Cyclin B

Last updated
cyclin B1
2B9R.png
Structure of human cyclin B. [1]
Identifiers
Symbol CCNB1
Alt. symbolsCCNB
NCBI gene 891
HGNC 1579
OMIM 123836
RefSeq NM_031966
UniProt P14635
Other data
Locus Chr. 5 q12
Search for
Structures Swiss-model
Domains InterPro
cyclin B2
Identifiers
Symbol CCNB2
NCBI gene 9133
HGNC 1580
OMIM 602755
RefSeq NM_004701
UniProt O95067
Other data
Locus Chr. 15 q21.3
Search for
Structures Swiss-model
Domains InterPro
cyclin B3
Identifiers
SymbolCCNB3
NCBI gene 85417
HGNC 18709
OMIM 300456
RefSeq NM_033670
UniProt Q8WWL7
Other data
Locus Chr. X p11
Search for
Structures Swiss-model
Domains InterPro

Cyclin B is a member of the cyclin family. Cyclin B is a mitotic cyclin. The amount of cyclin B (which binds to Cdk1) and the activity of the cyclin B-Cdk complex rise through the cell cycle [2] until mitosis, where they fall abruptly due to degradation of cyclin B (Cdk1 is constitutively present). [3] The complex of Cdk and cyclin B is called maturation promoting factor or mitosis promoting factor (MPF).

Contents

Expression of cyclins through the cell cycle. Cyclin Expression.svg
Expression of cyclins through the cell cycle.

Function

Cyclin B is necessary for the progression of the cells into and out of M phase of the cell cycle.

At the end of S phase the phosphatase cdc25c dephosphorylates tyrosine15 and this activates the cyclin B/CDK1 complex. Upon activation the complex is shuttled to the nucleus where it serves to trigger for entry into mitosis. [4] However, if DNA damage is detected alternative proteins are activated which results in the inhibitory phosphorylation of cdc25c and therefore cyclinB/CDK1 is not activated. In order for the cell to progress out of mitosis, the degradation of cyclin B is necessary. [5]

The cyclin B/CDK1 complex also interacts with a variety of other key proteins and pathways which regulate cell growth and progression of mitosis. Cross-talk between many of these pathways links cyclin B levels indirectly to induction of apoptosis. The cyclin B/CDK1 complex plays a critical role in the expression of the survival signal survivin. Survivin is necessary for proper creation of the mitotic spindle which strongly affects cell viability, therefore when cyclin B levels are disrupted cells experience difficulty polarizing. [6] A decrease in survivin levels and the associated mitotic disarray triggers apoptosis via caspase 3 mediated pathway.

Role in Cancer

Cyclin B plays an integral role in many types of cancer. Hyperplasia (uncontrolled cell growth) is one of the hallmarks of cancer. Because cyclin B is necessary for cells to enter mitosis and therefore necessary for cell division, cyclin B levels are often de-regulated in tumors.[ citation needed ] When cyclin B levels are elevated, cells can enter M phase prematurely and strict control over cell division is lost, which is a favorable condition for cancer development. On the other hand, if cyclin B levels are depleted the cyclin B/CDK1 complex cannot form, cells cannot enter M phase and cell division slows down. Some anti-cancer therapies have been designed to prevent cyclin B/CDK1 complex formation in cancer cells to slow or prevent cell division. Most of these methods have targeted the CDK1 subunit, but there is an emerging interest in the oncology field to target cyclin B as well.

As a Biomarker

Cyclin levels can easily be determined through immunohistological analysis of tumor biopsies. The fact that cyclin B is often disregulated in cancer cells makes cyclin B an attractive biomarker. Many studies have been performed to examine cyclin levels in tumors, and it has been shown that levels of cyclin B is a strong indicator of prognosis in many types of cancer. [7] Generally, elevated levels of cyclin B are indicative of more aggressive cancers and a poor prognosis. Immunohistologically assessed levels of cyclin B could determine if women with stage 1, node negative, hormone receptor positive breast cancer were likely to benefit from adjuvant therapy. [8] In general women with this cancer have a very good prognosis, with mortality in 10 years of only 5%. Therefore, it is rare for oncologists to recommend adjuvant chemotherapy in these cases. However, in a small subset of patient this type of cancer is unexpectedly aggressive. These rare patients can be identified through their elevated cyclin B levels. In addition high levels of cyclin B also indicate poor prognosis and lymph node metastasis in gastric cancers. [9] However, not all cancers which overexpress cyclin B are more aggressive. A study in 2009 found that cyclin B overexpression in ovarian cancer indicates that the cancer is unlikely to be malignant while more aggressive ovarian cancers of epithelial cell origin do not show elevated cyclin B. [10]

