Last updated
A dragonfly in its final moult, undergoing metamorphosis from its nymph form to an adult Dragonfly metamorphosis.jpg
A dragonfly in its final moult, undergoing metamorphosis from its nymph form to an adult

Metamorphosis is a biological process by which an animal physically develops after birth or hatching, involving a conspicuous and relatively abrupt change in the animal's body structure through cell growth and differentiation. Metamorphosis is iodothyronine-induced and an ancestral feature of all chordates. [1] Some insects, fishes, amphibians, mollusks, crustaceans, cnidarians, echinoderms, and tunicates undergo metamorphosis, which is often accompanied by a change of nutrition source or behavior. Animals that go through metamorphosis are called metamorphoses.[ citation needed ] Animals can be divided into species that undergo complete metamorphosis ("holometaboly"), incomplete metamorphosis ("hemimetaboly"), or no metamorphosis ("ametaboly").

Biological processes are the processes vital for a living organism to live. Biological processes are made up of many chemical reactions or other events that are involved in the persistence and transformation of life forms. Metabolism and homeostasis are examples.

Developmental biology is the study of the process by which animals and plants grow and develop. Developmental biology also encompasses the biology of regeneration, asexual reproduction, metamorphosis, and the growth and differentiation of stem cells in the adult organism.

Birth process of giving birth to one or more offspring

Birth is the act or process of bearing or bringing forth offspring. In mammals, the process is initiated by hormones which cause the muscular walls of the uterus to contract, expelling the fetus at a developmental stage when it is ready to feed and breathe. In some species the offspring is precocial and can move around almost immediately after birth but in others it is altricial and completely dependent on parenting. In marsupials, the fetus is born at a very immature stage after a short gestational period and develops further in its mother's womb's pouch.


Scientific usage of the term is technically precise, and it is not applied to general aspects of cell growth, including rapid growth spurts. References to "metamorphosis" in mammals are imprecise and only colloquial, but historically idealist ideas of transformation and monadology, as in Goethe's Metamorphosis of Plants , have influenced the development of ideas of evolution.

The term cell growth is used in the contexts of biological cell development and cell division (reproduction). When used in the context of cell development, the term refers to increase in cytoplasmic and organelle volume, as well as increase in genetic material following the replication during S phase.growth|. This is not to be confused with growth in the context of cell division, referred to as proliferation, where a cell, known as the "mother cell", grows and divides to produce two "daughter cells".

Puberty is the process of physical changes through which a child's body matures into an adult body capable of sexual reproduction. It is initiated by hormonal signals from the brain to the gonads: the ovaries in a girl, the testes in a boy. In response to the signals, the gonads produce hormones that stimulate libido and the growth, function, and transformation of the brain, bones, muscle, blood, skin, hair, breasts, and sex organs. Physical growth—height and weight—accelerates in the first half of puberty and is completed when an adult body has been developed. Until the maturation of their reproductive capabilities, the pre-pubertal physical differences between boys and girls are the external sex organs.

Mammal class of tetrapods

Mammals are vertebrate animals constituting the class Mammalia, and characterized by the presence of mammary glands which in females produce milk for feeding (nursing) their young, a neocortex, fur or hair, and three middle ear bones. These characteristics distinguish them from reptiles and birds, from which they diverged in the late Triassic, 201–227 million years ago. There are around 5,450 species of mammals. The largest orders are the rodents, bats and Soricomorpha. The next three are the Primates, the Cetartiodactyla, and the Carnivora.


The word metamorphosis derives from Greek μεταμόρφωσις, "transformation, transforming", [2] from μετα- ( meta- ), "after" and μορφή (morphe), "form". [3]

Greek language language spoken in Greece, Cyprus and Southern Albania

Greek is an independent branch of the Indo-European family of languages, native to Greece, Cyprus and other parts of the Eastern Mediterranean and the Black Sea. It has the longest documented history of any living Indo-European language, spanning more than 3000 years of written records. Its writing system has been the Greek alphabet for the major part of its history; other systems, such as Linear B and the Cypriot syllabary, were used previously. The alphabet arose from the Phoenician script and was in turn the basis of the Latin, Cyrillic, Armenian, Coptic, Gothic, and many other writing systems.

