Amphibious fish

Last updated
Mudskippers (Periophthalmus gracilis shown) are among the most land adapted of fish (excepting, from a cladistic perspective, tetrapods), and are able to spend days moving about out of water. Periophthalmus gracilis.jpg
Mudskippers ( Periophthalmus gracilis shown) are among the most land adapted of fish (excepting, from a cladistic perspective, tetrapods), and are able to spend days moving about out of water.

Amphibious fish are fish that are able to leave water for extended periods of time. About 11 distantly related genera of fish are considered amphibious. This suggests that many fish genera independently evolved amphibious traits, a process known as convergent evolution. These fish use a range of methods for land movement, such as lateral undulation, tripod-like walking (using paired fins and tail), and jumping. Many of these methods of locomotion incorporate multiple combinations of pectoral-, pelvic-, and tail-fin movement.

Contents

Many ancient fish had lung-like organs, and a few, such as the lungfish and bichir, still do. Some of these ancient "lunged" fish were the ancestors of tetrapods. In most recent fish species, though, these organs evolved into the swim bladders, which help control buoyancy. Having no lung-like organs, modern amphibious fish and many fish in oxygen-poor water use other methods, such as their gills or their skin to breathe air. Amphibious fish may also have eyes adapted to allow them to see clearly in air, despite the refractive index differences between air and water.

List of amphibious fish

Lung breathers

Gill or skin breathers

See also

Related Research Articles

<span class="mw-page-title-main">Swim bladder</span> Gas-filled organ that contributes to the ability of a fish to control its buoyancy

The swim bladder, gas bladder, fish maw, or air bladder is an internal gas-filled organ in bony fish that functions to modulate buoyancy, and thus allowing the fish to stay at desired water depth without having to maintain lift via swimming, which expends more energy. Also, the dorsal position of the swim bladder means that the expansion of the bladder moves the center of mass downwards, allowing it to act as a stabilizing agent in some species. Additionally, the swim bladder functions as a resonating chamber, to produce or receive sound.

<span class="mw-page-title-main">Lungfish</span> Type of lobefinned fishes

Lungfish are freshwater vertebrates belonging to the class Dipnoi. Lungfish are best known for retaining ancestral characteristics within the Osteichthyes, including the ability to breathe air, and ancestral structures within Sarcopterygii, including the presence of lobed fins with a well-developed internal skeleton. Lungfish represent the closest living relatives of the tetrapods. The mouths of lungfish typically bear tooth plates, which are used to crush hard shelled organisms.

<span class="mw-page-title-main">Sarcopterygii</span> Clade of fishes

Sarcopterygii — sometimes considered synonymous with Crossopterygii — is a clade of vertebrate animals which includes a group of bony fish commonly referred to as lobe-finned fish. These vertebrates are characterised by prominent muscular limb buds (lobes) within their fins, which are supported by articulated appendicular skeletons. This is in contrast to the other clade of bony fish, the Actinopterygii, which have only skin-covered bony spines supporting the fins.

<span class="mw-page-title-main">Bichir</span> Family of archaic-looking ray-finned fishes

Bichirs and the reedfish comprise Polypteridae, a family of archaic ray-finned fishes and the only family in the order Polypteriformes.

<span class="mw-page-title-main">Bowfin</span> Species of ray-finned fish

The bowfin is a ray-finned fish native to North America. Common names include mudfish, mud pike, dogfish, grindle, grinnel, swamp trout, and choupique. It is regarded as a relict, being one of only two surviving species of the Halecomorphi, a group of fish that first appeared during the Early Triassic, around 250 million years ago. The bowfin is often considered a "living fossil" because they have retained some morphological characteristics of their early ancestors. It is one of two species in the genus Amia, along with Amia ocellicauda, the eyespot bowfin. The closest living relatives of bowfins are gars, with the two groups being united in the clade Holostei.

<span class="mw-page-title-main">Aquatic animal</span> Animal living mostly or entirely in water

An aquatic animal is any animal, whether vertebrate or invertebrate, that lives in a body of water for all or most of its lifetime. Aquatic animals generally conduct gas exchange in water by extracting dissolved oxygen via specialised respiratory organs called gills, through the skin or across enteral mucosae, although some are evolved from terrestrial ancestors that re-adapted to aquatic environments, in which case they actually use lungs to breathe air and are essentially holding their breath when living in water. Some species of gastropod mollusc, such as the eastern emerald sea slug, are even capable of kleptoplastic photosynthesis via endosymbiosis with ingested yellow-green algae.