Cyclin B and p53

There is strong cross-talk between the pathways regulating cyclin B and the tumor suppressor gene p53. In general levels of p53 and cyclin B are negatively correlated. When p53 build-up triggers cell cycle arrest the levels of downstream proteins p21 and WAF1 are increased which prevents cyclinB/CDK1 complex activation and therefore progression through the cell cycle. [11] It has also been observed that decreasing cyclin B levels in cells increases the levels of functional p53. [12] Therefore, siRNAs for cyclin B may be an effective treatment against cancers where p53 function is inhibited but the gene has not been deleted. In such cases lowering cyclin B levels restores the tumor suppressing function of p53 and also prevents cancer cells from dividing as a consequence of low cyclin B.

See also

Related Research Articles

<span class="mw-page-title-main">Cell cycle</span> Series of events and stages that result in cell division

The cell cycle, or cell-division cycle, is the sequential series of events that take place in a cell that causes it to divide into two daughter cells. These events include the growth of the cell, duplication of its DNA and some of its organelles, and subsequently the partitioning of its cytoplasm, chromosomes and other components into two daughter cells in a process called cell division.

<span class="mw-page-title-main">Cell division</span> Process by which living cells divide

Cell division is the process by which a parent cell divides into two daughter cells. Cell division usually occurs as part of a larger cell cycle in which the cell grows and replicates its chromosome(s) before dividing. In eukaryotes, there are two distinct types of cell division: a vegetative division (mitosis), producing daughter cells genetically identical to the parent cell, and a cell division that produces haploid gametes for sexual reproduction (meiosis), reducing the number of chromosomes from two of each type in the diploid parent cell to one of each type in the daughter cells. Mitosis is a part of the cell cycle, in which, replicated chromosomes are separated into two new nuclei. Cell division gives rise to genetically identical cells in which the total number of chromosomes is maintained. In general, mitosis is preceded by the S stage of interphase and is followed by telophase and cytokinesis; which divides the cytoplasm, organelles, and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. The different stages of mitosis all together define the M phase of an animal cell cycle—the division of the mother cell into two genetically identical daughter cells. To ensure proper progression through the cell cycle, DNA damage is detected and repaired at various checkpoints throughout the cycle. These checkpoints can halt progression through the cell cycle by inhibiting certain cyclin-CDK complexes. Meiosis undergoes two divisions resulting in four haploid daughter cells. Homologous chromosomes are separated in the first division of meiosis, such that each daughter cell has one copy of each chromosome. These chromosomes have already been replicated and have two sister chromatids which are then separated during the second division of meiosis. Both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. Both are believed to be present in the last eukaryotic common ancestor.

<span class="mw-page-title-main">Cyclin</span> Group of proteins

Cyclins are proteins that control the progression of a cell through the cell cycle by activating cyclin-dependent kinases (CDK).

<span class="mw-page-title-main">Cyclin-dependent kinase</span> Class of enzymes

Cyclin-dependent kinases (CDKs) are a predominant group of serine/threonine protein kinases involved in the regulation of the cell cycle and its progression, ensuring the integrity and functionality of cellular machinery. These regulatory enzymes play a crucial role in the regulation of eukaryotic cell cycle and transcription, as well as DNA repair, metabolism, and epigenetic regulation, in response to several extracellular and intracellular signals. They are present in all known eukaryotes, and their regulatory function in the cell cycle has been evolutionarily conserved. The catalytic activities of CDKs are regulated by interactions with CDK inhibitors (CKIs) and regulatory subunits known as cyclins. Cyclins have no enzymatic activity themselves, but they become active once they bind to CDKs. Without cyclin, CDK is less active than in the cyclin-CDK heterodimer complex. CDKs phosphorylate proteins on serine (S) or threonine (T) residues. The specificity of CDKs for their substrates is defined by the S/T-P-X-K/R sequence, where S/T is the phosphorylation site, P is proline, X is any amino acid, and the sequence ends with lysine (K) or arginine (R). This motif ensures CDKs accurately target and modify proteins, crucial for regulating cell cycle and other functions. Deregulation of the CDK activity is linked to various pathologies, including cancer, neurodegenerative diseases, and stroke.

