Bilaminar embryonic disc | |
---|---|
Details | |
Days | 13 |
Precursor | Inner cell mass |
Gives rise to | Human embryo |
Identifiers | |
TE | embryonic disc_by_E6.0.1.1.3.0.1 E6.0.1.1.3.0.1 |
Anatomical terminology |
The bilaminar embryonic disc, bilaminar blastoderm or embryonic disc is the distinct two-layered structure of cells formed in an embryo. In the development of the human embryo this takes place by day eight. It is formed when the inner cell mass, also known as the embryoblast, forms a bilaminar disc of two layers, an upper layer called the epiblast (primitive ectoderm) and a lower layer called the hypoblast (primitive endoderm), which will eventually form into fetus. [1] [2] [3] These two layers of cells are stretched between two fluid-filled cavities at either end: the primitive yolk sac and the amniotic sac.
The epiblast is adjacent to the trophoblast and made of columnar epithelial cells; the hypoblast is closest to the blastocoel (blastocystic cavity) and made of cuboidal cells. As the two layers become evident, a basement membrane forms between the layers. This distinction of layers of the bilaminar disc defines the primitive dorso ventral axis and polarity in embryogenesis. [2]
The epiblast migrates away from the trophoblast downwards, forming the amniotic cavity in between, the lining of which is formed from amnioblasts developed from the epiblast. The hypoblast is pushed down and forms the yolk sac (exocoelomic cavity) lining. Some hypoblast cells migrate along the inner cytotrophoblast lining of the blastocoel, secreting an extracellular matrix along the way. These hypoblast cells and extracellular matrix are called Heuser's membrane (or the exocoelomic membrane), and they cover the blastocoel to form the yolk sac (or exocoelomic cavity). Cells of the hypoblast migrate along the outer edges of this reticulum and form the extraembryonic mesoderm; this disrupts the extraembryonic reticulum. Soon pockets form in the reticulum, which ultimately coalesce to form the chorionic cavity (extraembryonic coelom).
The one-celled zygote, a eukaryotic cell formed by a fertilization event between two gametes at the start of embryonic development, undergoes cleavage by mitosis as it travels through the fallopian tube to the uterus. As the zygote undergoes cell division to form two, then four, then eight and then 16 cells (typically by day four after fertilization), it becomes a ball of cells called a morula. During these cellular divisions, the zygote remains the same size, but the number of cells increase. The morula enters the uterus after three or four days—during which a cavity, called the blastocoel, is formed to produce the blastocyst. [4] Once the blastocyst is formed, it undergoes implantation into the endometrium. [4] During implantation the blastocyst, which contains the inner cell mass, undergoes cellular differentiation into the two layers of the bilaminar embryonic disc. One of which is the epiblast, also known as the primitive ectoderm. The epiblast is the outer layer of the bilaminar embryonic disc and consists of columnar cells. The hypoblast, also known as the primitive endoderm, is the inner layer, closest to the endometrium, which consists of cuboidal cells. The epiblast will develop into the 'embryo proper', and the hypoblast into the outer layer of fetal membranes (extraembryonic membranes). The blastocyst serves as a source of nutrients for the growing cells by diffusion from the surrounding fluid. [5]
Beginning on day eight, the amniotic sac is the first new cavity to form during the second week of development. [4] Fluid collects between the epiblast and the hypoblast, which splits the epiblast into two portions. The layer at the embryonic pole grows around the amniotic sac, creating a barrier from the cytotrophoblast. This becomes known as the amnion, which is one of the four fetal membranes and the cells it comprises are referred to as amnioblasts. [6] Although the amniotic sac is initially smaller than the blastocyst it becomes larger by week eight until the entire embryo is encompassed by the amnion. [4]
The process of the formation of the gestational sac (chorionic cavity or extraembryonic coelom) and the yolk sac (umbilical vesicle) is still debated. The main theory states that formation of the membranes of the yolk sac begins with an increase in production of hypoblast cells, followed by different patterns of migration. On day eight, the first portion of hypoblast cells begin their migration and make what is known as the primary yolk sac, or Heuser's membrane (exocoelomic membrane). By day 12, the primary yolk sac has been disestablished by a new batch of migrating hypoblast cells that now contribute to the definitive yolk sac. [4]
While the primary yolk sac is forming, extraembryonic mesoderm migrate into the blastocyst cavity and fill it with loosely packed cells. When the extraembryonic mesoderm is separated into two portions, a new gap arises called the gestational sac. This new cavity is responsible for detaching the embryo and, its amnion and yolk sac, from the far wall of the blastocyst, which is now named the chorion. When the extraembryonic mesoderm splits into two layers, the amnion, yolk sac and chorion also become double-layered. The amnion and chorion are composed of extraembryonic ectoderm and mesoderm, whereas the yolk sac is composed of extraembryonic endoderm and mesoderm. By day 13, the connecting stalk, a dense portion of extraembryonic mesoderm, restrains the embryonic disc in the gestational sac. [4]
