control the initial stages of oogenesis and yolk deposition. [7] Most insects are oviparous, where the young hatch after the eggs have been laid. [4]
Insect sexual reproduction starts with sperm entry that stimulates oogenesis, meiosis occurs and the egg moves down the genital tract. Accessory glands of the female secrete an adhesive substance to attach eggs to an object and they also supply material that provides the eggs with a protective coating. Oviposition takes place via the female ovipositor. [4] [6]
The male's main reproductive function is to produce and store spermatozoa and provide transport to the reproductive tract of the female. [7] Sperm development is usually completed by the time the insect reaches adulthood. [4] The male has two testes, which contain follicles in which the spermatozoa are produced. These open separately into the sperm duct or vas deferens and this stores the sperm. [7] The vas deferentia then unite posteriorally to form a central ejaculatory duct, this opens to the outside on an aedeagus or a penis. [4] Accessory glands secrete fluids that comprise the spermatophore. This becomes a package that surrounds and carries the spermatozoa, forming a sperm-containing capsule. [4] [7]
Most insects reproduce via sexual reproduction, i.e. the egg is produced by the female, fertilised by the male and oviposited by the female. Eggs are usually deposited in a precise microhabitat on or near the required food. [6] However, some adult females can reproduce without male input. This is known as parthenogenesis and in the most common type of parthenogenesis the offspring are essentially identical to the mother. This is most often seen in aphids and scale insects. [6]
An insect's life-cycle can be divided into three types:
As an insect grows it needs to replace the rigid exoskeleton regularly. [2] [4] Moulting may occur up to three or four times or, in some insects, fifty times or more during its life. [2] A complex process controlled by hormones, it includes the cuticle of the body wall, the cuticular lining of the tracheae, foregut, hindgut and endoskeletal structures. [2] [4]
The stages of molting:
Anatomy is the branch of biology concerned with the study of the structure of organisms and their parts. Anatomy is a branch of natural science that deals with the structural organization of living things. It is an old science, having its beginnings in prehistoric times. Anatomy is inherently tied to developmental biology, embryology, comparative anatomy, evolutionary biology, and phylogeny, as these are the processes by which anatomy is generated, both over immediate and long-term timescales. Anatomy and physiology, which study the structure and function of organisms and their parts respectively, make a natural pair of related disciplines, and are often studied together. Human anatomy is one of the essential basic sciences that are applied in medicine.
Ecdysis is the moulting of the cuticle in many invertebrates of the clade Ecdysozoa. Since the cuticle of these animals typically forms a largely inelastic exoskeleton, it is shed during growth and a new, larger covering is formed. The remnants of the old, empty exoskeleton are called exuviae.
The gastrotrichs, commonly referred to as hairybellies or hairybacks, are a group of microscopic (0.06-3.0 mm), cylindrical, acoelomate animals, and are widely distributed and abundant in freshwater and marine environments. They are mostly benthic and live within the periphyton, the layer of tiny organisms and detritus that is found on the seabed and the beds of other water bodies. The majority live on and between particles of sediment or on other submerged surfaces, but a few species are terrestrial and live on land in the film of water surrounding grains of soil. Gastrotrichs are divided into two orders, the Macrodasyida which are marine, and the Chaetonotida, some of which are marine and some freshwater. Nearly 800 species of gastrotrich have been described.
The human body is the entire structure of a human being. It is composed of many different types of cells that together create tissues and subsequently organs and then organ systems. They ensure homeostasis and the viability of the human body.
The trachea, also known as the windpipe, is a cartilaginous tube that connects the larynx to the bronchi of the lungs, allowing the passage of air, and so is present in almost all animals with lungs. The trachea extends from the larynx and branches into the two primary bronchi. At the top of the trachea the cricoid cartilage attaches it to the larynx. The trachea is formed by a number of horseshoe-shaped rings, joined together vertically by overlying ligaments, and by the trachealis muscle at their ends. The epiglottis closes the opening to the larynx during swallowing.
Hemolymph, or haemolymph, is a fluid, analogous to the blood in vertebrates, that circulates in the interior of the arthropod (invertebrate) body, remaining in direct contact with the animal's tissues. It is composed of a fluid plasma in which hemolymph cells called hemocytes are suspended. In addition to hemocytes, the plasma also contains many chemicals. It is the major tissue type of the open circulatory system characteristic of arthropods. In addition, some non-arthropods such as mollusks possess a hemolymphatic circulatory system.
Grasshoppers are a group of insects belonging to the suborder Caelifera. They are among what is possibly the most ancient living group of chewing herbivorous insects, dating back to the early Triassic around 250 million years ago.
This glossary of entomology describes terms used in the formal study of insect species by entomologists.
Blaberus giganteus, the Central American giant cave cockroach or Brazilian cockroach, is a cockroach belonging to the family Blaberidae. One of the world's largest cockroaches, it is native to the warm parts of the Neotropical realm.
