Cleavage (embryo)

Last updated

In embryology, cleavage is the division of cells in the early development of the embryo, following fertilization. [1] The zygotes of many species undergo rapid cell cycles with no significant overall growth, producing a cluster of cells the same size as the original zygote. The different cells derived from cleavage are called blastomeres and form a compact mass called the morula. Cleavage ends with the formation of the blastula, or of the blastocyst in mammals.

Contents

Depending mostly on the concentration of yolk in the egg, the cleavage can be holoblastic (total or entire cleavage) or meroblastic (partial cleavage). The pole of the egg with the highest concentration of yolk is referred to as the vegetal pole while the opposite is referred to as the animal pole.

Cleavage differs from other forms of cell division in that it increases the number of cells and nuclear mass without increasing the cytoplasmic mass. This means that with each successive subdivision, there is roughly half the cytoplasm in each daughter cell than before that division, and thus the ratio of nuclear to cytoplasmic material increases. [2]

Mechanism

The rapid cell cycles are facilitated by maintaining high levels of proteins that control cell cycle progression such as the cyclins and their associated cyclin-dependent kinases (CDKs). The complex cyclin B/CDK1 also known as MPF (maturation promoting factor) promotes entry into mitosis.

The processes of karyokinesis (mitosis) and cytokinesis work together to result in cleavage. The mitotic apparatus is made up of a central spindle and polar asters made up of polymers of tubulin protein called microtubules. The asters are nucleated by centrosomes and the centrosomes are organized by centrioles brought into the egg by the sperm as basal bodies. Cytokinesis is mediated by the contractile ring made up of polymers of actin protein called microfilaments. Karyokinesis and cytokinesis are independent but spatially and temporally coordinated processes. While mitosis can occur in the absence of cytokinesis, cytokinesis requires the mitotic apparatus.

The end of cleavage coincides with the beginning of zygotic transcription. This point in non-mammals is referred to as the midblastula transition and appears to be controlled by the nuclear-cytoplasmic ratio (about 1:6).

Types of cleavage

Determinate

Determinate cleavage (also called mosaic cleavage) is in most protostomes. It results in the developmental fate of the cells being set early in the embryo development. Each blastomere produced by early embryonic cleavage does not have the capacity to develop into a complete embryo.

Indeterminate

A cell can only be indeterminate (also called regulative) if it has a complete set of undisturbed animal/vegetal cytoarchitectural features. It is characteristic of deuterostomes—when the original cell in a deuterostome embryo divides, the two resulting cells can be separated, and each one can individually develop into a whole organism.

Holoblastic

In holoblastic cleavage, the zygote and blastomeres are completely divided during the cleavage, so the number of blastomeres doubles with each cleavage. In the absence of a large concentration of yolk, four major cleavage types can be observed in isolecithal cells (cells with a small, even distribution of yolk) or in mesolecithal cells or microlecithal cells (moderate concentration of yolk in a gradient)—bilateral holoblastic, radial holoblastic, rotational holoblastic, and spiral holoblastic, cleavage. [3] These holoblastic cleavage planes pass all the way through isolecithal zygotes during the process of cytokinesis. Coeloblastula is the next stage of development for eggs that undergo these radial cleavages. In holoblastic eggs, the first cleavage always occurs along the vegetal-animal axis of the egg, the second cleavage is perpendicular to the first. From here, the spatial arrangement of blastomeres can follow various patterns, due to different planes of cleavage, in various organisms.

Bilateral

The first cleavage results in bisection of the zygote into left and right halves. The following cleavage planes are centered on this axis and result in the two halves being mirror images of one another. In bilateral holoblastic cleavage, the divisions of the blastomeres are complete and separate; compared with bilateral meroblastic cleavage, in which the blastomeres stay partially connected.

Radial

Radial cleavage is characteristic of the deuterostomes, which include some vertebrates and echinoderms, in which the spindle axes are parallel or at right angles to the polar axis of the oocyte.

