Cyclin D1

Last updated
CCND1
Protein CCND1 PDB 2W96.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases CCND1 , BCL1, D11S287E, PRAD1, U21B31, cyclin D1
External IDs OMIM: 168461 MGI: 88313 HomoloGene: 1334 GeneCards: CCND1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_053056

NM_007631
NM_001379248

RefSeq (protein)

NP_444284

NP_031657
NP_001366177

Location (UCSC) Chr 11: 69.64 – 69.65 Mb Chr 7: 144.48 – 144.49 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Cyclin D1 is a protein that in humans is encoded by the CCND1 gene. [5] [6]

Contents

Gene expression

The CCND1 gene encodes the cyclin D1 protein. The human CCND1 gene is located on the long arm of chromosome 11 (band 11q13). It is 13,388 base pairs long, and translates into 295 amino acids. [7] Cyclin D1 is expressed in all adult human tissues with the exception of cells derived from bone marrow stem cell lines (both lymphoid and myeloid). [8] [9]

Protein structure

Cyclin D1 is composed of the following protein domains and motifs: [10] [11]

Function

The protein encoded by this gene belongs to the highly conserved cyclin family, whose members are characterized by a dramatic periodicity in protein abundance throughout the cell cycle. Cyclins function as regulators of CDKs (cyclin-dependent kinase). Different cyclins exhibit distinct expression and degradation patterns which contribute to the temporal coordination of each mitotic event. This cyclin forms a complex with and functions as a regulatory subunit of CDK4 or CDK6, whose activity is required for cell cycle G1/S transition. This protein has been shown to interact with tumor suppressor protein Rb and the expression of this gene is regulated positively by Rb. Mutations, amplification and overexpression of this gene, which alters cell cycle progression, are observed frequently in a variety of tumors and may contribute to tumorigenesis. [12]

Micrograph of cyclin D1 staining in a mantle cell lymphoma Mantle cell lymphoma - intermed mag - cyclin D1.jpg
Micrograph of cyclin D1 staining in a mantle cell lymphoma

Immunohistochemical staining of cyclin D1 antibodies is used to diagnose mantle cell lymphoma.

Cyclin D1 has been found to be overexpressed in breast carcinoma. Its potential use as a biomarker was suggested. [13]

Normal function

Cyclin D1 was originally cloned as a breakpoint rearrangement in parathyroid adenoma [5] and was shown to be required for progression through the G1 phase of the cell cycle to induce cell migration, [14] angiogenesis [15] and to induce the Warburg effect. [16] Cyclin D1 is a protein required for progression through the G1 phase of the cell cycle. [17] During the G1 phase, it is synthesized rapidly and accumulates in the nucleus, and is degraded as the cell enters the S phase. [17] Cyclin D1 is a regulatory subunit of cyclin-dependent kinases CDK4 and CDK6. The protein dimerizes with CDK4/6 to regulate the G1/S phase transition and entry into the S-phase.

CDK dependent functions

The cyclin D1-CDK4 complex promotes passage through the G1 phase by inhibiting the retinoblastoma protein (pRb). [18] Cyclin D1-CDK4 inhibits pRb through phosphorylation, allowing E2F transcription factors to transcribe genes required for entry into the S phase. Inactive pRb allows cell cycle progression through the G1/S transition and allows for DNA synthesis. Cyclin D1-CDK4 also enables the activation of cyclin E-CDK2 complex by sequestering Cip/Kip family CDK inhibitory proteins p21 and p27, allowing entry into the S phase. [19]

Cyclin D1-CDK4 also associates with several transcription factors and transcriptional co-regulators. [10]

CDK independent functions

Independent of CDK, cyclin D1 binds to nuclear receptors (including estrogen receptor α, [20] thyroid hormone receptor, PPARγ [21] [22] and AR [23] ) to regulate cell proliferation, growth, and differentiation. Cyclin D1 also binds to histone acetylases and histone deacetylases to regulate cell proliferation and cell differentiation genes [24] [25] [23] [26] in the early to mid-G1 phase.

Synthesis and degradation

Increasing cyclin D1 levels during the G1 phase is induced by mitogenic growth factors [27] primarily through Ras-mediated pathways, [28] [29] [30] and hormones. [24] These Ras-mediated pathways lead to the increase in transcription of cyclin D1, and inhibit its proteolysis and export from the nucleus. [31] Cyclin D1 is degraded by the proteasome upon phosphorylation of threonine 286 and subsequent ubiquitylation via the CRL4-AMBRA1 E3 ubiquitin ligase complex. [32]

Clinical significance

Deregulation in cancer

Cyclin D1 overexpression has been shown to correlate with early cancer onset and tumor progression [19] and it can lead to oncogenesis by increasing anchorage-independent growth and angiogenesis via VEGF production. [33] Cyclin D1 overexpression can also down-regulate Fas expression, leading to increased chemotherapeutic resistance and protection from apoptosis. [33]

An abundance of cyclin D1 can be caused by various types of deregulation, including:

Cyclin D1 overexpression is correlated with shorter cancer patient survival and increased metastasis. [40] [41] Amplification of the CCND1 gene is present in:

Cyclin D1 overexpression is strongly correlated to ER+ breast cancer [53] and deregulation of cyclin D1 is associated with hormone therapy resistance in breast cancer. [32] [54] [55] Overexpression of Cyclin D1b, an isoform, is also present in breast and prostate cancers. [11]

Chromosomal translocation around the cyclin D1 gene locus is often seen in B mantle cell lymphoma. In mantle cell lymphoma, cyclin D1 is translocated to the IgH promoter [56] leading to cyclin D1 overexpression. Chromosomal translocation of the cyclin D1 gene locus is also observed in 15–20% of multiple myelomas. [57] [58]

Therapeutic target in cancer

Cyclin D1 and the mechanisms it regulates have the potential to be a therapeutic target for cancer drugs:

TargetMethods of Inhibition
Inhibition of cyclin D1Inhibiting translation of cyclin D1 mRNA via mTOR inhibitors [59] and RXR activators. [60] [61]
Inducing Cyclin D1 degradation [31] Retinoid mediated cyclin D1 degradation via the ubiquitin proteolytic pathway; [62] Differentiation-inducing factor-1 (DIF-1) induced ubiquitin-dependent degradation; [63] Inhibition of cyclin D1 protein synthesis [64] [65]
Inducing nuclear export of Cyclin D1Histone deacetylase inhibitors (HDACIs) to induce nuclear export of Cyclin D1 [66]
Inhibition of cyclin D1-CDK4/6Small molecule CDK inhibitors [67] [68]

Interactions

Cyclin D1 has been shown to interact with:

See also

Related Research Articles

<span class="mw-page-title-main">Cell cycle</span> Series of events and stages that result in cell division

The cell cycle, or cell-division cycle, is the series of events that take place in a cell that causes it to divide into two daughter cells. These events include the duplication of its DNA and some of its organelles, and subsequently the partitioning of its cytoplasm, chromosomes and other components into two daughter cells in a process called cell division.

<span class="mw-page-title-main">Cyclin-dependent kinase</span> Class of enzymes

Cyclin-dependent kinases (CDKs) are a predominant group of serine/threonine protein kinases involved in the regulation of the cell cycle and its progression, ensuring the integrity and functionality of cellular machinery. These regulatory enzymes play a crucial role in the regulation of eukaryotic cell cycle and transcription, as well as DNA repair, metabolism, and epigenetic regulation, in response to several extracellular and intracellular signals. They are present in all known eukaryotes, and their regulatory function in the cell cycle has been evolutionarily conserved. The catalytic activities of CDKs are regulated by interactions with CDK inhibitors (CKIs) and regulatory subunits known as cyclins. Cyclins have no enzymatic activity themselves, but they become active once they bind to CDKs. Without cyclin, CDK is less active than in the cyclin-CDK heterodimer complex. CDKs phosphorylate proteins on serine (S) or threonine (T) residues. The specificity of CDKs for their substrates is defined by the S/T-P-X-K/R sequence, where S/T is the phosphorylation site, P is proline, X is any amino acid, and the sequence ends with lysine (K) or arginine (R). This motif ensures CDKs accurately target and modify proteins, crucial for regulating cell cycle and other functions. Deregulation of the CDK activity is linked to various pathologies, including cancer, neurodegenerative diseases, and stroke.

<span class="mw-page-title-main">Restriction point</span> Animal cell cycle checkpoint

The restriction point (R), also known as the Start or G1/S checkpoint, is a cell cycle checkpoint in the G1 phase of the animal cell cycle at which the cell becomes "committed" to the cell cycle, and after which extracellular signals are no longer required to stimulate proliferation. The defining biochemical feature of the restriction point is the activation of G1/S- and S-phase cyclin-CDK complexes, which in turn phosphorylate proteins that initiate DNA replication, centrosome duplication, and other early cell cycle events. It is one of three main cell cycle checkpoints, the other two being the G2-M DNA damage checkpoint and the spindle checkpoint.

The MAPK/ERK pathway is a chain of proteins in the cell that communicates a signal from a receptor on the surface of the cell to the DNA in the nucleus of the cell.

p16 Mammalian protein found in Homo sapiens

p16, is a protein that slows cell division by slowing the progression of the cell cycle from the G1 phase to the S phase, thereby acting as a tumor suppressor. It is encoded by the CDKN2A gene. A deletion in this gene can result in insufficient or non-functional p16, accelerating the cell cycle and resulting in many types of cancer.

<span class="mw-page-title-main">Cyclin D</span> Member of the cyclin protein family

Cyclin D is a member of the cyclin protein family that is involved in regulating cell cycle progression. The synthesis of cyclin D is initiated during G1 and drives the G1/S phase transition. Cyclin D protein is anywhere from 155 to 477 amino acids in length.

<span class="mw-page-title-main">Cyclin-dependent kinase 2</span> Protein-coding gene in the species Homo sapiens

Cyclin-dependent kinase 2, also known as cell division protein kinase 2, or Cdk2, is an enzyme that in humans is encoded by the CDK2 gene. The protein encoded by this gene is a member of the cyclin-dependent kinase family of Ser/Thr protein kinases. This protein kinase is highly similar to the gene products of S. cerevisiae cdc28, and S. pombe cdc2, also known as Cdk1 in humans. It is a catalytic subunit of the cyclin-dependent kinase complex, whose activity is restricted to the G1-S phase of the cell cycle, where cells make proteins necessary for mitosis and replicate their DNA. This protein associates with and is regulated by the regulatory subunits of the complex including cyclin E or A. Cyclin E binds G1 phase Cdk2, which is required for the transition from G1 to S phase while binding with Cyclin A is required to progress through the S phase. Its activity is also regulated by phosphorylation. Multiple alternatively spliced variants and multiple transcription initiation sites of this gene have been reported. The role of this protein in G1-S transition has been recently questioned as cells lacking Cdk2 are reported to have no problem during this transition.

<span class="mw-page-title-main">Cyclin-dependent kinase 4</span> Human protein

Cyclin-dependent kinase 4 also known as cell division protein kinase 4 is an enzyme that in humans is encoded by the CDK4 gene. CDK4 is a member of the cyclin-dependent kinase family.

<span class="mw-page-title-main">Cyclin-dependent kinase 6</span> Protein-coding gene in the species Homo sapiens

Cell division protein kinase 6 (CDK6) is an enzyme encoded by the CDK6 gene. It is regulated by cyclins, more specifically by Cyclin D proteins and Cyclin-dependent kinase inhibitor proteins. The protein encoded by this gene is a member of the cyclin-dependent kinase, (CDK) family, which includes CDK4. CDK family members are highly similar to the gene products of Saccharomyces cerevisiae cdc28, and Schizosaccharomyces pombe cdc2, and are known to be important regulators of cell cycle progression in the point of regulation named R or restriction point.

