A species (pl.: species) is a population of organisms in which any two individuals of the appropriate sexes or mating types can produce fertile offspring, typically by sexual reproduction. [1] It is the basic unit of classification and a taxonomic rank of an organism, as well as a unit of biodiversity. Other ways of defining species include their karyotype, DNA sequence, morphology, behaviour, or ecological niche. In addition, palaeontologists use the concept of the chronospecies since fossil reproduction cannot be examined. The most recent rigorous estimate for the total number of species of eukaryotes is between 8 and 8.7 million. [2] [3] [4] About 14% of these had been described by 2011. [4] All species (except viruses) are given a two-part name, called a "binomial". The first part of a binomial is the genus to which the species belongs. The second part is called the specific name or the specific epithet (in botanical nomenclature, also sometimes in zoological nomenclature). For example, Boa constrictor is one of the species of the genus Boa , with constrictor being the species' epithet.
While the definitions given above may seem adequate at first glance, when looked at more closely they represent problematic species concepts. For example, the boundaries between closely related species become unclear with hybridisation, in a species complex of hundreds of similar microspecies, and in a ring species. Also, among organisms that reproduce only asexually, the concept of a reproductive species breaks down, and each clone is potentially a microspecies. Although none of these are entirely satisfactory definitions, and while the concept of species may not be a perfect model of life, it is still a useful tool to scientists and conservationists for studying life on Earth, regardless of the theoretical difficulties. If species were fixed and distinct from one another, there would be no problem, but evolutionary processes cause species to change. This obliges taxonomists to decide, for example, when enough change has occurred to declare that a lineage should be divided into multiple chronospecies, or when populations have diverged to have enough distinct character states to be described as cladistic species.
Species and higher taxa were seen from the time of Aristotle until the 18th century as categories that could be arranged in a hierarchy, the great chain of being. In the 19th century, biologists grasped that species could evolve given sufficient time. Charles Darwin's 1859 book On the Origin of Species explained how species could arise by natural selection. That understanding was greatly extended in the 20th century through genetics and population ecology. Genetic variability arises from mutations and recombination, while organisms themselves are mobile, leading to geographical isolation and genetic drift with varying selection pressures. Genes can sometimes be exchanged between species by horizontal gene transfer; new species can arise rapidly through hybridisation and polyploidy; and species may become extinct for a variety of reasons. Viruses are a special case, driven by a balance of mutation and selection, and can be treated as quasispecies.
Biologists and taxonomists have made many attempts to define species, beginning from morphology and moving towards genetics. Early taxonomists such as Linnaeus had no option but to describe what they saw: this was later formalised as the typological or morphological species concept. Ernst Mayr emphasised reproductive isolation, but this, like other species concepts, is hard or even impossible to test. [5] [6] Later biologists have tried to refine Mayr's definition with the recognition and cohesion concepts, among others. [7] Many of the concepts are quite similar or overlap, so they are not easy to count: the biologist R. L. Mayden recorded about 24 concepts, [8] and the philosopher of science John Wilkins counted 26. [5] Wilkins further grouped the species concepts into seven basic kinds of concepts: (1) agamospecies for asexual organisms (2) biospecies for reproductively isolated sexual organisms (3) ecospecies based on ecological niches (4) evolutionary species based on lineage (5) genetic species based on gene pool (6) morphospecies based on form or phenotype and (7) taxonomic species, a species as determined by a taxonomist. [9]
A typological species is a group of organisms in which individuals conform to certain fixed properties (a type, which may be defined by a chosen 'nominal species'), so that even pre-literate people often recognise the same taxon as do modern taxonomists. [11] [12] The clusters of variations or phenotypes within specimens (such as longer or shorter tails) would differentiate the species. This method was used as a "classical" method of determining species, such as with Linnaeus, early in evolutionary theory. However, different phenotypes are not necessarily different species (e.g. a four-winged Drosophila born to a two-winged mother is not a different species). Species named in this manner are called morphospecies. [13] [14]
