Epiblast

Last updated
Epiblast
Human Embryo Day9.png
Human embryo at day 9. Epiblast (pink) is on top of the hypoblast (brown)
Details
Carnegie stage 3
Days8
Precursor inner cell mass
Gives rise to ectoderm, mesoderm, endoderm
Identifiers
Latin epiblastus
TE E5.0.2.2.1.0.1
Anatomical terminology

In amniote embryonic development, the epiblast (also known as the primitive ectoderm) is one of two distinct cell layers arising from the inner cell mass in the mammalian blastocyst, or from the blastula in reptiles and birds, the other layer is the hypoblast. It drives the embryo proper through its differentiation into the three primary germ layers, ectoderm, mesoderm and endoderm, during gastrulation. The amniotic ectoderm and extraembryonic mesoderm also originate from the epiblast.

Contents

The other layer of the inner cell mass, the hypoblast, gives rise to the yolk sac, which in turn gives rise to the chorion.

Discovery of the epiblast

The epiblast was first discovered by Christian Heinrich Pander (1794-1865), a Baltic German biologist and embryologist. With the help of anatomist Ignaz Döllinger (1770–1841) and draftsman Eduard Joseph d'Alton (1772-1840), Pander observed thousands of chicken eggs under a microscope, and ultimately discovered and described the chicken blastoderm and its structures, including the epiblast. [1] He published these findings in Beiträge zur Entwickelungsgeschichte des Hühnchens im Eye. [2] Other early embryologists that studied the epiblast and blastoderm include Karl Ernst von Baer (1792-1876) and Wilhelm His (1831-1904). [3]

Mammals

In mammalian embryogenesis, differentiation and segregation of cells composing the inner cell mass of the blastocyst yields two distinct layers—the epiblast ("primitive ectoderm") and the hypoblast ("primitive endoderm"). While the cuboidal hypoblast cells delaminate ventrally, away from the embryonic pole, to line the blastocoele, the remaining cells of the inner cell mass, situated between the hypoblast and the polar trophoblast, become the epiblast and comprise columnar cells.

In the mouse, primordial germ cells are specified from epiblast cells. [4] This specification is accompanied by extensive epigenetic reprogramming that involves global DNA demethylation, chromatin reorganization and imprint erasure leading to totipotency. [4] The DNA base excision repair pathway has a central role in the process of genome-wide demethylation. [5]

Upon commencement of gastrulation, the primitive streak, a visible, morphological linear band of cells, appears on the posterior epiblast and orients along the anterior-posterior embryo axis. Initiated by signals from the underlying hypoblast, formation of the primitive streak is predicated on epiblast cell migration, mediated by Nodal, from the lateral-posterior regions of the epiblast to the center midline. [6] The primitive node is situated at the anterior end of the primitive streak and serves as the organizer for gastrulation, determining epiblast cell fate by inducing the differentiation of migrating epiblast cells during gastrulation.

During gastrulation, migrating epiblast cells undergo epithelial-mesenchymal transition in order to lose cell-cell adhesion (E-cadherin), delaminate from the epiblast layer and migrate over the dorsal surface of the epiblast then down through the primitive streak. The first wave of epiblast cells to invaginate through the primitive streak invades and displaces the hypoblast to become the embryonic endoderm. The mesoderm layer is established next as migrating epiblast cells move through the primitive streak then spread out within the space between the endoderm and remaining epiblast, which once the mesoderm layer has formed ultimately becomes the definitive ectoderm. The process of gastrulation results in a trilaminar germ disc, consisting of the ectoderm, mesoderm and endoderm layers.

Migration of epiblast cells in the mammalian embryo Migration of epiblast cells in the mammalian embryo.png
Migration of epiblast cells in the mammalian embryo

Epiblast diversity

Epiblasts exhibit diverse structure across species as a result of early embryo morphogenesis. The human epiblast assumes a disc shape, conforming to the embryonic disc morphology; whereas, the mouse epiblast develops in a cup shape within the cylindrical embryo.