Like the amnion, the yolk sac is a fetal membrane that surrounds a cavity. Formation of the definitive yolk sac occurs after the extraembryonic mesoderm splits, and it becomes a double layered structure with hypoblast-derived endoderm on the inside and mesoderm surrounding the outside. The definitive yolk sac contributes greatly to the embryo during the fourth week of development, and executes critical functions for the embryo. One of which being the formation of blood, or hematopoiesis. Also, primordial germ cells are first found in the wall of the yolk sac before primordial germ cell migration. After the fourth week of development, the growing embryonic disc becomes much larger than the yolk sac and eventually involutes before birth. Uncommonly, the yolk sac may persist as the vitelline duct and cause a congenital out pouching of the digestive tract called Meckel's diverticulum. [4]
In the third week, gastrulation begins with the formation of the primitive streak. [4] Gastrulation occurs when pluripotent stem cells differentiate into the three germ cell layers: ectoderm, mesoderm and endoderm. [7] During gastrulation, cells of the epiblast migrate towards the primitive streak, enter it, and then move apart from it through a process called ingression. [4]
On day 16, epiblast cells that are next to the primitive streak experience epithelial-to-mesenchymal transformation as they ingress through the primitive streak. The first wave of epiblast cells takes over the hypoblast, which slowly becomes replaced by new cells that eventually constitute the definitive endoderm. The definitive endoderm is what makes the lining of the gut and other associated gut structures. [4]
Also beginning on day 16, some of the ingressing epiblast cells make their way into the area between the epiblast and the newly forming definitive endoderm. This layer of cells becomes known as intraembryonic mesoderm. After the cells have moved bilaterally from the primitive streak and matured, four divisions of intraembryonic mesoderm are made: cardiogenic mesoderm, paraxial mesoderm, intermediate mesoderm and lateral plate mesoderm. [4]
After the definitive endoderm and intraembryonic mesoderm formations are complete, the remaining epiblast cells do not ingress through the primitive streak; rather they remain on the outside and form the ectoderm. It is not long until the ectoderm becomes the neural plate and surface ectoderm. Due to the fact that an embryo develops cranial to caudal, the formation of ectoderm does not happen at the same rate during development. The more inferior portion of the primitive streak will still have epiblast cells ingressing to make intraembryonic mesoderm, while the more superior portion has already stopped ingressing. However, eventually gastrulation finishes and the three germ layers are complete. [4]
The mesoderm is the middle layer of the three germ layers that develops during gastrulation in the very early development of the embryo of most animals. The outer layer is the ectoderm, and the inner layer is the endoderm.
A body cavity is any space or compartment, or potential space, in an animal body. Cavities accommodate organs and other structures; cavities as potential spaces contain fluid.
The amniotic sac, also called the bag of waters or the membranes, is the sac in which the embryo and later fetus develops in amniotes. It is a thin but tough transparent pair of membranes that hold a developing embryo until shortly before birth. The inner of these membranes, the amnion, encloses the amniotic cavity, containing the amniotic fluid and the embryo. The outer membrane, the chorion, contains the amnion and is part of the placenta. On the outer side, the amniotic sac is connected to the yolk sac, the allantois, and via the umbilical cord, the placenta.
Gastrulation is the stage in the early embryonic development of most animals, during which the blastula, or in mammals the blastocyst is reorganized into a multilayered structure known as the gastrula. Before gastrulation, the embryo is a continuous epithelial sheet of cells; by the end of gastrulation, the embryo has begun differentiation to establish distinct cell lineages, set up the basic axes of the body, and internalized one or more cell types including the prospective gut.
The blastocyst is a structure formed in the early embryonic development of mammals. It possesses an inner cell mass (ICM) also known as the embryoblast which subsequently forms the embryo, and an outer layer of trophoblast cells called the trophectoderm. This layer surrounds the inner cell mass and a fluid-filled cavity known as the blastocoel. In the late blastocyst the trophectoderm is known as the trophoblast. The trophoblast gives rise to the chorion and amnion, the two fetal membranes that surround the embryo. The placenta derives from the embryonic chorion and the underlying uterine tissue of the mother.