The Cyclin D/Cdk4 complex is a multi-protein structure consisting of the proteins Cyclin D and cyclin-dependent kinase 4, or Cdk4, a serine-threonine kinase. This complex is one of many cyclin/cyclin-dependent kinase complexes that are the "hearts of the cell-cycle control system" and govern the cell cycle and its progression. As its name would suggest, the cyclin-dependent kinase is only active and able to phosphorylate its substrates when it is bound by the corresponding cyclin. The Cyclin D/Cdk4 complex is integral for the progression of the cell from the Growth 1 phase to the Synthesis phase of the cell cycle, for the Start or G1/S checkpoint.

<span class="mw-page-title-main">Transcription factor Jun</span> Mammalian protein found in Homo sapiens

Transcription factor Jun is a protein that in humans is encoded by the JUN gene. c-Jun, in combination with protein c-Fos, forms the AP-1 early response transcription factor. It was first identified as the Fos-binding protein p39 and only later rediscovered as the product of the JUN gene. c-jun was the first oncogenic transcription factor discovered. The proto-oncogene c-Jun is the cellular homolog of the viral oncoprotein v-jun. The viral homolog v-jun was discovered in avian sarcoma virus 17 and was named for ju-nana, the Japanese word for 17. The human JUN encodes a protein that is highly similar to the viral protein, which interacts directly with specific target DNA sequences to regulate gene expression. This gene is intronless and is mapped to 1p32-p31, a chromosomal region involved in both translocations and deletions in human malignancies.

<span class="mw-page-title-main">CDKN1B</span> Protein-coding gene in the species Homo sapiens

Cyclin-dependent kinase inhibitor 1B (p27Kip1) is an enzyme inhibitor that in humans is encoded by the CDKN1B gene. It encodes a protein which belongs to the Cip/Kip family of cyclin dependent kinase (Cdk) inhibitor proteins. The encoded protein binds to and prevents the activation of cyclin E-CDK2 or cyclin D-CDK4 complexes, and thus controls the cell cycle progression at G1. It is often referred to as a cell cycle inhibitor protein because its major function is to stop or slow down the cell division cycle.

<span class="mw-page-title-main">Cyclin D3</span> Protein-coding gene in the species Homo sapiens

G1/S-specific cyclin-D3 is a protein that in humans is encoded by the CCND3 gene.

<span class="mw-page-title-main">Cyclin D2</span> Protein-coding gene in humans

G1/S-specific cyclin-D2 is a protein that in humans is encoded by the CCND2 gene.

<span class="mw-page-title-main">Cyclin A2</span> Protein-coding gene in the species Homo sapiens

Cyclin-A2 is a protein that in humans is encoded by the CCNA2 gene. It is one of the two types of cyclin A: cyclin A1 is expressed during meiosis and embryogenesis while cyclin A2 is expressed in the mitotic division of somatic cells.

<span class="mw-page-title-main">CDKN2B</span> Protein-coding gene in the species Homo sapiens

Cyclin-dependent kinase 4 inhibitor B also known as multiple tumor suppressor 2 (MTS-2) or p15INK4b is a protein that is encoded by the CDKN2B gene in humans.

<span class="mw-page-title-main">CDKN2C</span> Protein-coding gene in the species Homo sapiens

Cyclin-dependent kinase 4 inhibitor C is an enzyme that in humans is encoded by the CDKN2C gene.

<span class="mw-page-title-main">CDKN2D</span> Protein-coding gene in the species Homo sapiens

Cyclin-dependent kinase 4 inhibitor D is an enzyme that in humans is encoded by the CDKN2D gene.

<span class="mw-page-title-main">Cyclin-dependent kinase 3</span> Protein-coding gene in the species Homo sapiens

Cell division protein kinase 3 is an enzyme that in humans is encoded by the CDK3 gene.

<span class="mw-page-title-main">CDKN3</span> Protein-coding gene in the species Homo sapiens

