Primitive node

Last updated
Primitive node
Details
Days17
Identifiers
Latin nodus primitivus
Anatomical terminology

The primitive node (or primitive knot) is the organizer for gastrulation in most amniote embryos. In birds it is known as Hensen's node, and in amphibians it is known as the Spemann-Mangold organizer. It is induced by the Nieuwkoop center in amphibians, or by the posterior marginal zone in amniotes including birds.

Contents

Diversity

All structures are as yet considered as homologous. This view is substantiated by the common expression of several genes, including goosecoid, Cnot, noggin, nodal, and the sharing of strong axis-inducing properties upon transplantation. Cell fate studies have revealed that also the overall temporal sequence in which groups of endomesodermal cells internalize along the frog blastopore and amniote primitive streak are surprisingly similar: the first cells that involute around the amphibian blastopore lip in the organizer region, and that immigrate through Hensen’s node, contribute to foregut endoderm and prechordal plate. Cells involuting further laterally in the blastopore, or entering via Hensen’s node and the anterior primitive streak, contribute to gut, notochord and somites. Gastrulation then continues along the ventroposterior blastopore lip and posterior streak region, from where cells contribute to ventral and posterior mesoderm. Adding to this, Brachyury and caudal homologues are expressed circumferentially around the blastopore lips in the frog, and along the primitive streak in chick and mouse. This would suggest that, despite their different morphology, the amniote primitive streak and the amphibian blastopore are homologous structures, that have evolved from one and the same precursor structure by a continuous sequence of morphological modifications. [3]

Development

In chick development, the primitive node starts as a regional knot of cells that forms on the blastodisc immediately anterior to where the outer layer of cells will begin to migrate inwards - an area known as the primitive streak, which is involved with Koller's sickle. When the primitive streak is approaching its full length (almost 2 mm), the tip, now designated Hensen´s node, forms a novel compact assembly of cells. From here cells continue to emigrate and become replaced from the surrounding epiblast. The center of Hensen's node contains a funnel-shaped depression, the primitive pit, where the cells of the epiblast (the upper layer of embryonic cells) initially begin to invaginate. This invagination expands posteriorly into the primitive groove as the cell layers continue to move into the space between the embryonic cells and the yolk. This differentiates the embryo into the three germ layers - endoderm, mesoderm, and ectoderm. The primitive node migrates posteriorly as gastrulation proceeds, eventually being absorbed into the tail bud.

This leads to a dynamic nature of the node and a non-homogeneous cellular composition as can be seen from the fate of emigrating cells and from gene expression patterns. The node cells do not express the composition of organizer-inducing factors present in the posterior marginal zone and in the young streak. The node, therefore, represents a new functional quality. The presence of an antidorsalizing activity in the node, the TGF-like factor ADMP, antagonizes further, anterior and lateral, node inductions, thus guaranteeing its unique nature.

Default model

The cells of the primitive node secrete many cellular signals essential for neural differentiation. After gastrulation the developing embryo is divided into ectoderm, mesoderm, and endoderm. The ectoderm gives rise to epithelial and neural tissue, with neural tissue being the default cell fate. Bone morphogenetic proteins (BMPs) suppress neural differentiation and promote epithelial growth. Therefore, the primitive node (the dorsal lip of the blastopore) secretes BMP antagonists, including noggin, chordin, and follistatin. The node gives rise to the prechordal mesoderm, notochord and medial part of the somites.

The first cells to migrate through Hensen's node are those destined to become the pharyngeal endoderm of the foregut. Once deep within the embryo, these endodermal cells migrate anteriorly and eventually displace the hypoblast cells, causing the hypoblast cells to be confined to a region in the anterior portion of the area pellucida. This anterior region, the germinal crescent, does not form any embryonic structures, but it does contain the precursors of the germ cells, which later migrate through the blood vessels to the gonads. [4]

The next cells entering through Hensen's node also move anteriorly, but they do not travel as far ventrally as the presumptive foregut endodermal cells. Rather, they remain between the endoderm and the epiblast to form the prechordal plate mesoderm. Thus, the head of the avian embryo forms anterior (rostral) to Hensen's node. [4] The next cells passing through Hensen's node become the chordamesoderm. The chordamesoderm has two components: the head process and the notochord. The most anterior part, the head process, is formed by central mesoderm cells migrating anteriorly, behind the prechordal plate mesoderm and toward the rostral tip of the embryo. The head process will underlie those cells that will form the forebrain and midbrain. As the primitive streak regresses, the cells deposited by the regressing Hensen's node will become the notochord in a process called neurulation. [4]

Molecular signals

Regional differences in gene expression patterns are observed in the Hensen's node region at the six-somite stage. Shh is strongly expressed in the rostral half of Hensen's node both dorsally and ventrally, future floor plate and notochord cells. In the caudal node, Shh transcripts become progressively less abundant and are located essentially in the most ventral cells, except for endodermal cells. [5]