During implantation of the blastocyst, both the human and mouse epiblasts form a rosette shape in a process called polarization. Polarization results from the interaction between the mammalian blastocyst and β1-integrin from the extracellular matrix, produced from the extra-embryonic tissues. [7] At this stage, both human and mouse epiblasts consist of a pseudostratified columnar epithelium. Shortly after, the human epiblast will assume a disc shape while the amniotic cavity forms. The epiblast cells adjacent to the trophoblast are specified to become amnion cells. The mouse epiblast transitions from a rosette structure to a cup. A pro-amniotic cavity forms, surrounded by the epiblast cup fused to extraembryonic ectoderm. Mouse epiblast cells are not specified to amnion cell fate. [8]

Birds

Gastrulation occurs in the epiblast of avian embryos. A local thickening of the epiblast, known as Koller's sickle, is key in inducing the primitive streak, the structure through which gastrulation occurs. [9]

Studies on chick embryos have shown that mediolateral cell intercalation occurs before gastrulation. The intercalation event is guided by fibroblast growth factors from the hypoblast. It is suggested that the evolution of the amniote primitive streak from the blastopore was due to the acquisition of the mediolateral intercalation event, which positions the primitive streak and acts independently of mesendoderm formation. [10]

Reptiles

Ancestors of Amniotes (mammals, birds, reptiles) underwent gastrulation primarily by an infolding of the epiblast layer (involution). Mammals and birds have evolved to rely on ingression during gastrulation where epiblast cells converge at the midline and ingress at the primitive streak. Reptile gastrulation differs slightly from birds and mammals. Reptiles exhibit bi-modal gastrulation during embryogenesis and lack a primitive streak. Bi-modal gastrulation is characterized by involution of the cells in the anterior and lateral regions of the blastopore and ingression of the cells of the blastopore plate in the posterior region. Analogies between the blastopore plate and primitive streak suggest the blastopore plate was a precursor to the mammalian and avian primitive streak. [11]

See also

Related Research Articles

<span class="mw-page-title-main">Mesoderm</span> Middle germ layer of embryonic development

The mesoderm is the middle layer of the three germ layers that develops during gastrulation in the very early development of the embryo of most animals. The outer layer is the ectoderm, and the inner layer is the endoderm.

<span class="mw-page-title-main">Gastrulation</span> Stage in embryonic development in which germ layers form

Gastrulation is the stage in the early embryonic development of most animals, during which the blastula, or in mammals the blastocyst is reorganized into a two-layered or three-layered embryo known as the gastrula. Before gastrulation, the embryo is a continuous epithelial sheet of cells; by the end of gastrulation, the embryo has begun differentiation to establish distinct cell lineages, set up the basic axes of the body, and internalized one or more cell types including the prospective gut.

<span class="mw-page-title-main">Ectoderm</span> Outer germ layer of embryonic development

The ectoderm is one of the three primary germ layers formed in early embryonic development. It is the outermost layer, and is superficial to the mesoderm and endoderm. It emerges and originates from the outer layer of germ cells. The word ectoderm comes from the Greek ektos meaning "outside", and derma meaning "skin".

<span class="mw-page-title-main">Blastocyst</span> Structure formed around day 5 of mammalian embryonic development

The blastocyst is a structure formed in the early embryonic development of mammals. It possesses an inner cell mass (ICM) also known as the embryoblast which subsequently forms the embryo, and an outer layer of trophoblast cells called the trophectoderm. This layer surrounds the inner cell mass and a fluid-filled cavity known as the blastocoel. In the late blastocyst the trophectoderm is known as the trophoblast. The trophoblast gives rise to the chorion and amnion, the two fetal membranes that surround the embryo. The placenta derives from the embryonic chorion and the underlying uterine tissue of the mother.

<span class="mw-page-title-main">Invagination</span> Process in embryonic development

Invagination is the process of a surface folding in on itself to form a cavity, pouch or tube. In developmental biology, invagination is a mechanism that takes place during gastrulation. This mechanism or cell movement happens mostly in the vegetal pole. Invagination consists of the folding of an area of the exterior sheet of cells towards the inside of the blastula. In each organism, the complexity will be different depending on the number of cells. Invagination can be referenced as one of the steps of the establishment of the body plan. The term, originally used in embryology, has been adopted in other disciplines as well.

