Fish development

Last updated
Zebrafish embryos (Danio rerio). Zebrafish embryos.png
Zebrafish embryos ( Danio rerio ).

The development of fishes is unique in some specific aspects compared to the development of other animals.



Most bony fish eggs are referred to as telolecithal which means that most of the egg cell cytoplasm is yolk. [1] The yolky end of the egg (the vegetal pole) remains homogenous while the other end (the animal pole) undergoes cell division. [2] Cleavage, or initial cell division, can only occur in a region called the blastodisc, a yolk free region located at the animal pole of the egg. The fish zygote is meroblastic, meaning the early cell divisions are not complete. This type of meroblastic cleavage is called discoidal because only the blastodisc becomes the embryo. [1] In fish, waves of calcium released direct the process of cell division by coordinating the mitotic apparatus with the actin cytoskeleton, propagating cell division along the surface, assists in deepening the cleavage furrow, and finally heals the membrane after separation of blastomeres. [3]

The fate of the first cells, called blastomeres, is determined by its location. This contrasts with the situation in some other animals, such as mammals, in which each blastomere can develop into any part of the organism. [2] Fish embryos go through a process called mid-blastula transition which is observed around the tenth cell division in some fish species. Once zygotic gene transcription starts, slow cell division begins and cell movements are observable. [4] During this time three cell populations become distinguished. The first population is the yolk syncytial layer. This layer forms when the cells at the vegetal pole of the blastoderm combine with the yolk cell underneath it. Later in development the yolk syncytial layer will be important in directing cell movements of gastrulation. The second cell population is the enveloping layer which is made of superficial cells from the blastoderm that eventually form a single epithelial cell layer. [1] This layer functions in protection by allowing the embryo to develop in a hypotonic solution so the cell will not burst. [5] Finally, the third set of blastomeres are the deep cells. These deep cells are located between the enveloping layer and the yolk syncytial layer and eventually give rise to the embryo proper. [1]

Germ layer formation

Once blastoderm cells have covered almost half of the yolk cell, thickening throughout the margin of deep cells occurs. The thickening is referred to as the germ ring and is made up of a superficial layer, the epiblast which will become ectoderm, and an inner layer called the hypoblast which will become endoderm and mesoderm. [6] As the blastoderm cells undergo epiboly around the yolk the internalization of cells at the blastoderm margin start to form hypoblast. Presumptive ectoderm or epiblast cells do not internalize but the deep cells (inner layer of cells) do and they become the mesoderm and endoderm. As the hypoblast cells move inward future mesoderm (hypoblast cells) start to move vegetally and proliferate but later in development these cells alter their direction and start moving towards the animal pole. However, endodermal precursors seem to lack a pattern and move randomly over the yolk. [7]

Axis formation

Once the egg has become multicellular and positioned its germ layers with ectoderm on the outside, mesoderm in the middle, and endoderm on the inside body axes have to be determined for proper development. [8] A dorsal-ventral axis has to form and major proteins involved are BMP and Wnts. Both proteins are made in the ventral and lateral portions of the developing embryo. BMP2B induces cells to have ventral and lateral fates while factors such as chordin can block BMPs to dorsalize the tissue. Wnt8 induces ventral, lateral, and posterior regions of embryonic tissue. Wnt also has inhibitors like noggin to allow for the formation of dorsal tissue. In order to aid in proper development fish have an organizer center called the Nieuwkoop center. [9] Anterior and posterior axis formation seems to be the result of interplay of FGFs, Wnt, and retinoic acid. FGFs, retinoic acid, and Wnts are required to turn on posterior genes. [8]


Neurulation, the formation of the central nervous system, is different in fishes than in most other chordates. Convergence and extension in the epiblast recruits presumptive neural cells from the epiblast towards the midline where they form a neural keel. A neural keel is a band of neural precursors that develops a slit like lumen to eventually become the neural tube. [1] The neural tube begins as a solid cord formed from the ectoderm. This cord then sinks into the embryo and becomes hollow, forming the neural tube. This process contrasts with the process in other chordates, which occurs by an infolding of the ectoderm to form a hollow tube. [10]

Throughout the years advances in research have shown that neural formation relies on interactions between extrinsic signaling factors and intrinsic transcription factors. Extrinsic signals involved are BMP, Wnt, and FGF and intrinsic transcription factors like SoxB1 related genes. Secreted proteins such as BMP and its antagonist Noggin and chordin act permissively to establish the fate of neural tissue in the dorsal ectoderm and enables the formation of the neural plate. [11]