Cyclin-dependent kinase inhibitor 3 is an enzyme that in humans is encoded by the CDKN3 gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000110092 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000070348 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 Motokura T, Bloom T, Kim HG, Jüppner H, Ruderman JV, Kronenberg HM, Arnold A (April 1991). "A novel cyclin encoded by a bcl1-linked candidate oncogene". Nature. 350 (6318): 512–5. Bibcode:1991Natur.350..512M. doi:10.1038/350512a0. PMID   1826542. S2CID   4232393.
  6. Lew DJ, Dulić V, Reed SI (September 1991). "Isolation of three novel human cyclins by rescue of G1 cyclin (Cln) function in yeast". Cell. 66 (6): 1197–206. doi:10.1016/0092-8674(91)90042-W. PMID   1833066. S2CID   12166415.
  7. ""CCND1" Gene". GeneCards. Weizmann Institute of Science. 2013. Retrieved May 6, 2015.
  8. Withers DA, Harvey RC, Faust JB, Melnyk O, Carey K, Meeker TC (October 1991). "Characterization of a candidate bcl-1 gene". Molecular and Cellular Biology. 11 (10): 4846–53. doi:10.1128/MCB.11.10.4846. PMC   361453 . PMID   1833629.
  9. Inaba T, Matsushime H, Valentine M, Roussel MF, Sherr CJ, Look AT (July 1992). "Genomic organization, chromosomal localization, and independent expression of human cyclin D genes". Genomics. 13 (3): 565–74. doi:10.1016/0888-7543(92)90126-d. PMID   1386335.
  10. 1 2 Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL (July 2011). "Cyclin D as a therapeutic target in cancer". Nature Reviews. Cancer. 11 (8): 558–72. doi:10.1038/nrc3090. PMID   21734724. S2CID   29093377.
  11. 1 2 Knudsen KE, Diehl JA, Haiman CA, Knudsen ES (March 2006). "Cyclin D1: polymorphism, aberrant splicing and cancer risk". Oncogene. 25 (11): 1620–8. doi: 10.1038/sj.onc.1209371 . PMID   16550162. S2CID   11382318.
  12. "Entrez Gene: CCND1 cyclin D1".
  13. He Y, Liu Z, Qiao C, Xu M, Yu J, Li G (January 2014). "Expression and significance of Wnt signaling components and their target genes in breast carcinoma". Molecular Medicine Reports. 9 (1): 137–43. doi: 10.3892/mmr.2013.1774 . PMID   24190141.
  14. Neumeister P, Pixley FJ, Xiong Y, Xie H, Wu K, Ashton A, Cammer M, Chan A, Symons M, Stanley ER, Pestell RG (May 2003). "Cyclin D1 governs adhesion and motility of macrophages". Molecular Biology of the Cell. 14 (5): 2005–15. doi:10.1091/mbc.02-07-0102. PMC   165093 . PMID   12802071.
  15. Holnthoner W, Pillinger M, Groger M, Wolff K, Ashton AW, Albanese C, Neumeister P, Pestell RG, Petzelbauer P (November 2002). "Fibroblast growth factor-2 induces Lef/Tcf-dependent transcription in human endothelial cells". The Journal of Biological Chemistry. 277 (48): 45847–53. doi: 10.1074/jbc.M209354200 . PMID   12235165. S2CID   27287405.
  16. Sakamaki T, Casimiro MC, Ju X, Quong AA, Katiyar S, Liu M, Jiao X, Li A, Zhang X, Lu Y, Wang C, Byers S, Nicholson R, Link T, Shemluck M, Yang J, Fricke ST, Novikoff PM, Papanikolaou A, Arnold A, Albanese C, Pestell R (July 2006). "Cyclin D1 determines mitochondrial function in vivo". Molecular and Cellular Biology. 26 (14): 5449–69. doi:10.1128/MCB.02074-05. PMC   1592725 . PMID   16809779.
  17. 1 2 Baldin V, Lukas J, Marcote MJ, Pagano M, Draetta G (May 1993). "Cyclin D1 is a nuclear protein required for cell cycle progression in G1". Genes & Development. 7 (5): 812–21. doi: 10.1101/gad.7.5.812 . PMID   8491378.
  18. Matsushime H, Ewen ME, Strom DK, Kato JY, Hanks SK, Roussel MF, Sherr CJ (October 1992). "Identification and properties of an atypical catalytic subunit (p34PSK-J3/cdk4) for mammalian D type G1 cyclins". Cell. 71 (2): 323–34. doi:10.1016/0092-8674(92)90360-o. PMID   1423597. S2CID   19669023.
  19. 1 2 Diehl JA (2002). "Cycling to cancer with cyclin D1". Cancer Biology & Therapy. 1 (3): 226–31. doi: 10.4161/cbt.72 . PMID   12432268. S2CID   27507264.
  20. 1 2 Zwijsen RM, Wientjens E, Klompmaker R, van der Sman J, Bernards R, Michalides RJ (February 1997). "CDK-independent activation of estrogen receptor by cyclin D1". Cell. 88 (3): 405–15. doi:10.1016/S0092-8674(00)81879-6. hdl: 1874/21074 . PMID   9039267. S2CID   16492666.
  21. Wang C, Li Z, Fu M, Bouras T, Pestell RG (2004). "Signal transduction mediated by cyclin D1: from mitogens to cell proliferation: a molecular target with therapeutic potential". Molecular Targeting and Signal Transduction. Cancer Treatment and Research. Vol. 119. pp. 217–37. doi:10.1007/1-4020-7847-1_11. ISBN   978-1-4020-7822-4. PMID   15164880.
  22. Fu M, Rao M, Bouras T, Wang C, Wu K, Zhang X, Li Z, Yao TP, Pestell RG (April 2005). "Cyclin D1 inhibits peroxisome proliferator-activated receptor gamma-mediated adipogenesis through histone deacetylase recruitment". primary. The Journal of Biological Chemistry. 280 (17): 16934–41. doi: 10.1074/jbc.m500403200 . PMID   15713663. S2CID   27249858.
  23. 1 2 3 Reutens AT, Fu M, Wang C, Albanese C, McPhaul MJ, Sun Z, Balk SP, Jänne OA, Palvimo JJ, Pestell RG (May 2001). "Cyclin D1 binds the androgen receptor and regulates hormone-dependent signaling in a p300/CBP-associated factor (P/CAF)-dependent manner". Molecular Endocrinology. 15 (5): 797–811. doi: 10.1210/mend.15.5.0641 . PMID   11328859.