Opiliones are an order of arachnids and share many common characteristics with other arachnids. However, several differences separate harvestmen from other arachnid orders such as spiders. The bodies of opiliones are divided into two tagmata : the abdomen (opisthosoma) and the cephalothorax (prosoma). Unlike spiders, the juncture between the abdomen and cephalothorax is often poorly defined. Harvestmen have chelicerae, pedipalps and four pairs of legs. Most harvestmen have two eyes, although there are eyeless species.
Arthropods are invertebrates that are a part of the phylum Arthropoda. They possess an exoskeleton with a cuticle made of chitin, often mineralised with calcium carbonate, a body with differentiated (metameric) segments, and paired jointed appendages. In order to keep growing, they must go through stages of moulting, a process by which they shed their exoskeleton to reveal a new one. They are an extremely diverse group, with up to 10 million species.
Discontinuous gas-exchange cycles (DGC), also called discontinuous ventilation or discontinuous ventilatory cycles, follow one of several patterns of arthropod gas exchange that have been documented primarily in insects; they occur when the insect is at rest. During DGC, oxygen (O2) uptake and carbon dioxide (CO2) release from the whole insect follow a cyclical pattern characterized by periods of little to no release of CO2 to the external environment. Discontinuous gas exchange is traditionally defined in three phases, whose names reflect the behaviour of the spiracles: the closed phase, the flutter phase, and the open phase.
Insects are hexapod invertebrates of the class Insecta. They are the largest group within the arthropod phylum. Insects have a chitinous exoskeleton, a three-part body, three pairs of jointed legs, compound eyes, and a pair of antennae. Insects are the most diverse group of animals, with more than a million described species; they represent more than half of all animal species.
The external morphology of Lepidoptera is the physiological structure of the bodies of insects belonging to the order Lepidoptera, also known as butterflies and moths. Lepidoptera are distinguished from other orders by the presence of scales on the external parts of the body and appendages, especially the wings. Butterflies and moths vary in size from microlepidoptera only a few millimetres long, to a wingspan of many inches such as the Atlas moth. Comprising over 160,000 described species, the Lepidoptera possess variations of the basic body structure which has evolved to gain advantages in adaptation and distribution.
Insect morphology is the study and description of the physical form of insects. The terminology used to describe insects is similar to that used for other arthropods due to their shared evolutionary history. Three physical features separate insects from other arthropods: they have a body divided into three regions, three pairs of legs, and mouthparts located outside of the head capsule. This position of the mouthparts divides them from their closest relatives, the non-insect hexapods, which include Protura, Diplura, and Collembola.
An insect's respiratory system is the system with which it introduces respiratory gases to its interior and performs gas exchange.
Dipteran morphology differs in some significant ways from the broader morphology of insects. The Diptera is a very large and diverse order of mostly small to medium-sized insects. They have prominent compound eyes on a mobile head, and one pair of functional, membraneous wings, which are attached to a complex mesothorax. The second pair of wings, on the metathorax, are reduced to halteres. The order's fundamental peculiarity is its remarkable specialization in terms of wing shape and the morpho-anatomical adaptation of the thorax – features which lend particular agility to its flying forms. The filiform, stylate or aristate antennae correlate with the Nematocera, Brachycera and Cyclorrhapha taxa respectively. It displays substantial morphological uniformity in lower taxa, especially at the level of genus or species. The configuration of integumental bristles is of fundamental importance in their taxonomy, as is wing venation. It displays a complete metamorphosis, or holometabolous development. The larvae are legless, and have head capsules with mandibulate mouthparts in the Nematocera. The larvae of "higher flies" (Brachycera) are however headless and wormlike, and display only three instars. Pupae are obtect in the Nematocera, or coarcate in Brachycera.
Most insects reproduce oviparously, i.e. by laying eggs. The eggs are produced by the female in a pair of ovaries. Sperm, produced by the male in one testicle or more commonly two, is transmitted to the female during mating by means of external genitalia. The sperm is stored within the female in one or more spermathecae. At the time of fertilization, the eggs travel along oviducts to be fertilized by the sperm and are then expelled from the body ("laid"), in most cases via an ovipositor.
Heliothrips haemorrhoidalis is a species of thrips in the family Thripidae. It is most commonly known as the greenhouse thrips, the glasshouse thrip or black tea thrips. This species of thrips was first described in 1833 by Bouché in Berlin, Germany. H. haemorrhoidalis also has many synonyms depending on where they were described from such as: H. adonidum Haliday, H. semiaureus Girault, H. abdominalis Reuter, H. angustior Priesner, H. ceylonicus Schultz, Dinurothrips rufiventris Girault. In New Zealand, H. haemorrhoidalis is one of the four species belonging to the subfamily Panchaetothripinae.
Rivacindela hudsoni is an Australian species of the family Cicindelinae or "tiger beetle" and is the fastest-running known insect. The genus Rivacindela is contentiously treated as a subgenus of the broader Cicindela and are typically found in saline habitats such as dry salt lakes and salt streams and are flightless. The species was discovered in South Australia and described in 1997, with an adult form of approximately 20–21mm in length and a running speed of 2.49 m/s, or 120 body lengths per second.