<span class="mw-page-title-main">Spindle checkpoint</span> Cell cycle checkpoint

The spindle checkpoint, also known as the metaphase-to-anaphase transition, the spindle assembly checkpoint (SAC), the metaphase checkpoint, or the mitotic checkpoint, is a cell cycle checkpoint during metaphase of mitosis or meiosis that prevents the separation of the duplicated chromosomes (anaphase) until each chromosome is properly attached to the spindle. To achieve proper segregation, the two kinetochores on the sister chromatids must be attached to opposite spindle poles. Only this pattern of attachment will ensure that each daughter cell receives one copy of the chromosome. The defining biochemical feature of this checkpoint is the stimulation of the anaphase-promoting complex by M-phase cyclin-CDK complexes, which in turn causes the proteolytic destruction of cyclins and proteins that hold the sister chromatids together.

G<sub>2</sub> phase Second growth phase in the eukaryotic cell cycle, prior to mitosis

G2 phase, Gap 2 phase, or Growth 2 phase, is the third subphase of interphase in the cell cycle directly preceding mitosis. It follows the successful completion of S phase, during which the cell’s DNA is replicated. G2 phase ends with the onset of prophase, the first phase of mitosis in which the cell’s chromatin condenses into chromosomes.

A spindle poison, also known as a spindle toxin, is a poison that disrupts cell division by affecting the protein threads that connect the centromere regions of chromosomes, known as spindles. Spindle poisons effectively cease the production of new cells by interrupting the mitosis phase of cell division at the spindle assembly checkpoint (SAC). However, as numerous and varied as they are, spindle poisons are not yet 100% effective at ending the formation of tumors (neoplasms). Although not 100% effective, substantive therapeutic efficacy has been found in these types of chemotherapeutic treatments. The mitotic spindle is composed of microtubules that aid, along with regulatory proteins, each other in the activity of appropriately segregating replicated chromosomes. Certain compounds affecting the mitotic spindle have proven highly effective against solid tumors and hematological malignancies.

<span class="mw-page-title-main">Cell cycle checkpoint</span> Control mechanism in the eukaryotic cell cycle

Cell cycle checkpoints are control mechanisms in the eukaryotic cell cycle which ensure its proper progression. Each checkpoint serves as a potential termination point along the cell cycle, during which the conditions of the cell are assessed, with progression through the various phases of the cell cycle occurring only when favorable conditions are met. There are many checkpoints in the cell cycle, but the three major ones are: the G1 checkpoint, also known as the Start or restriction checkpoint or Major Checkpoint; the G2/M checkpoint; and the metaphase-to-anaphase transition, also known as the spindle checkpoint. Progression through these checkpoints is largely determined by the activation of cyclin-dependent kinases by regulatory protein subunits called cyclins, different forms of which are produced at each stage of the cell cycle to control the specific events that occur therein.

<span class="mw-page-title-main">G1/S transition</span> Stage in cell cycle

The G1/S transition is a stage in the cell cycle at the boundary between the G1 phase, in which the cell grows, and the S phase, during which DNA is replicated. It is governed by cell cycle checkpoints to ensure cell cycle integrity and the subsequent S phase can pause in response to improperly or partially replicated DNA. During this transition the cell makes decisions to become quiescent, differentiate, make DNA repairs, or proliferate based on environmental cues and molecular signaling inputs. The G1/S transition occurs late in G1 and the absence or improper application of this highly regulated checkpoint can lead to cellular transformation and disease states such as cancer.

Cyclin A is a member of the cyclin family, a group of proteins that function in regulating progression through the cell cycle. The stages that a cell passes through that culminate in its division and replication are collectively known as the cell cycle Since the successful division and replication of a cell is essential for its survival, the cell cycle is tightly regulated by several components to ensure the efficient and error-free progression through the cell cycle. One such regulatory component is cyclin A which plays a role in the regulation of two different cell cycle stages.