  24. 1 2 Fu M, Wang C, Li Z, Sakamaki T, Pestell RG (December 2004). "Minireview: Cyclin D1: normal and abnormal functions". Endocrinology. 145 (12): 5439–47. doi: 10.1210/en.2004-0959 . PMID   15331580.
  25. McMahon C, Suthiphongchai T, DiRenzo J, Ewen ME (May 1999). "P/CAF associates with cyclin D1 and potentiates its activation of the estrogen receptor". Proceedings of the National Academy of Sciences of the United States of America. 96 (10): 5382–7. Bibcode:1999PNAS...96.5382M. doi: 10.1073/pnas.96.10.5382 . PMC   21868 . PMID   10318892.
  26. 1 2 Fu M, Rao M, Bouras T, Wang C, Wu K, Zhang X, Li Z, Yao TP, Pestell RG (April 2005). "Cyclin D1 inhibits peroxisome proliferator-activated receptor gamma-mediated adipogenesis through histone deacetylase recruitment". The Journal of Biological Chemistry. 280 (17): 16934–41. doi: 10.1074/jbc.M500403200 . PMID   15713663. S2CID   27249858.
  27. Böhmer RM, Scharf E, Assoian RK (January 1996). "Cytoskeletal integrity is required throughout the mitogen stimulation phase of the cell cycle and mediates the anchorage-dependent expression of cyclin D1". Molecular Biology of the Cell. 7 (1): 101–111. doi:10.1091/mbc.7.1.101. PMC   278616 . PMID   8741843.
  28. Mittnacht S, Paterson H, Olson MF, Marshall CJ (March 1997). "Ras signalling is required for inactivation of the tumour suppressor pRb cell-cycle control protein". Current Biology. 7 (3): 219–21. Bibcode:1997CBio....7..219M. doi: 10.1016/s0960-9822(97)70094-0 . PMID   9395436. S2CID   12508796.
  29. Mulcahy LS, Smith MR, Stacey DW (1985). "Requirement for ras proto-oncogene function during serum-stimulated growth of NIH 3T3 cells". Nature. 313 (5999): 241–3. Bibcode:1985Natur.313..241M. doi:10.1038/313241a0. PMID   3918269. S2CID   4322964.
  30. Peeper DS, Upton TM, Ladha MH, Neuman E, Zalvide J, Bernards R, DeCaprio JA, Ewen ME (March 1997). "Ras signalling linked to the cell-cycle machinery by the retinoblastoma protein". Nature. 386 (6621): 177–81. Bibcode:1997Natur.386..177P. doi:10.1038/386177a0. hdl: 1874/15252 . PMID   9062190. S2CID   4354374.
  31. 1 2 Alao JP (April 2007). "The regulation of cyclin D1 degradation: roles in cancer development and the potential for therapeutic invention". Molecular Cancer. 6: 24. doi: 10.1186/1476-4598-6-24 . PMC   1851974 . PMID   17407548.
  32. 1 2 3 Simoneschi D, Rona G, Zhou N, Jeong YT, Jiang S, Milletti G, Arbini AA, O'Sullivan A, Wang AA, Nithikasem S, Keegan S (2021-04-29). "CRL4AMBRA1 is a master regulator of D-type cyclins". Nature. 592 (7856): 789–793. Bibcode:2021Natur.592..789S. doi:10.1038/s41586-021-03445-y. ISSN   0028-0836. PMC   8875297 . PMID   33854235. S2CID   233243768.
  33. 1 2 Shintani M, Okazaki A, Masuda T, Kawada M, Ishizuka M, Doki Y, Weinstein IB, Imoto M (2002). "Overexpression of cyclin DI contributes to malignant properties of esophageal tumor cells by increasing VEGF production and decreasing Fas expression". Anticancer Research. 22 (2A): 639–47. PMID   12014632.
  34. Alt JR, Cleveland JL, Hannink M, Diehl JA (December 2000). "Phosphorylation-dependent regulation of cyclin D1 nuclear export and cyclin D1-dependent cellular transformation". Genes & Development. 14 (24): 3102–14. doi:10.1101/gad.854900. PMC   317128 . PMID   11124803.
  35. Diehl JA, Zindy F, Sherr CJ (April 1997). "Inhibition of cyclin D1 phosphorylation on threonine-286 prevents its rapid degradation via the ubiquitin-proteasome pathway". Genes & Development. 11 (8): 957–72. doi: 10.1101/gad.11.8.957 . PMID   9136925.
  36. Casimiro M, Rodriguez O, Pootrakul L, Aventian M, Lushina N, Cromelin C, Ferzli G, Johnson K, Fricke S, Diba F, Kallakury B, Ohanyerenwa C, Chen M, Ostrowski M, Hung MC, Rabbani SA, Datar R, Cote R, Pestell R, Albanese C (May 2007). "ErbB-2 induces the cyclin D1 gene in prostate epithelial cells in vitro and in vivo". Cancer Research. 67 (9): 4364–72. doi: 10.1158/0008-5472.CAN-06-1898 . PMID   17483350.
  37. Amanatullah DF, Zafonte BT, Albanese C, Fu M, Messiers C, Hassell J, Pestell RG (2001). "Ras regulation of cyclin D1 promoter". Regulators and Effectors of Small GTPases, Part G. Methods in Enzymology. Vol. 333. pp. 116–27. doi:10.1016/s0076-6879(01)33050-1. ISBN   978-0-12-182234-7. PMID   11400329.
  38. Matsumura I, Kitamura T, Wakao H, Tanaka H, Hashimoto K, Albanese C, Downward J, Pestell RG, Kanakura Y (March 1999). "Transcriptional regulation of the cyclin D1 promoter by STAT5: its involvement in cytokine-dependent growth of hematopoietic cells". The EMBO Journal. 18 (5): 1367–77. doi:10.1093/emboj/18.5.1367. PMC   1171226 . PMID   10064602.
  39. Albanese C, Johnson J, Watanabe G, Eklund N, Vu D, Arnold A, Pestell RG (October 1995). "Transforming p21ras mutants and c-Ets-2 activate the cyclin D1 promoter through distinguishable regions". The Journal of Biological Chemistry. 270 (40): 23589–97. doi: 10.1074/jbc.270.40.23589 . PMID   7559524. S2CID   20805160.