The blastocoel, also spelled blastocoele and blastocele, and also called cleavage cavity, or segmentation cavity is a fluid-filled or yolk-filled cavity that forms in the blastula during very early embryonic development. At this stage in mammals the blastula develops into the blastocyst containing an inner cell mass, and outer trophectoderm.
A germ layer is a primary layer of cells that forms during embryonic development. The three germ layers in vertebrates are particularly pronounced; however, all eumetazoans produce two or three primary germ layers. Some animals, like cnidarians, produce two germ layers making them diploblastic. Other animals such as bilaterians produce a third layer between these two layers, making them triploblastic. Germ layers eventually give rise to all of an animal's tissues and organs through the process of organogenesis.
The gestational sac is the large cavity of fluid surrounding the embryo. During early embryogenesis it consists of the extraembryonic coelom, also called the chorionic cavity. The gestational sac is normally contained within the uterus. It is the only available structure that can be used to determine if an intrauterine pregnancy exists until the embryo can be identified.
The yolk sac is a membranous sac attached to an embryo, formed by cells of the hypoblast layer of the bilaminar embryonic disc. This is alternatively called the umbilical vesicle by the Terminologia Embryologica (TE), though yolk sac is far more widely used. In humans, the yolk sac is important in early embryonic blood supply, and much of it is incorporated into the primordial gut during the fourth week of embryonic development.
In developmental biology, animal embryonic development, also known as animal embryogenesis, is the developmental stage of an animal embryo. Embryonic development starts with the fertilization of an egg cell (ovum) by a sperm cell, (spermatozoon). Once fertilized, the ovum becomes a single diploid cell known as a zygote. The zygote undergoes mitotic divisions with no significant growth and cellular differentiation, leading to development of a multicellular embryo after passing through an organizational checkpoint during mid-embryogenesis. In mammals, the term refers chiefly to the early stages of prenatal development, whereas the terms fetus and fetal development describe later stages.
The primitive node is the organizer for gastrulation in most amniote embryos. In birds it is known as Hensen's node, and in amphibians it is known as the Spemann-Mangold organizer. It is induced by the Nieuwkoop center in amphibians, or by the posterior marginal zone in amniotes including birds.
The primitive streak is a structure that forms in the early embryo in amniotes. In amphibians the equivalent structure is the blastopore. During early embryonic development, the embryonic disc becomes oval shaped, and then pear-shaped with the broad end towards the anterior, and the narrower region projected to the posterior. The primitive streak forms a longitudinal midline structure in the narrower posterior (caudal) region of the developing embryo on its dorsal side. At first formation the primitive streak extends for half the length of the embryo. In the human embryo this appears by stage 6, about 17 days.
In embryology, Carnegie stages are a standardized system of 23 stages used to provide a unified developmental chronology of the vertebrate embryo.
In amniote embryonic development, the epiblast is one of two distinct cell layers arising from the inner cell mass in the mammalian blastocyst, or from the blastula in reptiles and birds, the other layer is the hypoblast. It drives the embryo proper through its differentiation into the three primary germ layers, ectoderm, mesoderm and endoderm, during gastrulation. The amniotic ectoderm and extraembryonic mesoderm also originate from the epiblast.
A laminar organization describes the way certain tissues, such as bone membrane, skin, or brain tissues, are arranged in layers.
Human embryonic development, or human embryogenesis, is the development and formation of the human embryo. It is characterised by the processes of cell division and cellular differentiation of the embryo that occurs during the early stages of development. In biological terms, the development of the human body entails growth from a one-celled zygote to an adult human being. Fertilization occurs when the sperm cell successfully enters and fuses with an egg cell (ovum). The genetic material of the sperm and egg then combine to form the single cell zygote and the germinal stage of development commences. Embryonic development in the human, covers the first eight weeks of development; at the beginning of the ninth week the embryo is termed a fetus. The eight weeks has 23 stages.
In amniote embryology, the hypoblast, is one of two distinct layers arising from the inner cell mass in the mammalian blastocyst, or from the blastodisc in reptiles and birds. The hypoblast gives rise to the yolk sac, which in turn gives rise to the chorion.
Heuser's membrane is a short lived combination of hypoblast cells and extracellular matrix.
This glossary of developmental biology is a list of definitions of terms and concepts commonly used in the study of developmental biology and related disciplines in biology, including embryology and reproductive biology, primarily as they pertain to vertebrate animals and particularly to humans and other mammals. The developmental biology of invertebrates, plants, fungi, and other organisms is treated in other articles; e.g. terms relating to the reproduction and development of insects are listed in Glossary of entomology, and those relating to plants are listed in Glossary of botany.
{{cite book}}
: CS1 maint: location missing publisher (link)