Rotational

Rotational cleavage involves a normal first division along the meridional axis, giving rise to two daughter cells. The way in which this cleavage differs is that one of the daughter cells divides meridionally, whilst the other divides equatorially.
Mammals display rotational cleavage, and an isolecithal distribution of yolk (sparsely and evenly distributed). Because the cells have only a small concentration of yolk, they require immediate implantation into the uterine wall in order to receive nutrients.
The nematode C. elegans, a popular developmental model organism, undergoes holoblastic rotational cell cleavage. [4]

Spiral

Spiral cleavage is conserved between many members of the lophotrochozoan taxa, referred to as Spiralia. [5] Most spiralians undergo equal spiral cleavage, although some undergo unequal cleavage (see below). [6] This group includes annelids, molluscs, and sipuncula. Spiral cleavage can vary between species, but generally the first two cell divisions result in four macromeres, also called blastomeres, (A, B, C, D) each representing one quadrant of the embryo. These first two cleavages are not oriented in planes that occur at right angles parallel to the animal-vegetal axis of the zygote. [5] At the 4-cell stage, the A and C macromeres meet at the animal pole, creating the animal cross-furrow, while the B and D macromeres meet at the vegetal pole, creating the vegetal cross-furrow. [7] With each successive cleavage cycle, the macromeres give rise to quartets of smaller micromeres at the animal pole. [8] [9] The divisions that produce these quartets occur at an oblique angle, an angle that is not a multiple of 90 degrees, to the animal-vegetal axis. [9] Each quartet of micromeres is rotated relative to their parent macromere, and the chirality of this rotation differs between odd- and even-numbered quartets, meaning that there is alternating symmetry between the odd and even quartets. [5] In other words, the orientation of divisions that produces each quartet alternates between being clockwise and counterclockwise with respect to the animal pole. [9] The alternating cleavage pattern that occurs as the quartets are generated produces quartets of micromeres that reside in the cleavage furrows of the four macromeres. [7] When viewed from the animal pole, this arrangement of cells displays a spiral pattern.
D quadrant specification through equal and unequal cleavage mechanisms. At the 4-cell stage of equal cleavage, the D macromere has not been specified yet. It will be specified after the formation of the third quartet of micromeres. Unequal cleavage occurs in two ways: asymmetric positioning of the mitotic spindle, or through the formation of a polar lobe (PL). Equal vs unequal cleavage.jpg
D quadrant specification through equal and unequal cleavage mechanisms. At the 4-cell stage of equal cleavage, the D macromere has not been specified yet. It will be specified after the formation of the third quartet of micromeres. Unequal cleavage occurs in two ways: asymmetric positioning of the mitotic spindle, or through the formation of a polar lobe (PL).
Specification of the D macromere and is an important aspect of spiralian development. Although the primary axis, animal-vegetal, is determined during oogenesis, the secondary axis, dorsal-ventral, is determined by the specification of the D quadrant. [9] The D macromere facilitates cell divisions that differ from those produced by the other three macromeres. Cells of the D quadrant give rise to dorsal and posterior structures of the spiralian. [9] Two known mechanisms exist to specify the D quadrant. These mechanisms include equal cleavage and unequal cleavage.
In equal cleavage, the first two cell divisions produce four macromeres that are indistinguishable from one another. Each macromere has the potential of becoming the D macromere. [8] After the formation of the third quartet, one of the macromeres initiates maximum contact with the overlying micromeres in the animal pole of the embryo. [8] [9] This contact is required to distinguish one macromere as the official D quadrant blastomere. In equally cleaving spiral embryos, the D quadrant is not specified until after the formation of the third quartet, when contact with the micromeres dictates one cell to become the future D blastomere. Once specified, the D blastomere signals to surrounding micromeres to lay out their cell fates. [9]
In unequal cleavage, the first two cell divisions are unequal producing four cells in which one cell is bigger than the other three. This larger cell is specified as the D macromere. [8] [9] Unlike equally cleaving spiralians, the D macromere is specified at the four-cell stage during unequal cleavage. Unequal cleavage can occur in two ways. One method involves asymmetric positioning of the cleavage spindle. [9] This occurs when the aster at one pole attaches to the cell membrane, causing it to be much smaller than the aster at the other pole. [8] This results in an unequal cytokinesis, in which both macromeres inherit part of the animal region of the egg, but only the bigger macromere inherits the vegetal region. [8] The second mechanism of unequal cleavage involves the production of an enucleate, membrane bound, cytoplasmic protrusion, called a polar lobe. [8] This polar lobe forms at the vegetal pole during cleavage, and then gets shunted to the D blastomere. [7] [8] The polar lobe contains vegetal cytoplasm, which becomes inherited by the future D macromere. [9]
Spiral cleavage in marine snail of the genus Trochus Spiral cleavage in Trochus.png
Spiral cleavage in marine snail of the genus Trochus