Meta is a prefix used in English to indicate a concept which is an abstraction behind another concept, used to complete or add to the latter.

Hormonal control

Metamorphosis is iodothyronine-induced and an ancestral feature of all chordates. [1]

Chordate phylum of animals

A chordate is an animal constituting the phylum Chordata. During some period of their life cycle, chordates possess a notochord, a dorsal nerve cord, pharyngeal slits, an endostyle, and a post-anal tail: these five anatomical features define this phylum. Chordates are also bilaterally symmetric; and have a coelom, metameric segmentation, and a circulatory system.

In insects growth and metamorphosis are controlled by hormones synthesized by endocrine glands near the front of the body (anterior). Neurosecretory cells in an insect's brain secrete a hormone, the prothoracicotropic hormone (PTTH) that activates prothoracic glands, which secrete a second hormone, usually ecdysone (an ecdysteroid), that induces ecdysis. [4] PTTH also stimulates the corpora allata, a retrocerebral organ, to produce juvenile hormone, which prevents the development of adult characteristics during ecdysis. In holometabolous insects, molts between larval instars have a high level of juvenile hormone, the moult to the pupal stage has a low level of juvenile hormone, and the final, or imaginal, molt has no juvenile hormone present at all. [5] Experiments on firebugs have shown how juvenile hormone can affect the number of nymph instar stages in hemimetabolous insects. [6] [7]

Hormone chemical released by a cell or a gland in one part of the body that sends out messages that affect cells in other parts of the organism

A hormone is any member of a class of signaling molecules produced by glands in multicellular organisms that are transported by the circulatory system to target distant organs to regulate physiology and behavior. Hormones have diverse chemical structures, mainly of three classes: eicosanoids, steroids, and amino acid/protein derivatives. The glands that secrete hormones comprise the endocrine signaling system. The term hormone is sometimes extended to include chemicals produced by cells that affect the same cell or nearby cells.

Endocrine gland

Endocrine glands are glands of the endocrine system that secrete their products, hormones, directly into the blood rather than through a duct. The major glands of the endocrine system include the pineal gland, pituitary gland, pancreas, ovaries, testes, thyroid gland, parathyroid gland, hypothalamus and adrenal glands. The hypothalamus and pituitary gland are neuroendocrine organs.

Anatomical terms of location Standard terms for unambiguous description of relative placement of body parts

Standard anatomical terms of location deal unambiguously with the anatomy of animals, including humans.


Incomplete metamorphosis in the grasshopper with different instar nymphs Grasshoppermetasnodgrass.svg
Incomplete metamorphosis in the grasshopper with different instar nymphs

All three categories of metamorphosis can be found in the diversity of insects, including no metamorphosis ("ametaboly"), incomplete or partial metamorphosis ("hemimetaboly"), and complete metamorphosis ("holometaboly"). While ametabolous insects show very little difference between larval and adult forms (also known as "direct development"), both hemimetabolous and holometabolous insects have significant morphological and behavioral differences between larval and adult forms, the most significant being the inclusion, in holometabolus organisms, of a pupal or resting stage between the larval and adult forms.

Pupa life stage of some insects undergoing transformation

A pupa is the life stage of some insects undergoing transformation between immature and mature stages. The pupal stage is found only in holometabolous insects, those that undergo a complete metamorphosis, with four life stages: egg, larva, pupa, and imago. The processes of entering and completing the pupal stage are controlled by the insect's hormones, especially juvenile hormone, prothoracicotropic hormone, and ecdysone.