<span class="mw-page-title-main">South American lungfish</span> Species of fish

The South American lungfish, also known as the American mud-fish and scaly salamanderfish, is the single species of lungfish found in swamps and slow-moving waters of the Amazon, Paraguay, and lower Paraná River basins in South America. Notable as an obligate air-breather, it is the sole member of its family Lepidosirenidae, although some authors also place Protopterus in the family. In Brazil, it is known by the indigenous language Tupi name piramboia, which means "snake-fish", and synonyms pirarucu-bóia, traíra-bóia, and caramuru.

<i>Protopterus</i> Genus of Lungfish

Protopterus is the genus of four species of lungfish found in Africa. Protopterus is considered the sole genus in the family Protopteridae, which is grouped with Lepidosiren in the order Lepidosireniformes.

<i>Panderichthys</i> Extinct genus of tetrapodomorphs

Panderichthys is a genus of extinct sarcopterygian from the late Devonian period, about 380 Mya. Panderichthys, which was recovered from Frasnian deposits in Latvia, is represented by two species. P. stolbovi is known only from some snout fragments and an incomplete lower jaw. P. rhombolepis is known from several more complete specimens. Although it probably belongs to a sister group of the earliest tetrapods, Panderichthys exhibits a range of features transitional between tristichopterid lobe-fin fishes and early tetrapods. It is named after the German-Baltic paleontologist Christian Heinrich Pander. Possible tetrapod tracks dating back to before the appearance of Panderichthys in the fossil record were reported in 2010, which suggests that Panderichthys is not a direct ancestor of tetrapods, but nonetheless shows the traits that evolved during the fish-tetrapod evolution

<span class="mw-page-title-main">Mudskipper</span> Subfamily of fishes

Mudskippers are any of the 23 extant species of amphibious fish from the subfamily Oxudercinae of the goby family Oxudercidae. They are known for their unusual body shapes, preferences for semiaquatic habitats, limited terrestrial locomotion and jumping, and the ability to survive prolonged periods of time both in and out of water.

<span class="mw-page-title-main">Fish</span> Gill-bearing non-tetrapod aquatic vertebrates

A fish is an aquatic, anamniotic, gill-bearing vertebrate animal with swimming fins and a hard skull, but lacking limbs with digits. Fish can be grouped into the more basal jawless fish and the more common jawed fish, the latter including all living cartilaginous and bony fish, as well as the extinct placoderms and acanthodians. In a break to the long tradition of grouping all fish into a single class (Pisces), contemporary phylogenetics views fish as a paraphyletic group.

<span class="mw-page-title-main">Walking fish</span> Fish species with the ability to travel over land for extended period of time

A walking fish, or ambulatory fish, is a fish that is able to travel over land for extended periods of time. Some other modes of non-standard fish locomotion include "walking" along the sea floor, for example, in handfish or frogfish.

<span class="mw-page-title-main">Banded knifefish</span> Species of fish

The banded knifefish is a species of gymniform knifefish native to a wide range of freshwater habitats in South America. It is the most widespread species of Gymnotus, but it has frequently been confused with several relatives, including some found outside its range like the Central America G. maculosus. The English name "banded knifefish" is sometimes used for the entire genus Gymnotus instead of only the species G. carapo.

<span class="mw-page-title-main">Giant mudskipper</span> Species of fish

The giant mudskipper is a species of mudskipper native to the tropical shores of the eastern Indian Ocean and the western Pacific Ocean where it occurs in marine, brackish and fresh waters. It is most frequently found along muddy shores in estuaries as well as in the tidal zones of rivers. It lives in burrows that it constructs in higher grounds of the intertidal zone, which are typically filled with both water and air. During warmer seasons, it is typically active outside of its burrow during low tide. It is an obligate air-breather and is capable of drowning without sufficient access to air, so it spends much of its life on land.

<span class="mw-page-title-main">West African lungfish</span> Species of fish

The West African lungfish, also known as the Tana lungfish or simply African lungfish, is a species of African lungfish. It is found in a wide range of freshwater habitats in West and Middle Africa, as well as the northern half of Southern Africa.

<span class="mw-page-title-main">Fish gill</span> Organ that allows fish to breathe underwater

Fish gills are organs that allow fish to breathe underwater. Most fish exchange gases like oxygen and carbon dioxide using gills that are protected under gill covers (operculum) on both sides of the pharynx (throat). Gills are tissues that are like short threads, protein structures called filaments. These filaments have many functions including the transfer of ions and water, as well as the exchange of oxygen, carbon dioxide, acids and ammonia. Each filament contains a capillary network that provides a large surface area for exchanging oxygen and carbon dioxide.