In the 1970s, Robert R. Sokal, Theodore J. Crovello and Peter Sneath proposed a variation on the morphological species concept, a phenetic species, defined as a set of organisms with a similar phenotype to each other, but a different phenotype from other sets of organisms. [15] It differs from the morphological species concept in including a numerical measure of distance or similarity to cluster entities based on multivariate comparisons of a reasonably large number of phenotypic traits. [16]
A mate-recognition species is a group of sexually reproducing organisms that recognise one another as potential mates. [17] [18] Expanding on this to allow for post-mating isolation, a cohesion species is the most inclusive population of individuals having the potential for phenotypic cohesion through intrinsic cohesion mechanisms; no matter whether populations can hybridise successfully, they are still distinct cohesion species if the amount of hybridisation is insufficient to completely mix their respective gene pools. [19] A further development of the recognition concept is provided by the biosemiotic concept of species. [20]
In microbiology, genes can move freely even between distantly related bacteria, possibly extending to the whole bacterial domain. As a rule of thumb, microbiologists have assumed that members of Bacteria or Archaea with 16S ribosomal RNA gene sequences more similar than 97% to each other need to be checked by DNA–DNA hybridisation to decide if they belong to the same species. [21] This concept was narrowed in 2006 to a similarity of 98.7%. [22]
The average nucleotide identity (ANI) method quantifies genetic distance between entire genomes, using regions of about 10,000 base pairs. With enough data from genomes of one genus, algorithms can be used to categorize species, as for Pseudomonas avellanae in 2013, [23] and for all sequenced bacteria and archaea since 2020. [24] Observed ANI values among sequences appear to have an "ANI gap" at 85–95%, suggesting that a genetic boundary suitable for defining a species concept is present. [25]
DNA barcoding has been proposed as a way to distinguish species suitable even for non-specialists to use. [26] One of the barcodes is a region of mitochondrial DNA within the gene for cytochrome c oxidase. A database, Barcode of Life Data System, contains DNA barcode sequences from over 190,000 species. [27] [28] However, scientists such as Rob DeSalle have expressed concern that classical taxonomy and DNA barcoding, which they consider a misnomer, need to be reconciled, as they delimit species differently. [29] Genetic introgression mediated by endosymbionts and other vectors can further make barcodes ineffective in the identification of species. [30]
A phylogenetic or cladistic species is "the smallest aggregation of populations (sexual) or lineages (asexual) diagnosable by a unique combination of character states in comparable individuals (semaphoronts)". [31] The empirical basis – observed character states – provides the evidence to support hypotheses about evolutionarily divergent lineages that have maintained their hereditary integrity through time and space. [32] [33] [34] [35] Molecular markers may be used to determine diagnostic genetic differences in the nuclear or mitochondrial DNA of various species. [36] [31] [37] For example, in a study done on fungi, studying the nucleotide characters using cladistic species produced the most accurate results in recognising the numerous fungi species of all the concepts studied. [37] [38] Versions of the phylogenetic species concept that emphasise monophyly or diagnosability [39] may lead to splitting of existing species, for example in Bovidae, by recognising old subspecies as species, despite the fact that there are no reproductive barriers, and populations may intergrade morphologically. [40] Others have called this approach taxonomic inflation, diluting the species concept and making taxonomy unstable. [41] Yet others defend this approach, considering "taxonomic inflation" pejorative and labelling the opposing view as "taxonomic conservatism"; claiming it is politically expedient to split species and recognise smaller populations at the species level, because this means they can more easily be included as endangered in the IUCN red list and can attract conservation legislation and funding. [42]
Unlike the biological species concept, a cladistic species does not rely on reproductive isolation – its criteria are independent of processes that are integral in other concepts. [31] Therefore, it applies to asexual lineages. [36] [37] However, it does not always provide clear cut and intuitively satisfying boundaries between taxa, and may require multiple sources of evidence, such as more than one polymorphic locus, to give plausible results. [37]