  40. Jares P, Colomer D, Campo E (October 2007). "Genetic and molecular pathogenesis of mantle cell lymphoma: perspectives for new targeted therapeutics". Nature Reviews. Cancer. 7 (10): 750–62. doi:10.1038/nrc2230. PMID   17891190. S2CID   8244897.
  41. Thomas GR, Nadiminti H, Regalado J (December 2005). "Molecular predictors of clinical outcome in patients with head and neck squamous cell carcinoma". International Journal of Experimental Pathology. 86 (6): 347–63. doi:10.1111/j.0959-9673.2005.00447.x. PMC   2517451 . PMID   16309541.
  42. Jin M, Inoue S, Umemura T, Moriya J, Arakawa M, Nagashima K, Kato H (November 2001). "Cyclin D1, p16 and retinoblastoma gene product expression as a predictor for prognosis in non-small cell lung cancer at stages I and II". Lung Cancer. 34 (2): 207–18. doi:10.1016/s0169-5002(01)00225-2. PMID   11679179.
  43. Yamanouchi H, Furihata M, Fujita J, Murakami H, Yoshinouchi T, Takahara J, Ohtsuki Y (January 2001). "Expression of cyclin E and cyclin D1 in non-small cell lung cancers". Lung Cancer. 31 (1): 3–8. doi:10.1016/s0169-5002(00)00160-4. PMID   11162860.
  44. Ikeguchi M, Sakatani T, Ueta T, Kaibara N (September 2001). "Cyclin D1 expression and retinoblastoma gene protein (pRB) expression in esophageal squamous cell carcinoma". Journal of Cancer Research and Clinical Oncology. 127 (9): 531–6. doi:10.1007/s004320100265. PMID   11570573. S2CID   24010774.
  45. Izzo JG, Papadimitrakopoulou VA, Li XQ, Ibarguen H, Lee JS, Ro JY, El-Naggar A, Hong WK, Hittelman WN (November 1998). "Dysregulated cyclin D1 expression early in head and neck tumorigenesis: in vivo evidence for an association with subsequent gene amplification". Oncogene. 17 (18): 2313–22. doi: 10.1038/sj.onc.1202153 . PMID   9811462. S2CID   17852339.
  46. Bartkova J, Lukas J, Müller H, Strauss M, Gusterson B, Bartek J (February 1995). "Abnormal patterns of D-type cyclin expression and G1 regulation in human head and neck cancer". Cancer Research. 55 (4): 949–56. PMID   7850812.
  47. Gansauge S, Gansauge F, Ramadani M, Stobbe H, Rau B, Harada N, Beger HG (May 1997). "Overexpression of cyclin D1 in human pancreatic carcinoma is associated with poor prognosis". Cancer Research. 57 (9): 1634–7. PMID   9134998.
  48. Hall M, Peters G (1996). Genetic alterations of cyclins, cyclin-dependent kinases, and Cdk inhibitors in human cancer. Advances in Cancer Research. Vol. 68. pp. 67–108. doi:10.1016/s0065-230x(08)60352-8. ISBN   978-0-12-006668-1. PMID   8712071.
  49. Simpson DJ, Frost SJ, Bicknell JE, Broome JC, McNicol AM, Clayton RN, Farrell WE (August 2001). "Aberrant expression of G(1)/S regulators is a frequent event in sporadic pituitary adenomas". Carcinogenesis. 22 (8): 1149–54. doi: 10.1093/carcin/22.8.1149 . PMID   11470742.
  50. Hibberts NA, Simpson DJ, Bicknell JE, Broome JC, Hoban PR, Clayton RN, Farrell WE (August 1999). "Analysis of cyclin D1 (CCND1) allelic imbalance and overexpression in sporadic human pituitary tumors". Clinical Cancer Research. 5 (8): 2133–9. PMID   10473097.
  51. Barnes DM, Gillett CE (1998). "Cyclin D1 in breast cancer". Breast Cancer Research and Treatment. 52 (1–3): 1–15. doi:10.1023/a:1006103831990. PMID   10066068. S2CID   31241216.
  52. Fantl V, Smith R, Brookes S, Dickson C, Peters G (1993). "Chromosome 11q13 abnormalities in human breast cancer". Cancer Surveys. 18: 77–94. PMID   8013002.
  53. 1 2 Arnold A, Papanikolaou A (June 2005). "Cyclin D1 in breast cancer pathogenesis". Journal of Clinical Oncology. 23 (18): 4215–24. doi:10.1200/JCO.2005.05.064. PMID   15961768.
  54. Hodges LC, Cook JD, Lobenhofer EK, Li L, Bennett L, Bushel PR, Aldaz CM, Afshari CA, Walker CL (February 2003). "Tamoxifen functions as a molecular agonist inducing cell cycle-associated genes in breast cancer cells". Molecular Cancer Research. 1 (4): 300–11. PMID   12612058.
  55. Kenny FS, Hui R, Musgrove EA, Gee JM, Blamey RW, Nicholson RI, Sutherland RL, Robertson JF (August 1999). "Overexpression of cyclin D1 messenger RNA predicts for poor prognosis in estrogen receptor-positive breast cancer". Clinical Cancer Research. 5 (8): 2069–76. PMID   10473088.
  56. Amin HM, McDonnell TJ, Medeiros LJ, Rassidakis GZ, Leventaki V, O'Connor SL, Keating MJ, Lai R (April 2003). "Characterization of 4 mantle cell lymphoma cell lines". Archives of Pathology & Laboratory Medicine. 127 (4): 424–31. doi:10.5858/2003-127-0424-COMCLC. PMID   12683869.
  57. Bergsagel PL, Kuehl WM (September 2001). "Chromosome translocations in multiple myeloma". Oncogene. 20 (40): 5611–22. doi: 10.1038/sj.onc.1204641 . PMID   11607813. S2CID   19937243.
  58. Specht K, Haralambieva E, Bink K, Kremer M, Mandl-Weber S, Koch I, Tomer R, Hofler H, Schuuring E, Kluin PM, Fend F, Quintanilla-Martinez L (August 2004). "Different mechanisms of cyclin D1 overexpression in multiple myeloma revealed by fluorescence in situ hybridization and quantitative analysis of mRNA levels". Blood. 104 (4): 1120–6. doi: 10.1182/blood-2003-11-3837 . PMID   15090460. S2CID   24192626.