Meroblastic

In the presence of a large concentration of yolk in the fertilized egg cell, the cell can undergo partial, or meroblastic, cleavage. Two major types of meroblastic cleavage are discoidal and superficial.[ citation needed ]

In discoidal cleavage, the cleavage furrows do not penetrate the yolk. The embryo forms a disc of cells, called a blasto-disc, on top of the yolk. Discoidal cleavage is commonly found in monotremes, birds, reptiles, and fish that have telolecithal egg cells (egg cells with the yolk concentrated at one end). The layer of cells that have incompletely divided and are in contact with the yolk are called the "syncytial layer".
In superficial cleavage, mitosis occurs but not cytokinesis, resulting in a polynuclear cell. With the yolk positioned in the center of the egg cell, the nuclei migrate to the periphery of the egg, and the plasma membrane grows inward, partitioning the nuclei into individual cells. Superficial cleavage occurs in arthropods that have centrolecithal egg cells (egg cells with the yolk located in the center of the cell). This type of cleavage can work to promote synchronicity in developmental timing, such as in Drosophila. [10]
Summary of the main patterns of cleavage and yolk accumulation (after [11] and [12] ).
I. Holoblastic (complete) cleavageII. Meroblastic (incomplete) cleavage

A. Isolecithal (sparse, evenly distributed yolk)

B. Mesolecithal (moderate vegetal yolk disposition)

A. Telolecithal (dense yolk throughout most of cell)

B. Centrolecithal (yolk in center of egg)

  • Superficial cleavage (most insects)

Mammals

First stages of cleavage in a fertilized mammalian egg. Semidiagrammatic. z.p. Zona pellucida. p.gl. Polar bodies a. Two-cell stage b. Four-cell stage c. Eight-cell stage d, e. Morula stage Gray9.png
First stages of cleavage in a fertilized mammalian egg. Semidiagrammatic. z.p. Zona pellucida. p.gl. Polar bodies a. Two-cell stage b. Four-cell stage c. Eight-cell stage d, e. Morula stage

Mammals have a slow rate of division that is between 12 and 24 hours. These cellular divisions are asynchronous. Zygotic transcription starts at the two-, four-, or eight-cell stage. Cleavage is holoblastic and rotational.

In human embryonic development at the eight-cell stage, having undergone three cleavages the embryo goes through some changes as it develops into a blastocyst. At the eight-cell stage the blastomeres are round, and only loosely adhered. With further division in the process of compaction the cells become flattened, and develop an inside-out polarity that optimises the cell to cell contact between them. They begin to tightly adhere as gap junctions are formed, and tight junctions are developed with the other blastomeres. [13] [14] At the 16–32 cell stage the compacted embryo is called a morula. [14] [15] Once the embryo has divided into 16 cells, it begins to resemble a mulberry, hence the name morula (Latin, morus: mulberry). [16] With further compaction the individual outer blastomeres, the trophoblasts, become indistinguishable as they become organised into a thin sheet of tightly adhered epithelial cells. They are still enclosed within the zona pellucida. This compaction serves to make the structure watertight, to contain the fluid that the cells will later secrete.

In the human the morula enters the uterus after three or four days, and begins to take in fluid, as sodium-potassium pumps on the trophoblasts pump sodium into the morula, drawing in water from the maternal environment to become blastocoelic fluid. Hydrostatic pressure of the fluid creates a large cavity in the morula called a blastocoel. Embryoblast cells also known as the inner cell mass form a compact mass of cells at the embryonic pole on one side of the cavity that will go on to produce the embryo proper. The embryo is now termed a blastocyst. [14] [17] The trophoblasts will eventually give rise to the embryonic contribution to the placenta called the chorion.

A single cell can be removed from a pre-compaction eight-cell embryo and used for genetic screening, and the embryo will recover. [18] [19]

Differences exist between cleavage in placental mammals and other mammals.

Related Research Articles

<span class="mw-page-title-main">Zygote</span> Diploid eukaryotic cell formed by fertilization between two gametes

A zygote is a eukaryotic cell formed by a fertilization event between two gametes. The zygote's genome is a combination of the DNA in each gamete, and contains all of the genetic information of a new individual organism.