<span class="mw-page-title-main">Survivin</span> Mammalian protein

Survivin, also called baculoviral inhibitor of apoptosis repeat-containing 5 or BIRC5, is a protein that, in humans, is encoded by the BIRC5 gene.

<span class="mw-page-title-main">Cyclin-dependent kinase 1</span> Mammalian protein found in Homo sapiens

Cyclin-dependent kinase 1 also known as CDK1 or cell division cycle protein 2 homolog is a highly conserved protein that functions as a serine/threonine protein kinase, and is a key player in cell cycle regulation. It has been highly studied in the budding yeast S. cerevisiae, and the fission yeast S. pombe, where it is encoded by genes cdc28 and cdc2, respectively. With its cyclin partners, Cdk1 forms complexes that phosphorylate a variety of target substrates ; phosphorylation of these proteins leads to cell cycle progression.

<span class="mw-page-title-main">CHEK1</span> Protein-coding gene in humans

Checkpoint kinase 1, commonly referred to as Chk1, is a serine/threonine-specific protein kinase that, in humans, is encoded by the CHEK1 gene. Chk1 coordinates the DNA damage response (DDR) and cell cycle checkpoint response. Activation of Chk1 results in the initiation of cell cycle checkpoints, cell cycle arrest, DNA repair and cell death to prevent damaged cells from progressing through the cell cycle.

<span class="mw-page-title-main">Cyclin B1</span> Protein-coding gene in the species Homo sapiens

G2/mitotic-specific cyclin-B1 is a protein that in humans is encoded by the CCNB1 gene.

<span class="mw-page-title-main">LATS1</span> Protein-coding gene in the species Homo sapiens

Large tumor suppressor kinase 1 (LATS1) is an enzyme that in humans is encoded by the LATS1 gene.

<span class="mw-page-title-main">Wee1</span> Nuclear protein

Wee1 is a nuclear kinase belonging to the Ser/Thr family of protein kinases in the fission yeast Schizosaccharomyces pombe. Wee1 has a molecular mass of 96 kDa and is a key regulator of cell cycle progression.

<span class="mw-page-title-main">Mitotic catastrophe</span> Mechanism of cell death

Mitotic catastrophe has been defined as either a cellular mechanism to prevent potentially cancerous cells from proliferating or as a mode of cellular death that occurs following improper cell cycle progression or entrance. Mitotic catastrophe can be induced by prolonged activation of the spindle assembly checkpoint, errors in mitosis, or DNA damage and operates to prevent genomic instability. It is a mechanism that is being researched as a potential therapeutic target in cancers, and numerous approved therapeutics induce mitotic catastrophe.

A series of biochemical switches control transitions between and within the various phases of the cell cycle. The cell cycle is a series of complex, ordered, sequential events that control how a single cell divides into two cells, and involves several different phases. The phases include the G1 and G2 phases, DNA replication or S phase, and the actual process of cell division, mitosis or M phase. During the M phase, the chromosomes separate and cytokinesis occurs.

<span class="mw-page-title-main">G2-M DNA damage checkpoint</span>

The G2-M DNA damage checkpoint is an important cell cycle checkpoint in eukaryotic organisms that ensures that cells don't initiate mitosis until damaged or incompletely replicated DNA is sufficiently repaired. Cells with a defective G2-M checkpoint will undergo apoptosis or death after cell division if they enter the M phase before repairing their DNA. The defining biochemical feature of this checkpoint is the activation of M-phase cyclin-CDK complexes, which phosphorylate proteins that promote spindle assembly and bring the cell to metaphase.

Mitotic exit is an important transition point that signifies the end of mitosis and the onset of new G1 phase for a cell, and the cell needs to rely on specific control mechanisms to ensure that once it exits mitosis, it never returns to mitosis until it has gone through G1, S, and G2 phases and passed all the necessary checkpoints. Many factors including cyclins, cyclin-dependent kinases (CDKs), ubiquitin ligases, inhibitors of cyclin-dependent kinases, and reversible phosphorylations regulate mitotic exit to ensure that cell cycle events occur in correct order with fewest errors. The end of mitosis is characterized by spindle breakdown, shortened kinetochore microtubules, and pronounced outgrowth of astral (non-kinetochore) microtubules. For a normal eukaryotic cell, mitotic exit is irreversible.