Development and terminology

Two types of metamorphosis are shown. In a complete (holometabolous) metamorphosis the insect passes through four distinct phases, which produce an adult that does not resemble the larva. In an incomplete (hemimetabolous) metamorphosis an insect does not go through a full transformation, but instead transitions from a nymph to an adult by molting its exoskeleton as it grows. Holometabolous vs. Hemimetabolous.svg
Two types of metamorphosis are shown. In a complete (holometabolous) metamorphosis the insect passes through four distinct phases, which produce an adult that does not resemble the larva. In an incomplete (hemimetabolous) metamorphosis an insect does not go through a full transformation, but instead transitions from a nymph to an adult by molting its exoskeleton as it grows.

In hemimetabolous insects, immature stages are called nymphs. Development proceeds in repeated stages of growth and ecdysis (moulting); these stages are called instars. The juvenile forms closely resemble adults, but are smaller and lack adult features such as wings and genitalia. The size and morphological differences between nymphs in different instars are small, often just differences in body proportions and the number of segments; in later instars, external wing buds form.

In holometabolous insects, immature stages are called larvae and differ markedly from adults. Insects which undergo holometabolism pass through a larval stage, then enter an inactive state called pupa (called a "chrysalis" in butterfly species), and finally emerge as adults. [8]


The earliest insect forms showed direct development (ametabolism), and the evolution of metamorphosis in insects is thought to have fuelled their dramatic radiation (1,2). Some early ametabolous "true insects" are still present today, such as bristletails and silverfish. Hemimetabolous insects include cockroaches, grasshoppers, dragonflies, and true bugs. Phylogenetically, all insects in the Pterygota undergo a marked change in form, texture and physical appearance from immature stage to adult. These insects either have hemimetabolous development, and undergo an incomplete or partial metamorphosis, or holometabolous development, which undergo a complete metamorphosis, including a pupal or resting stage between the larval and adult forms. [9]

A number of hypotheses have been proposed to explain the evolution of holometaboly from hemimetaboly, mostly centering on whether or not the intermediate hemimetabolous forms are homologous to pupal form of holometabolous forms.

More recently,[ when? ] scientific attention has turned to characterizing the mechanistic basis of metamorphosis in terms of its hormonal control, by characterizing spatial and temporal patterns of hormone expression relative to metamorphosis in a wide range of insects.

Recent research

According to research from 2008, adult Manduca sexta is able to retain behavior learned as a caterpillar. [10] Another caterpillar, the ornate moth caterpillar, is able to carry toxins that it acquires from its diet through metamorphosis and into adulthood, where the toxins still serve for protection against predators. [11]

Many observations[ when? ] have indicated that programmed cell death plays a considerable role during physiological processes of multicellular organisms, particularly during embryogenesis and metamorphosis.[ citation needed ]


Just before metamorphosis, only 24 hours are needed to reach the stage in the next picture. RanaTemporariaLarva2.jpg
Just before metamorphosis, only 24 hours are needed to reach the stage in the next picture.
Almost functional common frog with some remains of the gill sac and a not fully developed jaw Rana Temporaria - Larva Final Stage.jpg
Almost functional common frog with some remains of the gill sac and a not fully developed jaw

In typical amphibian development, eggs are laid in water and larvae are adapted to an aquatic lifestyle. Frogs, toads, and newts all hatch from the eggs as larvae with external gills but it will take some time for the amphibians to interact outside with pulmonary respiration. Afterwards, newt larvae start a predatory lifestyle, while tadpoles mostly scrape food off surfaces with their horny tooth ridges.

Metamorphosis in amphibians is regulated by thyroxin concentration in the blood, which stimulates metamorphosis, and prolactin, which counteracts its effect. Specific events are dependent on threshold values for different tissues. Because most embryonic development is outside the parental body, development is subject to many adaptations due to specific ecological circumstances. For this reason tadpoles can have horny ridges for teeth, whiskers, and fins. They also make use of the lateral line organ. After metamorphosis, these organs become redundant and will be resorbed by controlled cell death, called apoptosis. The amount of adaptation to specific ecological circumstances is remarkable, with many discoveries still being made.