  59. Musgrove EA (March 2006). "Cyclins: roles in mitogenic signaling and oncogenic transformation". Growth Factors. 24 (1): 13–9. doi:10.1080/08977190500361812. PMID   16393691. S2CID   21082281.
  60. Dragnev KH, Petty WJ, Shah S, Biddle A, Desai NB, Memoli V, Rigas JR, Dmitrovsky E (December 2005). "Bexarotene and erlotinib for aerodigestive tract cancer". Journal of Clinical Oncology. 23 (34): 8757–64. doi:10.1200/JCO.2005.01.9521. PMID   16314636.
  61. Kim ES, Lee JJ, Wistuba II (June 2011). "Cotargeting cyclin D1 starts a new chapter in lung cancer prevention and therapy". Cancer Prevention Research. 4 (6): 779–82. doi: 10.1158/1940-6207.CAPR-11-0143 . PMID   21636543. S2CID   12781005.
  62. Boyle JO, Langenfeld J, Lonardo F, Sekula D, Reczek P, Rusch V, Dawson MI, Dmitrovsky E (February 1999). "Cyclin D1 proteolysis: a retinoid chemoprevention signal in normal, immortalized, and transformed human bronchial epithelial cells". Journal of the National Cancer Institute. 91 (4): 373–9. doi: 10.1093/jnci/91.4.373 . PMID   10050872.
  63. Mori J, Takahashi-Yanaga F, Miwa Y, Watanabe Y, Hirata M, Morimoto S, Shirasuna K, Sasaguri T (November 2005). "Differentiation-inducing factor-1 induces cyclin D1 degradation through the phosphorylation of Thr286 in squamous cell carcinoma". Experimental Cell Research. 310 (2): 426–33. doi:10.1016/j.yexcr.2005.07.024. PMID   16153639.
  64. Baliga BS, Pronczuk AW, Munro HN (August 1969). "Mechanism of cycloheximide inhibition of protein synthesis in a cell-free system prepared from rat liver". The Journal of Biological Chemistry. 244 (16): 4480–9. doi: 10.1016/S0021-9258(18)94343-7 . PMID   5806588.
  65. Obrig TG, Culp WJ, McKeehan WL, Hardesty B (January 1971). "The mechanism by which cycloheximide and related glutarimide antibiotics inhibit peptide synthesis on reticulocyte ribosomes". The Journal of Biological Chemistry. 246 (1): 174–81. doi: 10.1016/S0021-9258(18)62546-3 . PMID   5541758.
  66. Vigushin DM, Coombes RC (January 2002). "Histone deacetylase inhibitors in cancer treatment". Anti-Cancer Drugs. 13 (1): 1–13. doi:10.1097/00001813-200201000-00001. PMID   11914636.
  67. Lapenna S, Giordano A (July 2009). "Cell cycle kinases as therapeutic targets for cancer". Nature Reviews. Drug Discovery. 8 (7): 547–66. doi:10.1038/nrd2907. PMID   19568282. S2CID   7417169.
  68. Shapiro GI (April 2006). "Cyclin-dependent kinase pathways as targets for cancer treatment". Journal of Clinical Oncology. 24 (11): 1770–83. doi:10.1200/JCO.2005.03.7689. PMID   16603719.
  69. 1 2 Petre-Draviam CE, Williams EB, Burd CJ, Gladden A, Moghadam H, Meller J, Diehl JA, Knudsen KE (January 2005). "A central domain of cyclin D1 mediates nuclear receptor corepressor activity". Oncogene. 24 (3): 431–44. doi: 10.1038/sj.onc.1208200 . PMID   15558026. S2CID   21812009.
  70. Knudsen KE, Cavenee WK, Arden KC (May 1999). "D-type cyclins complex with the androgen receptor and inhibit its transcriptional transactivation ability". Cancer Research. 59 (10): 2297–301. PMID   10344732.
  71. 1 2 Wang C, Fan S, Li Z, Fu M, Rao M, Ma Y, Lisanti MP, Albanese C, Katzenellenbogen BS, Kushner PJ, Weber B, Rosen EM, Pestell RG (August 2005). "Cyclin D1 antagonizes BRCA1 repression of estrogen receptor alpha activity". Cancer Research. 65 (15): 6557–67. doi: 10.1158/0008-5472.CAN-05-0486 . PMID   16061635.
  72. 1 2 Casimiro MC, Wang C, Li Z, Di Sante G, Willmart NE, Addya S, Chen L, Liu Y, Lisanti MP, Pestell RG (September 2013). "Cyclin D1 determines estrogen signaling in the mammary gland in vivo". Molecular Endocrinology. 27 (9): 1415–28. doi:10.1210/me.2013-1065. PMC   3753428 . PMID   23864650.
  73. Xia C, Bao Z, Tabassam F, Ma W, Qiu M, Hua S, Liu M (July 2000). "GCIP, a novel human grap2 and cyclin D interacting protein, regulates E2F-mediated transcriptional activity". The Journal of Biological Chemistry. 275 (27): 20942–8. doi: 10.1074/jbc.M002598200 . PMID   10801854. S2CID   20433975.
  74. 1 2 Sugimoto M, Nakamura T, Ohtani N, Hampson L, Hampson IN, Shimamoto A, Furuichi Y, Okumura K, Niwa S, Taya Y, Hara E (November 1999). "Regulation of CDK4 activity by a novel CDK4-binding protein, p34(SEI-1)". Genes & Development. 13 (22): 3027–33. doi:10.1101/gad.13.22.3027. PMC   317153 . PMID   10580009.
  75. Serrano M, Hannon GJ, Beach D (December 1993). "A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4". Nature. 366 (6456): 704–7. Bibcode:1993Natur.366..704S. doi:10.1038/366704a0. PMID   8259215. S2CID   4368128.
  76. 1 2 Lin J, Jinno S, Okayama H (April 2001). "Cdk6-cyclin D3 complex evades inhibition by inhibitor proteins and uniquely controls cell's proliferation competence". Oncogene. 20 (16): 2000–9. doi: 10.1038/sj.onc.1204375 . PMID   11360184. S2CID   25204152.
  77. Taulés M, Rius E, Talaya D, López-Girona A, Bachs O, Agell N (December 1998). "Calmodulin is essential for cyclin-dependent kinase 4 (Cdk4) activity and nuclear accumulation of cyclin D1-Cdk4 during G1". The Journal of Biological Chemistry. 273 (50): 33279–86. doi: 10.1074/jbc.273.50.33279 . PMID   9837900. S2CID   36068143.