<span class="mw-page-title-main">Fish physiology</span> Scientific study of how the component parts of fish function together in the living fish

Fish physiology is the scientific study of how the component parts of fish function together in the living fish. It can be contrasted with fish anatomy, which is the study of the form or morphology of fishes. In practice, fish anatomy and physiology complement each other, the former dealing with the structure of a fish, its organs or component parts and how they are put together, such as might be observed on the dissecting table or under the microscope, and the latter dealing with how those components function together in the living fish.

<span class="mw-page-title-main">Evolution of tetrapods</span> Evolution of four legged vertebrates and their derivatives

The evolution of tetrapods began about 400 million years ago in the Devonian Period with the earliest tetrapods evolved from lobe-finned fishes. Tetrapods are categorized as animals in the biological superclass Tetrapoda, which includes all living and extinct amphibians, reptiles, birds, and mammals. While most species today are terrestrial, little evidence supports the idea that any of the earliest tetrapods could move about on land, as their limbs could not have held their midsections off the ground and the known trackways do not indicate they dragged their bellies around. Presumably, the tracks were made by animals walking along the bottoms of shallow bodies of water. The specific aquatic ancestors of the tetrapods, and the process by which land colonization occurred, remain unclear. They are areas of active research and debate among palaeontologists at present.

<span class="mw-page-title-main">Electric eel</span> Genus of fishes in South America

The electric eels are a genus, Electrophorus, of neotropical freshwater fish from South America in the family Gymnotidae. They are known for their ability to stun their prey by generating electricity, delivering shocks at up to 860 volts. Their electrical capabilities were first studied in 1775, contributing to the invention of the electric battery in 1800.

References

  1. "J.B. Graham Air-breathing fishes. Evolution, diversity and adaptation, xi, 299p. San Diego, California: Academic Press, 1997". Journal of the Marine Biological Association of the United Kingdom. 77 (4): 1265. November 1997. doi:10.1017/s0025315400038893. ISSN   0025-3154.
  2. Ord, T. J.; Summers, T. C.; Noble, M. M.; Fulton, C. J. (2017-03-02). "Ecological release from aquatic predation is associated with the emergence of marine blenny fishes onto land". The American Naturalist. 189 (5): 570–579. Bibcode:2017ANat..189..570O. doi:10.1086/691155. hdl: 1885/237254 . PMID   28410030. S2CID   206004644.
  3. Keim, Brandon (2010-06-21). "Video: How Leaping Fish Species Left the Water — For Good". Wired. Archived from the original on 2010-06-24.
  4. "Clinocottus analis summary page". FishBase.
  5. "The mudskipper - Homepage". www.themudskipper.org.
  6. Wicaksono, A.; Hidayat, S.; Retnoaji, B.; Alam, P. (2020). "The water-hopping kinematics of the tree-climbing fish, Periophthalmus variabilis" (PDF). Zoology. 139: 125750. Bibcode:2020Zool..13925750W. doi:10.1016/j.zool.2020.125750. PMID   32086143. S2CID   211246340.
  7. Froese, Rainer. "Echidna catenata (Bloch, 1795)". FishBase. Retrieved 2014-05-10.
  8. African fish leaps for land bugs on BBC News
  9. Johansen, Kjell; Lenfant, Claude; Knut-Schmidt, Nielsen; Petersen, Jorge A (June 1968). "Gas exchange and control of breathing in the electric eel, Electrophorus electricus". Zeitschrift für vergleichende Physiologie. 61 (2): 137–163. doi:10.1007/BF00341112. S2CID   22364103 . Retrieved 30 May 2022.
  10. Liem, Karel F; Eclancher, Bernard; Fink, William L (Jan–Feb 1984). "Aerial Respiration in the Banded Knife Fish Gymnotus carapo (Teleostei: Gymnotoidei)". Physiological Zoology. 57 (1): 185–195. doi:10.1086/physzool.57.1.30155979. JSTOR   30155979. S2CID   100899106 . Retrieved 30 May 2022.
  11. Farber, Jay P; Rahn, Hermann (May 1970). "Gas exchange between air and water and the ventilation pattern in the electric eel". Respiration Physiology. 9 (2): 151–161. doi:10.1016/0034-5687(70)90067-8. PMID   5445180 . Retrieved 30 May 2022.