Frogs and toads

With frogs and toads, the external gills of the newly hatched tadpole are covered with a gill sac after a few days, and lungs are quickly formed. Front legs are formed under the gill sac, and hindlegs are visible a few days later. Following that there is usually a longer stage during which the tadpole lives off a vegetarian diet. Tadpoles use a relatively long, spiral‐shaped gut to digest that diet.

Rapid changes in the body can then be observed as the lifestyle of the frog changes completely. The spiral‐shaped mouth with horny tooth ridges is resorbed together with the spiral gut. The animal develops a big jaw, and its gills disappear along with its gill sac. Eyes and legs grow quickly, a tongue is formed, and all this is accompanied by associated changes in the neural networks (development of stereoscopic vision, loss of the lateral line system, etc.) All this can happen in about a day, so it is truly a metamorphosis. It is not until a few days later that the tail is reabsorbed, due to the higher thyroxin concentrations required for tail resorption.


The Salamander development is highly diverse; some species go through a dramatic reorganization when transitioning from aquatic larvae to terrestrial adults, while others, such as the Axolotl, display paedomorphosis and never develop into terrestrial adults. Within the genus Ambystoma , species have evolved to be paedomorphic several times, and paedomorphosis and complete development can both occur in some species. [12]


The large external gills of the crested newt LarveKamsalamander.JPG
The large external gills of the crested newt

In newts, there is no true metamorphosis [ citation needed ] because newt larvae already feed as predators and continue doing so as adults. Newts' gills are never covered by a gill sac and will be resorbed only just before the animal leaves the water. Just as in tadpoles, their lungs are functional early, but newts use them less frequently than tadpoles[ citation needed ]. Newts often have an aquatic phase in spring and summer, and a land phase in winter. For adaptation to a water phase, prolactin is the required hormone, and for adaptation to the land phase, thyroxin. External gills do not return in subsequent aquatic phases because these are completely absorbed upon leaving the water for the first time.


Basal caecilians such as Ichthyophis go through a metamorphosis in which aquatic larva transition into fossorial adults, which involves a loss of the lateral line. [13] More recently diverged caecilians (the Teresomata) do not undergo an ontogenetic niche shift of this sort and are in general fossorial throughout their lives. Thus, most caecilians do not undergo an anuran-like metamorphosis. [14]


Some fish, both bony fish (Osteichthyes) and jawless fish (Agnatha), undergo metamorphosis. Fish metamorphosis is typically under strong control by the thyroid hormone. [12]

Examples among the non-bony fish include the lamprey. Among the bony fish, mechanisms are varied.

The salmon is diadromous, meaning that it changes from a freshwater to a saltwater lifestyle.

Many species of flatfish begin their life bilaterally symmetrical, with an eye on either side of the body; but one eye moves to join the other side of the fish – which becomes the upper side – in the adult form.

The European eel has a number of metamorphoses, from the larval stage to the leptocephalus stage, then a quick metamorphosis to glass eel at the edge of the continental shelf (eight days for the Japanese eel), two months at the border of fresh and salt water where the glass eel undergoes a quick metamorphosis into elver, then a long stage of growth followed by a more gradual metamorphosis to the migrating phase. In the pre-adult freshwater stage, the eel also has phenotypic plasticity because fish-eating eels develop very wide mandibles, making the head look blunt. Leptocephali are common, occurring in all Elopomorpha (tarpon- and eel-like fish).