In contrast, HNF-3b is expressed in the entire mass of cells situated within the median pit and extending about 70 mm posteriorly. Both Shh and HNF-3b transcripts are found in the notochord and the floor plate rostral to the node, and they are completely absent in the lateral and caudal neural plate and the primitive streak. In the node proper, the chordin expression pattern is very similar to that of HNF-3b, but more rostrally, chordin is no longer expressed in the floor plate is predominantly expressed in the ventral part of the node. [5]

Comparison of the expression patterns of these different genes and of the cellular arrangement in the node region leds to the definition of three zones. Anteriorly (zone a), the derivatives of the node that express HNF-3b and Shh (notochord and floor plate) are separated by forming basement membrane but are closely associated. In the area of the median pit (zone b), the future floor plate can be distinguished by a columnar arrangement of its cells. Underneath this forming epithelial layer, the presumptive notochordal cells are randomly and loosely arranged. HNF-3b and Shh are both expressed in this region, which constitutes the bulk of the node. Caudal to the border of the median pit, the cells of the node that express HNF-3b but not Shh (zone c) are closely packed without exhibiting any epithelial arrangement. Interestingly, the HNF-3b- and Ch-Tbx6L-expressing areas, forming respectively the caudal HN and the tip of the primitive streak (TPS), do not overlap. [5]

Related Research Articles

<span class="mw-page-title-main">Mesoderm</span> Middle germ layer of embryonic development

The mesoderm is the middle layer of the three germ layers that develops during gastrulation in the very early development of the embryo of most animals. The outer layer is the ectoderm, and the inner layer is the endoderm.

<span class="mw-page-title-main">Gastrulation</span> Stage in embryonic development in which germ layers form

Gastrulation is the stage in the early embryonic development of most animals, during which the blastula, or in mammals the blastocyst, is reorganized into a two-layered or three-layered embryo known as the gastrula. Before gastrulation, the embryo is a continuous epithelial sheet of cells; by the end of gastrulation, the embryo has begun differentiation to establish distinct cell lineages, set up the basic axes of the body, and internalized one or more cell types including the prospective gut.

<span class="mw-page-title-main">Notochord</span> Flexible rod-shaped structure in all chordates

In zoology and developmental anatomy, the notochord is an elastic, rod-like anatomical structure found in many deuterostomal animals. A notochord is one of five synapomorphies used to define a species as a chordate.

<span class="mw-page-title-main">Neurulation</span> Embryological process forming the neural tube

Neurulation refers to the folding process in vertebrate embryos, which includes the transformation of the neural plate into the neural tube. The embryo at this stage is termed the neurula.

A germ layer is a primary layer of cells that forms during embryonic development. The three germ layers in vertebrates are particularly pronounced; however, all eumetazoans produce two or three primary germ layers. Some animals, like cnidarians, produce two germ layers making them diploblastic. Other animals such as bilaterians produce a third layer between these two layers, making them triploblastic. Germ layers eventually give rise to all of an animal's tissues and organs through the process of organogenesis.

<span class="mw-page-title-main">Somitogenesis</span>

Somitogenesis is the process by which somites form. Somites are bilaterally paired blocks of paraxial mesoderm that form along the anterior-posterior axis of the developing embryo in segmented animals. In vertebrates, somites give rise to skeletal muscle, cartilage, tendons, endothelium, and dermis.

The archenteron, also called the gastrocoel, the primitive digestive tube or the primitive gut, is the internal cavity of the primitive gastrointestinal tract that forms during gastrulation in a developing animal embryo. It develops into the endoderm and mesoderm of the animal.

<span class="mw-page-title-main">Animal embryonic development</span> Process by which the embryo forms and develops

In developmental biology, animal embryonic development, also known as animal embryogenesis, is the developmental stage of an animal embryo. Embryonic development starts with the fertilization of an egg cell (ovum) by a sperm cell, (spermatozoon). Once fertilized, the ovum becomes a single diploid cell known as a zygote. The zygote undergoes mitotic divisions with no significant growth and cellular differentiation, leading to development of a multicellular embryo after passing through an organizational checkpoint during mid-embryogenesis. In mammals, the term refers chiefly to the early stages of prenatal development, whereas the terms fetus and fetal development describe later stages.

<span class="mw-page-title-main">Neurula</span> Embryo at the early stage of development in which neurulation occurs

A neurula is a vertebrate embryo at the early stage of development in which neurulation occurs. The neurula stage is preceded by the gastrula stage; consequentially, neurulation is preceded by gastrulation. Neurulation marks the beginning of the process of organogenesis.

<span class="mw-page-title-main">Primitive streak</span> Structure in early amniote embryogenesis

The primitive streak is a structure that forms in the early embryo in amniotes. In amphibians, the equivalent structure is the blastopore. During early embryonic development, the embryonic disc becomes oval shaped, and then pear-shaped with the broad end towards the anterior, and the narrower region projected to the posterior. The primitive streak forms a longitudinal midline structure in the narrower posterior (caudal) region of the developing embryo on its dorsal side. At first formation, the primitive streak extends for half the length of the embryo. In the human embryo, this appears by stage 6, about 17 days.