<span class="mw-page-title-main">Blastocoel</span> Fluid-filled or yolk-filled cavity that forms in the blastula

The blastocoel, also spelled blastocoele and blastocele, and also called cleavage cavity, or segmentation cavity is a fluid-filled or yolk-filled cavity that forms in the blastula during very early embryonic development. At this stage in mammals the blastula develops into the blastocyst containing an inner cell mass, and outer trophectoderm.

A germ layer is a primary layer of cells that forms during embryonic development. The three germ layers in vertebrates are particularly pronounced; however, all eumetazoans produce two or three primary germ layers. Some animals, like cnidarians, produce two germ layers making them diploblastic. Other animals such as bilaterians produce a third layer between these two layers, making them triploblastic. Germ layers eventually give rise to all of an animal's tissues and organs through the process of organogenesis.

<span class="mw-page-title-main">Animal embryonic development</span> Process by which the embryo forms and develops

In developmental biology, animal embryonic development, also known as animal embryogenesis, is the developmental stage of an animal embryo. Embryonic development starts with the fertilization of an egg cell (ovum) by a sperm cell, (spermatozoon). Once fertilized, the ovum becomes a single diploid cell known as a zygote. The zygote undergoes mitotic divisions with no significant growth and cellular differentiation, leading to development of a multicellular embryo after passing through an organizational checkpoint during mid-embryogenesis. In mammals, the term refers chiefly to the early stages of prenatal development, whereas the terms fetus and fetal development describe later stages.

The primitive node is the organizer for gastrulation in most amniote embryos. In birds it is known as Hensen's node, and in amphibians it is known as the Spemann-Mangold organizer. It is induced by the Nieuwkoop center in amphibians, or by the posterior marginal zone in amniotes including birds.

<span class="mw-page-title-main">Primitive streak</span> Structure in early amniote embryogenesis

The primitive streak is a structure that forms in the early embryo in amniotes. In amphibians, the equivalent structure is the blastopore. During early embryonic development, the embryonic disc becomes oval shaped, and then pear-shaped with the broad end towards the anterior, and the narrower region projected to the posterior. The primitive streak forms a longitudinal midline structure in the narrower posterior (caudal) region of the developing embryo on its dorsal side. At first formation, the primitive streak extends for half the length of the embryo. In the human embryo, this appears by stage 6, about 17 days.

In embryology, Carnegie stages are a standardized system of 23 stages used to provide a unified developmental chronology of the vertebrate embryo.

<span class="mw-page-title-main">Inner cell mass</span> Early embryonic mass that gives rise to the fetus

The inner cell mass (ICM) or embryoblast is a structure in the early development of an embryo. It is the mass of cells inside the blastocyst that will eventually give rise to the definitive structures of the fetus. The inner cell mass forms in the earliest stages of embryonic development, before implantation into the endometrium of the uterus. The ICM is entirely surrounded by the single layer of trophoblast cells of the trophectoderm.

<span class="mw-page-title-main">Bilaminar embryonic disc</span>

The bilaminar embryonic disc, bilaminar blastoderm or embryonic disc is the distinct two-layered structure of cells formed in an embryo. In the development of the human embryo this takes place by day eight. It is formed when the inner cell mass, also known as the embryoblast, forms a bilaminar disc of two layers, an upper layer called the epiblast and a lower layer called the hypoblast, which will eventually form into fetus. These two layers of cells are stretched between two fluid-filled cavities at either end: the primitive yolk sac and the amniotic sac.

<span class="mw-page-title-main">Laminar organization</span>

A laminar organization describes the way certain tissues, such as bone membrane, skin, or brain tissues, are arranged in layers.

<span class="mw-page-title-main">Fish development</span>

The development of fishes is unique in some specific aspects compared to the development of other animals.

<span class="mw-page-title-main">Human embryonic development</span> Development and formation of the human embryo

Human embryonic development or human embryogenesis is the development and formation of the human embryo. It is characterised by the processes of cell division and cellular differentiation of the embryo that occurs during the early stages of development. In biological terms, the development of the human body entails growth from a one-celled zygote to an adult human being. Fertilization occurs when the sperm cell successfully enters and fuses with an egg cell (ovum). The genetic material of the sperm and egg then combine to form the single cell zygote and the germinal stage of development commences. Embryonic development in the human, covers the first eight weeks of development; at the beginning of the ninth week the embryo is termed a fetus. The eight weeks has 23 stages.