An evolutionary species, suggested by George Gaylord Simpson in 1951, is "an entity composed of organisms which maintains its identity from other such entities through time and over space, and which has its own independent evolutionary fate and historical tendencies". [8] [43] This differs from the biological species concept in embodying persistence over time. Wiley and Mayden stated that they see the evolutionary species concept as "identical" to Willi Hennig's species-as-lineages concept, and asserted that the biological species concept, "the several versions" of the phylogenetic species concept, and the idea that species are of the same kind as higher taxa are not suitable for biodiversity studies (with the intention of estimating the number of species accurately). They further suggested that the concept works for both asexual and sexually-reproducing species. [44] A version of the concept is Kevin de Queiroz's "General Lineage Concept of Species". [45]
An ecological species is a set of organisms adapted to a particular set of resources, called a niche, in the environment. According to this concept, populations form the discrete phenetic clusters that we recognise as species because the ecological and evolutionary processes controlling how resources are divided up tend to produce those clusters. [46]
A genetic species as defined by Robert Baker and Robert Bradley is a set of genetically isolated interbreeding populations. This is similar to Mayr's Biological Species Concept, but stresses genetic rather than reproductive isolation. [47] In the 21st century, a genetic species could be established by comparing DNA sequences. Earlier, other methods were available, such as comparing karyotypes (sets of chromosomes) and allozymes (enzyme variants). [48]
An evolutionarily significant unit (ESU) or "wildlife species" [49] is a population of organisms considered distinct for purposes of conservation. [50]
In palaeontology, with only comparative anatomy (morphology) and histology [51] from fossils as evidence, the concept of a chronospecies can be applied. During anagenesis (evolution, not necessarily involving branching), some palaeontologists seek to identify a sequence of species, each one derived from the phyletically extinct one before through continuous, slow and more or less uniform change. In such a time sequence, some palaeontologists assess how much change is required for a morphologically distinct form to be considered a different species from its ancestors. [52] [53] [54] [55]
Viruses have enormous populations, are doubtfully living since they consist of little more than a string of DNA or RNA in a protein coat, and mutate rapidly. All of these factors make conventional species concepts largely inapplicable. [56] A viral quasispecies is a group of genotypes related by similar mutations, competing within a highly mutagenic environment, and hence governed by a mutation–selection balance. It is predicted that a viral quasispecies at a low but evolutionarily neutral and highly connected (that is, flat) region in the fitness landscape will outcompete a quasispecies located at a higher but narrower fitness peak in which the surrounding mutants are unfit, "the quasispecies effect" or the "survival of the flattest". There is no suggestion that a viral quasispecies resembles a traditional biological species. [57] [58] [59] The International Committee on Taxonomy of Viruses has since 1962 developed a universal taxonomic scheme for viruses; this has stabilised viral taxonomy. [60] [61] [62]
Most modern textbooks make use of Ernst Mayr's 1942 definition, [63] [64] known as the biological species concept, as a basis for further discussion on the definition of species. It is also called a reproductive or isolation concept. This defines a species as [65]
groups of actually or potentially interbreeding natural populations, which are reproductively isolated from other such groups. [65]
It has been argued that this definition is a natural consequence of the effect of sexual reproduction on the dynamics of natural selection. [66] [67] [68] [69] Mayr's use of the adjective "potentially" has been a point of debate; some interpretations exclude unusual or artificial matings that occur only in captivity, or that involve animals capable of mating but that do not normally do so in the wild. [65]
It is difficult to define a species in a way that applies to all organisms. [70] The debate about species concepts is called the species problem. [65] [71] [72] [73] The problem was recognised even in 1859, when Darwin wrote in On the Origin of Species :
I was much struck how entirely vague and arbitrary is the distinction between species and varieties. [74]
He went on to write:
No one definition has satisfied all naturalists; yet every naturalist knows vaguely what he means when he speaks of a species. Generally the term includes the unknown element of a distinct act of creation. [75]
Many authors have argued that a simple textbook definition, following Mayr's concept, works well for most multi-celled organisms, but breaks down in several situations:
Species identification is made difficult by discordance between molecular and morphological investigations; these can be categorised as two types: (i) one morphology, multiple lineages (e.g. morphological convergence, cryptic species) and (ii) one lineage, multiple morphologies (e.g. phenotypic plasticity, multiple life-cycle stages). [85] In addition, horizontal gene transfer (HGT) makes it difficult to define a species. [86] All species definitions assume that an organism acquires its genes from one or two parents very like the "daughter" organism, but that is not what happens in HGT. [87] There is strong evidence of HGT between very dissimilar groups of prokaryotes, and at least occasionally between dissimilar groups of eukaryotes, [86] including some crustaceans and echinoderms. [88]
The evolutionary biologist James Mallet concludes that
there is no easy way to tell whether related geographic or temporal forms belong to the same or different species. Species gaps can be verified only locally and at a point of time. One is forced to admit that Darwin's insight is correct: any local reality or integrity of species is greatly reduced over large geographic ranges and time periods. [19]
The botanist Brent Mishler [89] argued that the species concept is not valid, notably because gene flux decreases gradually rather than in discrete steps, which hampers objective delimitation of species. [90] Indeed, complex and unstable patterns of gene flux have been observed in cichlid teleosts of the East African Great Lakes. [91] Wilkins argued that "if we were being true to evolution and the consequent phylogenetic approach to taxa, we should replace it with a 'smallest clade' idea" (a phylogenetic species concept). [92] Mishler and Wilkins [93] and others [94] concur with this approach, even though this would raise difficulties in biological nomenclature. Wilkins cited the ichthyologist Charles Tate Regan's early 20th century remark that "a species is whatever a suitably qualified biologist chooses to call a species". [92] Wilkins noted that the philosopher Philip Kitcher called this the "cynical species concept", [95] and arguing that far from being cynical, it usefully leads to an empirical taxonomy for any given group, based on taxonomists' experience. [92] Other biologists have gone further and argued that we should abandon species entirely, and refer to the "Least Inclusive Taxonomic Units" (LITUs), [96] a view that would be coherent with current evolutionary theory. [94]
The species concept is further weakened by the existence of microspecies, groups of organisms, including many plants, with very little genetic variability, usually forming species aggregates. [97] For example, the dandelion Taraxacum officinale and the blackberry Rubus fruticosus are aggregates with many microspecies—perhaps 400 in the case of the blackberry and over 200 in the dandelion, [98] complicated by hybridisation, apomixis and polyploidy, making gene flow between populations difficult to determine, and their taxonomy debatable. [99] [100] [101] Species complexes occur in insects such as Heliconius butterflies, [102] vertebrates such as Hypsiboas treefrogs, [103] and fungi such as the fly agaric. [104]
Natural hybridisation presents a challenge to the concept of a reproductively isolated species, as fertile hybrids permit gene flow between two populations. For example, the carrion crow Corvus corone and the hooded crow Corvus cornix appear and are classified as separate species, yet they can hybridise where their geographical ranges overlap. [105]
A ring species is a connected series of neighbouring populations, each of which can sexually interbreed with adjacent related populations, but for which there exist at least two "end" populations in the series, which are too distantly related to interbreed, though there is a potential gene flow between each "linked" population. [106] Such non-breeding, though genetically connected, "end" populations may co-exist in the same region thus closing the ring. Ring species thus present a difficulty for any species concept that relies on reproductive isolation. [107] However, ring species are at best rare. Proposed examples include the herring gull–lesser black-backed gull complex around the North pole, the Ensatina eschscholtzii group of 19 populations of salamanders in America, [108] and the greenish warbler in Asia, [109] but many so-called ring species have turned out to be the result of misclassification leading to questions on whether there really are any ring species. [110] [111] [112] [113]
The commonly used names for kinds of organisms are often ambiguous: "cat" could mean the domestic cat, Felis catus , or the cat family, Felidae. Another problem with common names is that they often vary from place to place, so that puma, cougar, catamount, panther, painter and mountain lion all mean Puma concolor in various parts of America, while "panther" may also mean the jaguar (Panthera onca) of Latin America or the leopard (Panthera pardus) of Africa and Asia. In contrast, the scientific names of species are chosen to be unique and universal (except for some inter-code homonyms); they are in two parts used together: the genus as in Puma, and the specific epithet as in concolor. [114] [115]