<span class="mw-page-title-main">Epiblast</span> Embryonic inner cell mass tissue that forms the embryo itself, through the three germ layers

In amniote embryonic development, the epiblast is one of two distinct cell layers arising from the inner cell mass in the mammalian blastocyst, or from the blastula in reptiles and birds, the other layer is the hypoblast. It drives the embryo proper through its differentiation into the three primary germ layers, ectoderm, mesoderm and endoderm, during gastrulation. The amniotic ectoderm and extraembryonic mesoderm also originate from the epiblast.

Chordin is a protein with a prominent role in dorsal–ventral patterning during early embryonic development. In humans it is encoded for by the CHRD gene.

In the field of developmental biology, regional differentiation is the process by which different areas are identified in the development of the early embryo. The process by which the cells become specified differs between organisms.

<span class="mw-page-title-main">Human embryonic development</span> Development and formation of the human embryo

Human embryonic development or human embryogenesis is the development and formation of the human embryo. It is characterised by the processes of cell division and cellular differentiation of the embryo that occurs during the early stages of development. In biological terms, the development of the human body entails growth from a one-celled zygote to an adult human being. Fertilization occurs when the sperm cell successfully enters and fuses with an egg cell (ovum). The genetic material of the sperm and egg then combine to form the single cell zygote and the germinal stage of development commences. Embryonic development in the human, covers the first eight weeks of development; at the beginning of the ninth week the embryo is termed a fetus. The eight weeks has 23 stages.

<span class="mw-page-title-main">Hypoblast</span> Embryonic inner cell mass tissue that forms the yolk sac and, later, chorion

In amniote embryology, the hypoblast is one of two distinct layers arising from the inner cell mass in the mammalian blastocyst, or from the blastodisc in reptiles and birds. The hypoblast gives rise to the yolk sac, which in turn gives rise to the chorion.

In the development of vertebrate animals, the prechordal plate is a "uniquely thickened portion" of the endoderm that is in contact with ectoderm immediately rostral to the cephalic tip of the notochord. It is the most likely origin of the rostral cranial mesoderm.

<span class="mw-page-title-main">Koller's sickle</span>

In avian gastrulation, Koller's sickle is a local thickening of cells at the posterior edge of the upper layer of the area pellucida called the epiblast. Koller's sickle is crucial for avian development, due to its critical role in inducing the differentiation of various avian body parts. Koller's sickle induces primitive streak and Hensen's node, which are major components of avian gastrulation. Avian gastrulation is a process by which developing cells in an avian embryo move relative to one another in order to form the three germ layers.

Embryogenesis in living creatures occurs in different ways depending on class and species. One of the most basic criteria of such development is independence from a water habitat.

Xbra is a homologue of Brachyury (T) gene for Xenopus. It is a transcription activator involved in vertebrate gastrulation which controls posterior mesoderm patterning and notochord differentiation by activating transcription of genes expressed throughout mesoderm. The effects of Xbra is concentration dependent where concentration gradient controls the development of specific types of mesoderm in Xenopus. Xbra results of the expression of the FGF transcription factor, synthesized by the ventral endoderm. So while ventral mesoderm is characterized by a high concentration of FGF and Xbra, the dorsal mesoderm is characterized by a reunion of two others transcription factors, Siamois and XnR, which activates the synthesis of Goosecoid Transcription Factor. Goosecoid enables the depletion of Xbra. In a nutshell, high concentrations of Xbra induce ventral mesoderm while low concentration stimulates the formation of a back.

The Spemann-Mangold organizer is a group of cells that are responsible for the induction of the neural tissues during development in amphibian embryos. First described in 1924 by Hans Spemann and Hilde Mangold, the introduction of the organizer provided evidence that the fate of cells can be influenced by factors from other cell populations. This discovery significantly impacted the world of developmental biology and fundamentally changed the understanding of early development.

References

  1. Garcia-Fernàndez J, D'Aniello S, Escrivà H (2007). "Organizing chordates with an organizer". BioEssays. 29 (7): 619–24. doi:10.1002/bies.20596. PMID   17563072.
  2. Gilbert, Scott F. (2000). "Early Development in Birds". Developmental Biology. 6th edition. Retrieved 6 June 2022.
  3. Arendt, D.; Nübler-Jung, K. (March 1999). "Rearranging gastrulation in the name of yolk: evolution of gastrulation in yolk-rich amniote eggs". Mechanisms of Development. 81 (1–2): 3–22. doi:10.1016/s0925-4773(98)00226-3. ISSN   0925-4773. PMID   10330481.
  4. 1 2 3 Gilbert, Scott F., 1949- (2014). Developmental biology (Tenth ed.). Sunderland, MA, USA. ISBN   978-0-87893-978-7. OCLC   837923468.{{cite book}}: CS1 maint: location missing publisher (link) CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)
  5. 1 2 3 Charrier, J. B.; Teillet, M. A.; Lapointe, F.; Douarin, N. M. Le (1999-11-01). "Defining subregions of Hensen's node essential for caudalward movement, midline development and cell survival". Development. 126 (21): 4771–4783. doi:10.1242/dev.126.21.4771. ISSN   0950-1991. PMID   10518494.

Further reading