Most other bony fish undergo metamorphosis from embryo to larva (fry) and then to the juvenile stage during absorption of the yolk sac, because after that phase the individual needs to be able to feed for itself. [15] [16]

See also

Related Research Articles

Amphibian A class of ectothermic tetrapods, which typically breed in water

Amphibians are ectothermic, tetrapod vertebrates of the class Amphibia. Modern amphibians are all Lissamphibia. They inhabit a wide variety of habitats, with most species living within terrestrial, fossorial, arboreal or freshwater aquatic ecosystems. Thus amphibians typically start out as larvae living in water, but some species have developed behavioural adaptations to bypass this. The young generally undergo metamorphosis from larva with gills to an adult air-breathing form with lungs. Amphibians use their skin as a secondary respiratory surface and some small terrestrial salamanders and frogs lack lungs and rely entirely on their skin. They are superficially similar to lizards but, along with mammals and birds, reptiles are amniotes and do not require water bodies in which to breed. With their complex reproductive needs and permeable skins, amphibians are often ecological indicators; in recent decades there has been a dramatic decline in amphibian populations for many species around the globe.

Larva juvenile form of distinct animals before metamorphosis

A larva is a distinct juvenile form many animals undergo before metamorphosis into adults. Animals with indirect development such as insects, amphibians, or cnidarians typically have a larval phase of their life cycle.

Hypermetamorphosis is a term used in entomology that refers to a class of variants of holometabolism, that is to say, complete insect metamorphosis, but where some larval instars are distinct from each other.

Tadpole larva of amphibians

A tadpole is the larval stage in the life cycle of an amphibian, particularly that of a frog or toad. They are usually wholly aquatic, though some species have tadpoles that are terrestrial. When first hatched from the egg they have a more or less globular body, a laterally compressed tail and internal or external gills. As they grow they undergo metamorphosis, during which process they grow limbs, develop lungs and reabsorb the tail. Most tadpoles are herbivorous and during metamorphosis the mouth and internal organs are rearranged to prepare for an adult carnivorous lifestyle.

Ovoviviparity mode of animal reproduction

Ovoviviparity, ovovivipary, ovivipary, or aplacental viviparity is a mode of reproduction in animals in which embryos that develop inside eggs remain in the mother's body until they are ready to hatch. This method of reproduction is similar to viviparity, but the embryos have no placental connection with the mother and receive their nourishment from a yolk sac. In some species, this is supplemented by uterine secretions or other maternal provisioning.


An instar is a developmental stage of arthropods, such as insects, between each moult (ecdysis), until sexual maturity is reached. Arthropods must shed the exoskeleton in order to grow or assume a new form. Differences between instars can often be seen in altered body proportions, colors, patterns, changes in the number of body segments or head width. After moulting, i.e. shedding their exoskeleton, the juvenile arthropods continue in their life cycle until they either pupate or moult again. The instar period of growth is fixed; however, in some insects, like the salvinia stem-borer moth, the number of instars depends on early larval nutrition. Some arthropods can continue to moult after sexual maturity, but the stages between these subsequent moults are generally not called instars.

Diapause, when referencing animal dormancy, is the delay in development in response to regularly and recurring periods of adverse environmental conditions. It is considered to be a physiological state of dormancy with very specific initiating and inhibiting conditions. Diapause is a mechanism used as a means to survive predictable, unfavorable environmental conditions, such as temperature extremes, drought, or reduced food availability. Diapause is most often observed in all of the life stages of arthropods, especially insects. Embryonic diapause, a somewhat similar phenomenon, occurs in over 130 species of mammals, possibly even in humans, and in the embryos of many of the oviparous species of fish in the order Cyprinodontiformes.


A veliger is the planktonic larva of many kinds of sea snails and freshwater snails, as well as most bivalve molluscs (clams) and tusk shells.

Holometabolism, also called complete metamorphosis, is a form of insect development which includes four life stages: egg, larva, pupa, and imago or adult. Holometabolism is a synapomorphic trait of all insects in the superorder Endopterygota. Immature stages of holometabolous insects are very different from the mature stage. In some species the holometabolous life cycle prevents larvae from competing with adults because they inhabit different ecological niches. The morphology and behavior of each stage are adapted for different activities. For example, larval traits maximize feeding, growth, and development, while adult traits enable dispersal, mating, and egg laying. Some species of holometabolous insects protect and feed their offspring. Other insect developmental strategies include ametabolism and hemimetabolism.