A species is given a taxonomic name when a type specimen is described formally, in a publication that assigns it a unique scientific name. The description typically provides means for identifying the new species, which may not be based solely on morphology [116] (see cryptic species), differentiating it from other previously described and related or confusable species and provides a validly published name (in botany) or an available name (in zoology) when the paper is accepted for publication. The type material is usually held in a permanent repository, often the research collection of a major museum or university, that allows independent verification and the means to compare specimens. [117] [118] [119] Describers of new species are asked to choose names that, in the words of the International Code of Zoological Nomenclature, are "appropriate, compact, euphonious, memorable, and do not cause offence". [120]
Books and articles sometimes intentionally do not identify species fully, using the abbreviation "sp." in the singular or "spp." (standing for species pluralis, Latin for "multiple species") in the plural in place of the specific name or epithet (e.g. "Canis sp."). This commonly occurs when authors are confident that some individuals belong to a particular genus but are not sure to which exact species they belong, as is common in paleontology. [121]
Authors may also use "spp." as a short way of saying that something applies to many species within a genus, but not to all. If scientists mean that something applies to all species within a genus, they use the genus name without the specific name or epithet. The names of genera and species are usually printed in italics. However, abbreviations such as "sp." should not be italicised. [121]
When a species' identity is not clear, a specialist may use "cf." before the epithet to indicate that confirmation is required. The abbreviations "nr." (near) or "aff." (affine) may be used when the identity is unclear but when the species appears to be similar to the species mentioned after. [121]
With the rise of online databases, codes have been devised to provide identifiers for species that are already defined, including:
The naming of a particular species, including which genus (and higher taxa) it is placed in, is a hypothesis about the evolutionary relationships and distinguishability of that group of organisms. As further information comes to hand, the hypothesis may be corroborated or refuted. Sometimes, especially in the past when communication was more difficult, taxonomists working in isolation have given two distinct names to individual organisms later identified as the same species. When two species names are discovered to apply to the same species, the older species name is given priority and usually retained, and the newer name considered as a junior synonym, a process called synonymy . Dividing a taxon into multiple, often new, taxa is called splitting. Taxonomists are often referred to as "lumpers" or "splitters" by their colleagues, depending on their personal approach to recognising differences or commonalities between organisms. [126] [127] [121] The circumscription of taxa, considered a taxonomic decision at the discretion of cognizant specialists, is not governed by the Codes of Zoological or Botanical Nomenclature, in contrast to the PhyloCode, and contrary to what is done in several other fields, in which the definitions of technical terms, like geochronological units and geopolitical entities, are explicitly delimited. [128] [94]
The nomenclatural codes that guide the naming of species, including the ICZN for animals and the ICN for plants, do not make rules for defining the boundaries of the species. Research can change the boundaries, also known as circumscription, based on new evidence. Species may then need to be distinguished by the boundary definitions used, and in such cases the names may be qualified with sensu stricto ("in the narrow sense") to denote usage in the exact meaning given by an author such as the person who named the species, while the antonym sensu lato ("in the broad sense") denotes a wider usage, for instance including other subspecies. Other abbreviations such as "auct." ("author"), and qualifiers such as "non" ("not") may be used to further clarify the sense in which the specified authors delineated or described the species. [121] [129] [130]
Species are subject to change, whether by evolving into new species, [131] exchanging genes with other species, [132] merging with other species or by becoming extinct. [133]