Sex determination

Sex determination is variable in fish from environmental factors like temperature to genetic mechanisms. Some fish have XX/XY chromosomes and others have ZZ/ZW. So far one gene in specific, DMRT1bY, has been described as a sex determining gene. This gene is expressed before gonads develop and differentiate. Mutations in this gene lead to sex reversal from male to female. While this gene plays a major role in sex determination in some fish species other species have variations of this gene as well as some versions of the Sox gene as seen in zebrafish. [12] Many species of fishes are hermaphrodites. Some, such as the painted comber (Serranus scriba), are synchronous hermaphrodites. These fish have both ovaries and testes and can produce both eggs and sperm at the same time. Others are sequential hermaphrodites. These fishes start life as one sex and undergo a genetically programmed sex change at some point during development. Their gonads have both ovarian and testicular tissues, with one type of tissue predominant while the fish belongs to the corresponding gender. [13]


  1. 1 2 3 4 5 Gilbert 2014, pp. 273–6.
  2. 1 2 Gilbert 1994, pp. 185–7.
  3. Lee, Webb & Miller 2003.
  4. Kane & Kimmel 1993.
  5. Fukazawa et al. 2010.
  6. Keller et al. 2008.
  7. Pézeron et al. 2008.
  8. 1 2 Gilbert 2014, pp. 277–81.
  9. Schier 2001.
  10. Gilbert 1994, p. 247.
  11. Schmidt, Strähle & Scholpp 2013.
  12. Zhang et al. 2009.
  13. Gilbert 1994, pp. 781.

Related Research Articles

Mesoderm Middle germ layer that forms muscle, bone, blood vessels and more

The mesoderm is the middle layer of the three germ layers that develop during gastrulation in the very early development of the embryo of most animals. The outer layer is the ectoderm, and the inner layer is the endoderm.

Gastrulation Stage in embryonic development in which germ layers form

Gastrulation is the stage in the early embryonic development of most animals, during which the blastula is reorganized into a multilayered structure known as the gastrula. Before gastrulation, the embryo is a continuous epithelial sheet of cells; by the end of gastrulation, the embryo has begun differentiation to establish distinct cell lineages, set up the basic axes of the body, and internalized one or more cell types including the prospective gut.

Ectoderm Outer germ layer that forms the neurons of brain, skin, and more

The ectoderm is one of the three primary germ layers formed in early embryonic development. It is the outermost layer, and is superficial to the mesoderm and endoderm. It emerges and originates from the outer layer of germ cells. The word ectoderm comes from the Greek ektos meaning "outside", and derma meaning "skin".

<i>Drosophila</i> embryogenesis Embryogenesis of the fruit fly Drosophila, a popular model system

Drosophila embryogenesis, the process by which Drosophila embryos form, is a favorite model system for genetics and developmental biology. The study of its embryogenesis unlocked the century-long puzzle of how development was controlled, creating the field of evolutionary developmental biology. The small size, short generation time, and large brood size make it ideal for genetic studies. Transparent embryos facilitate developmental studies. Drosophila melanogaster was introduced into the field of genetic experiments by Thomas Hunt Morgan in 1909.


A blastocoel, also spelled blastocoele and blastocele, and also called blastocyst cavity is a fluid-filled cavity that forms in the blastula (blastocyst) of early amphibian and echinoderm embryos, or between the epiblast and hypoblast of avian, reptilian, and mammalian blastoderm-stage embryos.

A germ layer is a primary layer of cells that forms during embryonic development. The three germ layers in vertebrates are particularly pronounced; however, all eumetazoans produce two or three primary germ layers. Some animals, like cnidarians, produce two germ layers making them diploblastic. Other animals such as bilaterians produce a third layer between these two layers, making them triploblastic. Germ layers eventually give rise to all of an animal’s tissues and organs through the process of organogenesis.

Organogenesis is the phase of embryonic development that starts at the end of gastrulation and continues until birth. During organogenesis, the three germ layers formed from gastrulation form the internal organs of the organism.

Animal embryonic development Process by which the embryo forms and develops

In developmental biology, animal embryonic development, also known as embryogenesis, is the developmental stage of an animal embryo. Embryonic development starts with the fertilization of an egg cell (ovum) by a sperm cell, (spermatozoon). Once fertilized, the ovum becomes a single diploid cell known as a zygote. The zygote undergoes mitotic divisions with no significant growth and cellular differentiation, leading to development of a multicellular embryo after passing through an organizational checkpoint during mid-embryogenesis. In mammals, the term refers chiefly to the early stages of prenatal development, whereas the terms fetus and fetal development describe later stages.