<span class="mw-page-title-main">Embryo</span> Multicellular diploid eukaryote in its earliest stage of development

An embryo is an initial stage of development of a multicellular organism. In organisms that reproduce sexually, embryonic development is the part of the life cycle that begins just after fertilization of the female egg cell by the male sperm cell. The resulting fusion of these two cells produces a single-celled zygote that undergoes many cell divisions that produce cells known as blastomeres. The blastomeres are arranged as a solid ball that when reaching a certain size, called a morula, takes in fluid to create a cavity called a blastocoel. The structure is then termed a blastula, or a blastocyst in mammals.

<span class="mw-page-title-main">Hemichordate</span> Phylum of marine deuterostome animals

Hemichordata is a phylum which consists of triploblastic, enterocoelomate, and bilaterally symmetrical marine deuterostome animals, generally considered the sister group of the echinoderms. They appear in the Lower or Middle Cambrian and include two main classes: Enteropneusta, and Pterobranchia. A third class, Planctosphaeroidea, is known only from the larva of a single species, Planctosphaera pelagica. The class Graptolithina, formerly considered extinct, is now placed within the pterobranchs, represented by a single living genus Rhabdopleura.

<span class="mw-page-title-main">Blastulation</span> Sphere of cells formed during early embryonic development in animals

Blastulation is the stage in early animal embryonic development that produces the blastula. In mammalian development the blastula develops into the blastocyst with a differentiated inner cell mass and an outer trophectoderm. The blastula is a hollow sphere of cells known as blastomeres surrounding an inner fluid-filled cavity called the blastocoel. Embryonic development begins with a sperm fertilizing an egg cell to become a zygote, which undergoes many cleavages to develop into a ball of cells called a morula. Only when the blastocoel is formed does the early embryo become a blastula. The blastula precedes the formation of the gastrula in which the germ layers of the embryo form.

<span class="mw-page-title-main">Gastrulation</span> Stage in embryonic development in which germ layers form

Gastrulation is the stage in the early embryonic development of most animals, during which the blastula, or in mammals the blastocyst is reorganized into a two-layered or three-layered embryo known as the gastrula. Before gastrulation, the embryo is a continuous epithelial sheet of cells; by the end of gastrulation, the embryo has begun differentiation to establish distinct cell lineages, set up the basic axes of the body, and internalized one or more cell types including the prospective gut.

<span class="mw-page-title-main">Blastocyst</span> Structure formed around day 5 of mammalian embryonic development

The blastocyst is a structure formed in the early embryonic development of mammals. It possesses an inner cell mass (ICM) also known as the embryoblast which subsequently forms the embryo, and an outer layer of trophoblast cells called the trophectoderm. This layer surrounds the inner cell mass and a fluid-filled cavity known as the blastocoel. In the late blastocyst the trophectoderm is known as the trophoblast. The trophoblast gives rise to the chorion and amnion, the two fetal membranes that surround the embryo. The placenta derives from the embryonic chorion and the underlying uterine tissue of the mother.

In biology, a blastomere is a type of cell produced by cell division (cleavage) of the zygote after fertilization; blastomeres are an essential part of blastula formation, and blastocyst formation in mammals.

<span class="mw-page-title-main">Blastocoel</span> Fluid-filled or yolk-filled cavity that forms in the blastula

The blastocoel, also spelled blastocoele and blastocele, and also called cleavage cavity, or segmentation cavity is a fluid-filled or yolk-filled cavity that forms in the blastula during very early embryonic development. At this stage in mammals the blastula develops into the blastocyst containing an inner cell mass, and outer trophectoderm.

<span class="mw-page-title-main">Animal embryonic development</span> Process by which the embryo forms and develops

In developmental biology, animal embryonic development, also known as animal embryogenesis, is the developmental stage of an animal embryo. Embryonic development starts with the fertilization of an egg cell (ovum) by a sperm cell, (spermatozoon). Once fertilized, the ovum becomes a single diploid cell known as a zygote. The zygote undergoes mitotic divisions with no significant growth and cellular differentiation, leading to development of a multicellular embryo after passing through an organizational checkpoint during mid-embryogenesis. In mammals, the term refers chiefly to the early stages of prenatal development, whereas the terms fetus and fetal development describe later stages.