References

  1. PDB: 2B9R ; Petri, E.T.; Errico, A.; Escobedo, L.; Hunt, T. & Basavappa, R. (2007). "The crystal structure of human cyclin B". Cell Cycle. 6 (11): 1342–9. doi: 10.4161/cc.6.11.4297 . PMID   17495533.
  2. Ito M (August 2000). "Factors controlling cyclin B expression" (PDF). Plant Mol. Biol. 43 (5–6): 677–90. doi:10.1023/A:1006336005587. PMID   11089869. S2CID   19593310.[ permanent dead link ]
  3. Hershko A (September 1999). "Mechanisms and regulation of the degradation of cyclin B". Philos. Trans. R. Soc. Lond. B Biol. Sci. 354 (1389): 1571–5, discussion 1575–6. doi:10.1098/rstb.1999.0500. PMC   1692665 . PMID   10582242.
  4. Ford HL, Pardee AB (1999). "Cancer and the cell cycle". J. Cell. Biochem. Suppl 32-33 (S32): 166–72. doi:10.1002/(SICI)1097-4644(1999)75:32+<166::AID-JCB20>3.0.CO;2-J. PMID   10629116. S2CID   30299363.
  5. Zhou XY, Wang X, Hu B, Guan J, Iliakis G, Wang Y (March 2002). "An ATM-independent S-phase checkpoint response involves CHK1 pathway". Cancer Res. 62 (6): 1598–603. PMID   11912127.
  6. O'Connor DS, Wall NR, Porter AC, Altieri DC (July 2002). "A p34(cdc2) survival checkpoint in cancer". Cancer Cell. 2 (1): 43–54. doi: 10.1016/S1535-6108(02)00084-3 . PMID   12150824.
  7. Agarwal R, Gonzalez-Angulo AM, Myhre S, Carey M, Lee JS, Overgaard J, Alsner J, Stemke-Hale K, Lluch A, Neve RM, Kuo WL, Sorlie T, Sahin A, Valero V, Keyomarsi K, Gray JW, Borresen-Dale AL, Mills GB, Hennessy BT (June 2009). "Integrative analysis of cyclin protein levels identifies cyclin b1 as a classifier and predictor of outcomes in breast cancer". Clin. Cancer Res. 15 (11): 3654–62. doi:10.1158/1078-0432.CCR-08-3293. PMC   2887710 . PMID   19470724.
  8. Koliadi A, Nilsson C, Holmqvist M, Holmberg L, de La Torre M, Wärnberg F, Fjällskog ML (August 2010). "Cyclin B is an immunohistochemical proliferation marker which can predict for breast cancer death in low-risk node negative breast cancer". Acta Oncol. 49 (6): 816–20. doi: 10.3109/02841861003691937 . PMID   20307242. S2CID   24515902.
  9. Begnami MD, Fregnani JH, Nonogaki S, Soares FA (August 2010). "Evaluation of cell cycle protein expression in gastric cancer: cyclin B1 expression and its prognostic implication". Hum. Pathol. 41 (8): 1120–7. doi:10.1016/j.humpath.2010.01.007. PMID   20334896.
  10. Zheng H, Hu W, Deavers MT, Shen DY, Fu S, Li YF, Kavanagh JJ (October 2009). "Nuclear cyclin B1 is overexpressed in low-malignant-potential ovarian tumors but not in epithelial ovarian cancer". Am. J. Obstet. Gynecol. 201 (4): 367.e1–6. doi:10.1016/j.ajog.2009.05.021. PMID   19608149.
  11. Nigam N, Prasad S, George J, Shukla Y (April 2009). "Lupeol induces p53 and cyclin-B-mediated G2/M arrest and targets apoptosis through activation of caspase in mouse skin". Biochem. Biophys. Res. Commun. 381 (2): 253–8. doi:10.1016/j.bbrc.2009.02.033. PMID   19232320.
  12. Kreis NN, Sanhaji M, Krämer A, Sommer K, Rödel F, Strebhardt K, Yuan J (October 2010). "Restoration of the tumor suppressor p53 by downregulating cyclin B1 in human papillomavirus 16/18-infected cancer cells". Oncogene. 29 (41): 5591–603. doi: 10.1038/onc.2010.290 . PMID   20661218.