Eastern newt species of amphibian

The eastern newt is a common newt of eastern North America. It frequents small lakes, ponds, and streams or near-by wet forests. The eastern newt produces tetrodotoxin which makes the species unpalatable to predatory fish and crayfish. It has a lifespan of 12 to 15 years in the wild, and may grow to five inches in length. These animals are common aquarium pets, being either collected from the wild or sold commercially. The striking bright orange juvenile stage, which is land-dwelling, is known as a red eft. Some sources blend the general name of the species and that of the red-spotted newt subspecies into the eastern red-spotted newt.

Polyphenism type of polymorphism where different forms of an animal are caused a single genotype

A polyphenic trait is a trait for which multiple, discrete phenotypes can arise from a single genotype as a result of differing environmental conditions. It is therefore a special case of phenotypic plasticity.

<i>Goliathus</i> genus of insects

The Goliath beetles are any of the five species in the genus Goliathus. Goliath beetles are among the largest insects on Earth, if measured in terms of size, bulk and weight. They are members of subfamily Cetoniinae, within the family Scarabaeidae. Goliath beetles can be found in many of Africa's tropical forests, where they feed primarily on tree sap and fruit. Little appears to be known of the larval cycle in the wild, but in captivity, Goliathus beetles have been successfully reared from egg to adult using protein-rich foods such as commercial cat and dog food. Goliath beetles measure from 60–110 millimetres (2.4–4.3 in) for males and 50–80 millimetres (2.0–3.1 in) for females, as adults, and can reach weights of up to 80–100 grams (2.8–3.5 oz) in the larval stage, though the adults are only about half this weight. The females range from a dark brown to silky white, but the males are normally brown/white/black or black/white.

Vincent Wigglesworth British entomologist

Sir Vincent Brian Wigglesworth CBE FRS was a British entomologist who made significant contributions to the field of insect physiology. He established the field in a textbook which was updated in a number of editions.

Juvenile (organism) individual organism that has not yet reached its adult form, sexual maturity, size;if transition from juvenile to fully mature is a more prolonged process (puberty for example), then juveniles during this transformation are sometimes called subadults

A juvenile is an individual organism that has not yet reached its adult form, sexual maturity or size. Juveniles sometimes look very different from the adult form, particularly in colour. In many organisms the juvenile has a different name from the adult.

Imaginal disc

An imaginal disc is one of the parts of a holometabolous insect larva that will become a portion of the outside of the adult insect during the pupal transformation. Contained within the body of the larva, there are pairs of discs that will form, for instance, the wings or legs or antennae or other structures in the adult. The role of the imaginal disc in insect development was first elucidated by Jan Swammerdam.

Italian crested newt species of amphibian

The Italian crested newt is a species of newt in the family Salamandridae.

Coastal Range newt subspecies of amphibian

The Coastal Range newt is a subspecies of the California newt. It is endemic to California, from Mendocino County south to San Diego County.

<i>Anastrepha ludens</i> species of insect

Anastrepha ludens, the Mexican fruit fly, is a species of tephritid or fruit flies in the genus Anastrepha.

Juvenile fish young salmon

Juvenile fish go through various stages between birth and adulthood. They start as eggs which hatch into larvae. The larvae are not able to feed themselves, and carry a yolk-sac which provides their nutrition. Before the yolk-sac completely disappears, the tiny fish must become capable of feeding themselves. When they have developed to the point where they are capable of feeding themselves, the fish are called fry. When, in addition, they have developed scales and working fins, the transition to a juvenile fish is complete and it is called a fingerling. Fingerlings are typically about the size of fingers. The juvenile stage lasts until the fish is fully grown, sexually mature and interacting with other adult fish.