Neurula Embryo at the early stage of development in which neurulation occurs

A neurula is a vertebrate embryo at the early stage of development in which neurulation occurs. The neurula stage is preceded by the gastrula stage; consequentially, neurulation is preceded by gastrulation. Neurulation marks the beginning of the process of organogenesis.

The primitive node is the organizer for gastrulation in the vertebrate embryo. The organizer is determined by the Nieuwkoop center in amphibians or the Posterior Marginal zone in amniotes.

Primitive streak Structure in early amniote embryogenesis

The primitive streak is a structure that forms in the blastula during the early stages of avian, reptilian and mammalian embryonic development. It forms on the dorsal (back) face of the developing embryo, toward the caudal or posterior end.

Epiblast Embryonic inner cell mass tissue that forms the embryo itself, through the three germ layers

In amniote animal embryology, the epiblast is one of two distinct layers arising from the inner cell mass in the mammalian blastocyst or from the blastodisc in reptiles and birds. It derives the embryo proper through its differentiation into the three primary germ layers, ectoderm, mesoderm and endoderm, during gastrulation. The amnionic ectoderm and extraembryonic mesoderm also originate from the epiblast.

Mesenchyme Type of connective tissue found mostly during the embryonic development of bilateral triploblast animals

Mesenchyme is a type of loosely organised animal embryonic connective tissue of undifferentiated cells that gives rise to blood and lymph vessels, bone, and muscle.


Epiboly describes one of the five major types of cell movements that occur in the Gastrulation stage of embryonic development of some organisms. Epibolic movement is the way in which a layer epithelial cells spreads. This can be achieved in multiple ways.

Bilaminar blastocyst

Bilaminar blastocyst or bilaminar disc refers to the epiblast and the hypoblast, evolved from the embryoblast. These two layers are sandwiched between two balloons: the primitive yolk sac and the amniotic cavity.

In the field of developmental biology, regional differentiation is the process by which different areas are identified in the development of the early embryo. The process by which the cells become specified differs between organisms.

Human embryonic development Development and formation of the human embryo

Human embryonic development, or human embryogenesis, is the development and formation of the human embryo. It is characterised by the processes of cell division and cellular differentiation of the embryo that occurs during the early stages of development. In biological terms, the development of the human body entails growth from a one-celled zygote to an adult human being. Fertilisation occurs when the sperm cell successfully enters and fuses with an egg cell (ovum). The genetic material of the sperm and egg then combine to form a single cell called a zygote and the germinal stage of development commences. Embryonic development in the human, covers the first eight weeks of development; at the beginning of the ninth week the embryo is termed a fetus. Human embryology is the study of this development during the first eight weeks after fertilisation. The normal period of gestation (pregnancy) is about nine months or 40 weeks.

Hypoblast Embryonic inner cell mass tissue that forms the yolk sac and, later, chorion

In amniote embryology, the hypoblast, is one of two distinct layers arising from the inner cell mass in the mammalian blastocyst, or from the blastodisc in reptiles and birds. The hypoblast gives rise to the yolk sac, which in turn gives rise to the chorion.

Kollers sickle

In avian gastrulation, Koller's sickle is a local thickening of cells at the posterior edge of the upper layer of the area pellucida called the epiblast. Koller's sickle is crucial for avian development, due to its critical role in inducing the differentiation of various avian body parts. Koller's sickle induces primitive streak and Hensen's node, which are major components of avian gastrulation. Avian gastrulation is a process by which developing cells in an avian embryo move relative to one another in order to form the three germ layers.

Ectoderm specification Stage in embryonic development

In Xenopus laevis, the specification of the three germ layers occurs at the blastula stage. Great efforts have been made to determine the factors that specify the endoderm and mesoderm. On the other hand, only a few examples of genes that are required for ectoderm specification have been described in the last decade. The first molecule identified to be required for the specification of ectoderm was the ubiquitin ligase Ectodermin ; later, it was found that the deubiquitinating enzyme, FAM/USP9x, is able to overcome the effects of ubiquitination made by Ectodermin in Smad4. Two transcription factors have been proposed to control gene expression of ectodermal specific genes: POU91/Oct3/4 and FoxIe1/Xema. A new factor specific for the ectoderm, XFDL156, has shown to be essential for suppression of mesoderm differentiation from pluripotent cells.