  78. Cariou S, Donovan JC, Flanagan WM, Milic A, Bhattacharya N, Slingerland JM (August 2000). "Down-regulation of p21WAF1/CIP1 or p27Kip1 abrogates antiestrogen-mediated cell cycle arrest in human breast cancer cells". Proceedings of the National Academy of Sciences of the United States of America. 97 (16): 9042–6. Bibcode:2000PNAS...97.9042C. doi: 10.1073/pnas.160016897 . PMC   16818 . PMID   10908655.
  79. Coleman KG, Wautlet BS, Morrissey D, Mulheron J, Sedman SA, Brinkley P, Price S, Webster KR (July 1997). "Identification of CDK4 sequences involved in cyclin D1 and p16 binding". The Journal of Biological Chemistry. 272 (30): 18869–74. doi: 10.1074/jbc.272.30.18869 . PMID   9228064. S2CID   37191598.
  80. Neuman E, Ladha MH, Lin N, Upton TM, Miller SJ, DiRenzo J, Pestell RG, Hinds PW, Dowdy SF, Brown M, Ewen ME (September 1997). "Cyclin D1 stimulation of estrogen receptor transcriptional activity independent of cdk4". Molecular and Cellular Biology. 17 (9): 5338–47. doi:10.1128/MCB.17.9.5338. PMC   232384 . PMID   9271411.
  81. 1 2 Lin HM, Zhao L, Cheng SY (August 2002). "Cyclin D1 Is a Ligand-independent Co-repressor for Thyroid Hormone Receptors". The Journal of Biological Chemistry. 277 (32): 28733–41. doi: 10.1074/jbc.M203380200 . PMID   12048199. S2CID   30676926.
  82. Ratineau C, Petry MW, Mutoh H, Leiter AB (March 2002). "Cyclin D1 represses the basic helix-loop-helix transcription factor, BETA2/NeuroD". The Journal of Biological Chemistry. 277 (11): 8847–53. doi: 10.1074/jbc.M110747200 . PMID   11788592. S2CID   42467757.
  83. Zwijsen RM, Buckle RS, Hijmans EM, Loomans CJ, Bernards R (November 1998). "Ligand-independent recruitment of steroid receptor coactivators to estrogen receptor by cyclin D1". Genes & Development. 12 (22): 3488–98. doi:10.1101/gad.12.22.3488. PMC   317237 . PMID   9832502.
  84. Wang C, Li Z, Lu Y, Du R, Katiyar S, Yang J, Fu M, Leader JE, Quong A, Novikoff PM, Pestell RG (August 2006). "Cyclin D1 repression of nuclear respiratory factor 1 integrates nuclear DNA synthesis and mitochondrial function". Proceedings of the National Academy of Sciences of the United States of America. 103 (31): 11567–72. Bibcode:2006PNAS..10311567W. doi: 10.1073/pnas.0603363103 . PMC   1518800 . PMID   16864783.
  85. Fu M, Wang C, Rao M, Wu X, Bouras T, Zhang X, Li Z, Jiao X, Yang J, Li A, Perkins ND, Thimmapaya B, Kung AL, Munoz A, Giordano A, Lisanti MP, Pestell RG (August 2005). "Cyclin D1 represses p300 transactivation through a cyclin-dependent kinase-independent mechanism". The Journal of Biological Chemistry. 280 (33): 29728–42. doi: 10.1074/jbc.M503188200 . PMID   15951563. S2CID   23571294.
  86. Meng H, Tian L, Zhou J, Li Z, Jiao X, Li WW, Plomann M, Xu Z, Lisanti MP, Wang C, Pestell RG (January 2011). "PACSIN 2 represses cellular migration through direct association with cyclin D1 but not its alternate splice form cyclin D1b". Cell Cycle. 10 (1): 73–81. doi:10.4161/cc.10.1.14243. PMC   3048077 . PMID   21200149.
  87. Matsuoka S, Yamaguchi M, Matsukage A (April 1994). "D-type cyclin-binding regions of proliferating cell nuclear antigen". The Journal of Biological Chemistry. 269 (15): 11030–6. doi: 10.1016/S0021-9258(19)78087-9 . PMID   7908906.
  88. Xiong Y, Zhang H, Beach D (August 1993). "Subunit rearrangement of the cyclin-dependent kinases is associated with cellular transformation". Genes & Development. 7 (8): 1572–83. doi: 10.1101/gad.7.8.1572 . PMID   8101826.
  89. Wang C, Pattabiraman N, Zhou JN, Fu M, Sakamaki T, Albanese C, Li Z, Wu K, Hulit J, Neumeister P, Novikoff PM, Brownlee M, Scherer PE, Jones JG, Whitney KD, Donehower LA, Harris EL, Rohan T, Johns DC, Pestell RG (September 2003). "Cyclin D1 repression of peroxisome proliferator-activated receptor gamma expression and transactivation". Molecular and Cellular Biology. 23 (17): 6159–73. doi:10.1128/mcb.23.17.6159-6173.2003. PMC   180960 . PMID   12917338.
  90. Li Z, Jiao X, Wang C, Shirley LA, Elsaleh H, Dahl O, Wang M, Soutoglou E, Knudsen ES, Pestell RG (November 2010). "Alternative cyclin D1 splice forms differentially regulate the DNA damage response". Cancer Research. 70 (21): 8802–11. doi:10.1158/0008-5472.CAN-10-0312. PMC   2970762 . PMID   20940395.
  91. 1 2 Siegert JL, Rushton JJ, Sellers WR, Kaelin WG, Robbins PD (November 2000). "Cyclin D1 suppresses retinoblastoma protein-mediated inhibition of TAFII250 kinase activity". Oncogene. 19 (50): 5703–11. doi: 10.1038/sj.onc.1203966 . PMID   11126356. S2CID   1413527.
  92. Dowdy SF, Hinds PW, Louie K, Reed SI, Arnold A, Weinberg RA (May 1993). "Physical interaction of the retinoblastoma protein with human D cyclins". Cell. 73 (3): 499–511. doi:10.1016/0092-8674(93)90137-f. PMID   8490963. S2CID   24708871.
  93. Adnane J, Shao Z, Robbins PD (January 1999). "Cyclin D1 associates with the TBP-associated factor TAF(II)250 to regulate Sp1-mediated transcription". Oncogene. 18 (1): 239–47. doi: 10.1038/sj.onc.1202297 . PMID   9926939. S2CID   38863669.

Further reading