  1. 1 2 Robert J. Denser Chordate Metamorphosis: Ancient Control by Iodothyronines Current Biology, 2008, Vol 18 No 13, R567-9. DOI: 10.1016/j.cub.2008.05.024
  2. "Metamorphosis, Henry George Liddell, Robert Scott, ''A, at Perseus". Retrieved 2012-08-26.
  3. "Online Etymology Dictionary". Retrieved 2012-08-26.
  4. Davies, 1998. Chapter 3.
  5. Gullan, P.J. & Cranston, P.S. 6.3 Process and Control of Moulting in The Insects: An Outline of Entomology. Blackwell Publishing, 2005. pp. 153-156.
  6. Slama; Williams (1965). "Juvenile hormone activity for the bug Pyrrhocoris apterus" (PDF). Proceedings of the National Academy of Sciences. 54 (2): 411–414. doi:10.1073/pnas.54.2.411. PMC   219680 .
  7. Singh, Amit; Konopova, Barbora; Smykal, Vlastimil; Jindra, Marek (2011). "Common and Distinct Roles of Juvenile Hormone Signaling Genes in Metamorphosis of Holometabolous and Hemimetabolous Insects". PLoS ONE. 6 (12): e28728. doi:10.1371/journal.pone.0028728. ISSN   1932-6203. PMC   3234286 . PMID   22174880. Open Access logo PLoS transparent.svg
  8. Lowe, Tristan; Garwood, Russell P.; Simonsen, Thomas; Bradley, Robert S.; Withers, Philip J. (July 6, 2013). "Metamorphosis revealed: three dimensional imaging inside a living chrysalis". Metamorphosis revealed: three dimensional imaging inside a living chrysalis. 10 (84). 20130304. doi:10.1098/rsif.2013.0304. PMC   3673169 . Retrieved June 11, 2015.
  9. Gullan, P.J. & Cranston, P.S. 6.2 Life History Patterns and Phases in The Insects: An Outline of Entomology. pp. 143–153. 2005 by Blackwell Publishing
  10. Douglas J. Blackiston, Elena Silva Casey & Martha R. Weiss (2008). "Retention of memory through metamorphosis: can a moth remember what it learned as a caterpillar?". PLoS ONE . 3 (3): e1736. doi:10.1371/journal.pone.0001736. PMC   2248710 . PMID   18320055. Open Access logo PLoS transparent.svg
  11. Conner, W.E. (2009). Tiger Moths and Woolly Bears—behaviour, ecology, and evolution of the Arctiidae. New York: Oxford University Press. pp. 1–10.
  12. 1 2 Laudet, Vincent (September 27, 2011). "The Origins and Evolution of Vertebrate Metamorphosis". Current Biology. 21: R726–R737. doi:10.1016/j.cub.2011.07.030.
  13. Dunker, Nicole; Wake, Marvalee H.; Olson, Wendy M. (January 2000). "Embryonic and Larval Development in the Caecilian Ichthyophis kohtaoensis (Amphibia, Gymnophiona): A Staging Table". Journal of Morphology. 243: 3–34. doi:10.1002/(sici)1097-4687(200001)243:1<3::aid-jmor2>;2-4.
  14. San Mauro, D.; Gower, D. J.; Oommen, O. V.; Wilkinson, M.; Zardoya, R. (November 2004). "Phylogeny of caecilian amphibians (Gymnophiona) based on complete mitochondrial genomes and nuclear RAG1". Molecular Phylogenetics and Evolution. 33: 413–427. doi:10.1016/j.ympev.2004.05.014. PMID   15336675.
  15. Mader, Sylvia, Biology 9th ed. Ch. 31
  16. Peter B. Moyle and Joseph J. Cech Jr, Fishes: an introduction to ichthyology 5th ed. 9.3: "Development" pp 148ff