Isolecithal refers to the even distribution of yolk in the cytoplasm of ova of mammals and other vertebrates, notably fishes of the families Petromyzontidae, Amiidae, and Lepisosteidae. Isolecithal cells have two equal hemispheres of yolk. However, during cellular development, normally under the influence of gravity, some of the yolk settles to the bottom of the egg, producing an uneven distribution of yolky hemispheres. Such uneven cells are known as telolecithal and are common where there is sufficient yolk mass.

In embryology, Carnegie stages are a standardized system of 23 stages used to provide a unified developmental chronology of the vertebrate embryo.

<span class="mw-page-title-main">Inner cell mass</span> Early embryonic mass that gives rise to the fetus

The inner cell mass (ICM) or embryoblast is a structure in the early development of an embryo. It is the mass of cells inside the blastocyst that will eventually give rise to the definitive structures of the fetus. The inner cell mass forms in the earliest stages of embryonic development, before implantation into the endometrium of the uterus. The ICM is entirely surrounded by the single layer of trophoblast cells of the trophectoderm.

An asymmetric cell division produces two daughter cells with different cellular fates. This is in contrast to symmetric cell divisions which give rise to daughter cells of equivalent fates. Notably, stem cells divide asymmetrically to give rise to two distinct daughter cells: one copy of the original stem cell as well as a second daughter programmed to differentiate into a non-stem cell fate.

In the field of developmental biology, regional differentiation is the process by which different areas are identified in the development of the early embryo. The process by which the cells become specified differs between organisms.

<span class="mw-page-title-main">Fish development</span>

The development of fishes is unique in some specific aspects compared to the development of other animals.

The blastodisc, also called the germinal disc, is the embryo-forming part on the yolk of the egg of an animal that undergoes discoidal meroblastic cleavage. Discoidal cleavage occurs in those animals with a large proportion of yolk in their eggs, and include insects, fish, reptiles and birds. The blastodisc is a small disc of cytoplasm that sits on top of the yolk. In birds it is a small, circular, white spot on the surface of the yellow yolk of an egg, at the animal pole.

<span class="mw-page-title-main">Cavitation (embryology)</span>

Cavitation is a process in early embryonic development that follows cleavage. Cavitation is the formation of the blastocoel, a fluid-filled cavity that defines the blastula, or in mammals the blastocyst. After fertilization, cell division of the zygote occurs which results in the formation of a solid ball of cells (blastomeres) called the morula. Further division of cells increases their number in the morula, and the morula differentiates them into two groups. The internal cells become the inner cell mass, and the outer cells become the trophoblast. Before cell differentiation takes place there are two transcription factors, Oct-4 and nanog that are uniformly expressed on all of the cells, but both of these transcription factors are turned off in the trophoblast once it has formed.

Leech embryogenesis is the process by which the embryo of the leech forms and develops. The embryonic development of the larva occurs as a series of stages. During stage 1, the first cleavage occurs, which gives rise to an AB and a CD blastomere, and is in the interphase of this cell division when a yolk-free cytoplasm called teloplasm is formed. The teloplasm is known to be a determinant for the specification of the D cell fate. In stage 3, during the second cleavage, an unequal division occurs in the CD blastomere. As a consequence, it creates a large D cell on the left and a smaller C cell to the right. This unequal division process is dependent on actomyosin, and by the end of stage 3 the AB cell divides. On stage 4 of development, the micromeres and teloblast stem cells are formed and subsequently, the D quadrant divides to form the DM and the DNOPQ teloblast precursor cells. By the end stage 6, the zygote contains a set of 25 micromeres, 3 macromeres and 10 teloblasts derived from the D quadrant.

This glossary of developmental biology is a list of definitions of terms and concepts commonly used in the study of developmental biology and related disciplines in biology, including embryology and reproductive biology, primarily as they pertain to vertebrate animals and particularly to humans and other mammals. The developmental biology of invertebrates, plants, fungi, and other organisms is treated in other articles; e.g terms relating to the reproduction and development of insects are listed in Glossary of entomology, and those relating to plants are listed in Glossary of botany.