<span class="mw-page-title-main">Hypoblast</span> Embryonic inner cell mass tissue that forms the yolk sac and, later, chorion

In amniote embryology, the hypoblast is one of two distinct layers arising from the inner cell mass in the mammalian blastocyst, or from the blastodisc in reptiles and birds. The hypoblast gives rise to the yolk sac, which in turn gives rise to the chorion.

<span class="mw-page-title-main">Koller's sickle</span>

In avian gastrulation, Koller's sickle is a local thickening of cells at the posterior edge of the upper layer of the area pellucida called the epiblast. Koller's sickle is crucial for avian development, due to its critical role in inducing the differentiation of various avian body parts. Koller's sickle induces primitive streak and Hensen's node, which are major components of avian gastrulation. Avian gastrulation is a process by which developing cells in an avian embryo move relative to one another in order to form the three germ layers.

This glossary of developmental biology is a list of definitions of terms and concepts commonly used in the study of developmental biology and related disciplines in biology, including embryology and reproductive biology, primarily as they pertain to vertebrate animals and particularly to humans and other mammals. The developmental biology of invertebrates, plants, fungi, and other organisms is treated in other articles; e.g terms relating to the reproduction and development of insects are listed in Glossary of entomology, and those relating to plants are listed in Glossary of botany.

References

  1. Wessel, G. M. (2010). Christian Heinrich Pander (1794–1865). Molecular Reproduction and Development, 77(9).
  2. Gilbert SF, editor. A Conceptual History of Modern Embryology: Volume 7: A Conceptual History of Modern Embryology. Springer Science & Business Media; 2013 Nov 11.
  3. Gilbert SF, editor. A Conceptual History of Modern Embryology: Volume 7: A Conceptual History of Modern Embryology. Springer Science & Business Media; 2013 Nov 11.
  4. 1 2 Hackett JA, Sengupta R, Zylicz JJ, Murakami K, Lee C, Down TA, Surani MA (January 2013). "Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine". Science. 339 (6118): 448–52. Bibcode:2013Sci...339..448H. doi:10.1126/science.1229277. PMC   3847602 . PMID   23223451.
  5. Hajkova P, Jeffries SJ, Lee C, Miller N, Jackson SP, Surani MA (July 2010). "Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway". Science. 329 (5987): 78–82. Bibcode:2010Sci...329...78H. doi:10.1126/science.1187945. PMC   3863715 . PMID   20595612.
  6. Shen MM. Nodal signaling: developmental roles and regulation. Development 2007; 134(6): 1023-1034.
  7. Li S, Edgar D, Fässler R, Wadsworth W, Yurchenco PD (May 2003). "The Role of Laminin in Embryonic Cell Polarization and Tissue Organization". Developmental Cell. 4 (5): 613–624. doi: 10.1016/S1534-5807(03)00128-X . PMID   12737798.
  8. Shahbazi MN, Zernicka-Goetz M (August 2018). "Deconstructing and reconstructing the mouse and human early embryo". Nature Cell Biology. 20 (8): 878–887. doi:10.1038/s41556-018-0144-x. PMID   30038253. S2CID   49908419.
  9. Gilbert SF. Developmental Biology. 10th edition. Sunderland (MA): Sinauer Associates; 2014. Early Development in Birds. Print
  10. Voiculescu O, Bertocchini F (2007). "The amniote primitive streak is defined by epithelial cell intercalation before gastrulation". Nature. 449 (7165): 1049–1052. Bibcode:2007Natur.449.1049V. doi:10.1038/nature06211. PMID   17928866. S2CID   4391134.
  11. Stower, MJ, Diaz, RE (2015). "Bi-modal strategy of gastrulation in reptiles". Developmental Dynamics. 244 (9): 1144–1157. doi: 10.1002/dvdy.24300 . PMID   26088476. S2CID   20650158.