References

  1. Gilbert, Scott F. (2000). "An Introduction to Early Developmental Processes". Developmental Biology (6th ed.). ISBN   978-0878932436.
  2. Forgács, G.; Newman, Stuart A. (2005). "Cleavage and blastula formation". Biological physics of the developing embryo. Cambridge University Press. p. 27. Bibcode:2005bpde.book.....F. ISBN   978-0-521-78337-8.
  3. Gilbert, Scott F. (2000). "Early Development of the Nematode Caenorhabditis elegans". Developmental Biology (6th ed.). ISBN   978-0878932436 . Retrieved 2007-09-17.
  4. Gilbert, S. F. (2016). Developmental biology (11th ed.). Sinauer. p. 268. ISBN   9781605354705.
  5. 1 2 3 Shankland, M.; Seaver, E. C. (2000). "Evolution of the bilaterian body plan: What have we learned from annelids?". Proceedings of the National Academy of Sciences. 97 (9): 4434–7. Bibcode:2000PNAS...97.4434S. doi: 10.1073/pnas.97.9.4434 . JSTOR   122407. PMC   34316 . PMID   10781038.
  6. Henry, J. (2002). "Conserved Mechanism of Dorsoventral Axis Determination in Equal-Cleaving Spiralians". Developmental Biology. 248 (2): 343–355. doi: 10.1006/dbio.2002.0741 . PMID   12167409.
  7. 1 2 3 Boyer, Barbara C.; Jonathan, Q. Henry (1998). "Evolutionary Modifications of the Spiralian Developmental Program". Integrative and Comparative Biology. 38 (4): 621–33. doi: 10.1093/icb/38.4.621 . JSTOR   4620189.
  8. 1 2 3 4 5 6 7 8 Freeman, Gary; Lundelius, Judith W. (1992). "Evolutionary implications of the mode of D quadrant specification in coelomates with spiral cleavage". Journal of Evolutionary Biology. 5 (2): 205–47. doi: 10.1046/j.1420-9101.1992.5020205.x . S2CID   85304565.
  9. 1 2 3 4 5 6 7 8 9 10 Lambert, J. David; Nagy, Lisa M. (2003). "The MAPK cascade in equally cleaving spiralian embryos". Developmental Biology. 263 (2): 231–41. doi: 10.1016/j.ydbio.2003.07.006 . PMID   14597198.
  10. Gilbert SF. Developmental Biology 11th edition. Sunderland (MA): Sinauer Associates; 2014. Print
  11. Gilbert, S. F. (2003). Developmental biology (7th ed.). Sinauer. p. 214. ISBN   978-0-87893-258-0.
  12. Kardong, Kenneth V. (2006). Vertebrates: Comparative Anatomy, Function, Evolution (4th ed.). McGraw-Hill. pp. 158–64.
  13. Standring, Susan (2016). Gray's anatomy : the anatomical basis of clinical practice (Forty-first ed.). [Philadelphia]: Elsevier Limited. p. 165. ISBN   9780702052309.
  14. 1 2 3 Schoenwolf, Gary C. (2015). Larsen's human embryology (Fifth ed.). Philadelphia, PA: Churchill Livingstone. pp. 35–36. ISBN   9781455706846.
  15. Gauster M, Moser G, Wernitznig S, Kupper N, Huppertz B (June 2022). "Early human trophoblast development: from morphology to function". Cellular and Molecular Life Sciences. 79 (6): 345. doi:10.1007/s00018-022-04377-0. PMC   9167809 . PMID   35661923.
  16. Lawrence S., Sherman; et al., eds. (2001). Human embryology (3rd ed.). Elsevier Health Sciences. p. 20. ISBN   978-0-443-06583-5.
  17. Sadler TW (2010). Langman's medical embryology (11th ed.). Philadelphia: Lippincott William & Wilkins. p. 45. ISBN   9780781790697.
  18. Wilton, L (2005). "Preimplantation genetic diagnosis and chromosome analysis of blastomeres using comparative genomic hybridization". Human Reproduction Update. 11 (1): 33–41. CiteSeerX   10.1.1.533.4272 . doi: 10.1093/humupd/dmh050 . PMID   15569702.
  19. Kim HJ, Kim CH, Lee SM, Choe SA, Lee JY, Jee BC, Hwang D, Kim KC (September 2012). "Outcomes of preimplantation genetic diagnosis using either zona drilling with acidified Tyrode's solution or partial zona dissection". Clin Exp Reprod Med. 39 (3): 118–24. doi:10.5653/cerm.2012.39.3.118. PMC   3479235 . PMID   23106043.

Bibliography

Further reading