The evolutionary process by which biological populations of sexually-reproducing organisms evolve to become distinct or reproductively isolated as species is called speciation. [134] [135] Charles Darwin was the first to describe the role of natural selection in speciation in his 1859 book The Origin of Species . [136] Speciation depends on a measure of reproductive isolation, a reduced gene flow. This occurs most easily in allopatric speciation, where populations are separated geographically and can diverge gradually as mutations accumulate. Reproductive isolation is threatened by hybridisation, but this can be selected against once a pair of populations have incompatible alleles of the same gene, as described in the Bateson–Dobzhansky–Muller model. [131] A different mechanism, phyletic speciation, involves one lineage gradually changing over time into a new and distinct form (a chronospecies), without increasing the number of resultant species. [137]
Horizontal gene transfer between organisms of different species, either through hybridisation, antigenic shift, or reassortment, is sometimes an important source of genetic variation. Viruses can transfer genes between species. Bacteria can exchange plasmids with bacteria of other species, including some apparently distantly related ones in different phylogenetic domains, making analysis of their relationships difficult, and weakening the concept of a bacterial species. [138] [86] [139] [132]
Louis-Marie Bobay and Howard Ochman suggest, based on analysis of the genomes of many types of bacteria, that they can often be grouped "into communities that regularly swap genes", in much the same way that plants and animals can be grouped into reproductively isolated breeding populations. Bacteria may thus form species, analogous to Mayr's biological species concept, consisting of asexually reproducing populations that exchange genes by homologous recombination. [140] [141]
A species is extinct when the last individual of that species dies, but it may be functionally extinct well before that moment. It is estimated that over 99 percent of all species that ever lived on Earth, some five billion species, are now extinct. Some of these were in mass extinctions such as those at the ends of the Ordovician, Devonian, Permian, Triassic and Cretaceous periods. Mass extinctions had a variety of causes including volcanic activity, climate change, and changes in oceanic and atmospheric chemistry, and they in turn had major effects on Earth's ecology, atmosphere, land surface and waters. [142] [143] Another form of extinction is through the assimilation of one species by another through hybridization. The resulting single species has been termed as a "compilospecies". [144]
Biologists and conservationists need to categorise and identify organisms in the course of their work. Difficulty assigning organisms reliably to a species constitutes a threat to the validity of research results, for example making measurements of how abundant a species is in an ecosystem moot. Surveys using a phylogenetic species concept reported 48% more species and accordingly smaller populations and ranges than those using nonphylogenetic concepts; this was termed "taxonomic inflation", [145] which could cause a false appearance of change to the number of endangered species and consequent political and practical difficulties. [146] [147] Some observers claim that there is an inherent conflict between the desire to understand the processes of speciation and the need to identify and to categorise. [147]
Conservation laws in many countries make special provisions to prevent species from going extinct. Hybridization zones between two species, one that is protected and one that is not, have sometimes led to conflicts between lawmakers, land owners and conservationists. One of the classic cases in North America is that of the protected northern spotted owl which hybridises with the unprotected California spotted owl and the barred owl; this has led to legal debates. [148]
It has been argued, that since species are not comparable, simply counting them is not a valid measure of biodiversity; alternative measures of phylogenetic biodiversity have been proposed. [149] [90] [150]
In his biology, Aristotle used the term γένος (génos) to mean a kind, such as a bird or fish, and εἶδος (eidos) to mean a specific form within a kind, such as (within the birds) the crane, eagle, crow, or sparrow. These terms were translated into Latin as "genus" and "species", though they do not correspond to the Linnean terms thus named; today the birds are a class, the cranes are a family, and the crows a genus. A kind was distinguished by its attributes; for instance, a bird has feathers, a beak, wings, a hard-shelled egg, and warm blood. A form was distinguished by being shared by all its members, the young inheriting any variations they might have from their parents. Aristotle believed all kinds and forms to be distinct and unchanging. More importantly, in Aristotle's works, the terms γένος (génos) and εἶδος (eidos) are relative; a taxon that is considered an eidos in a given context can be considered a génos in another, and be further subdivided into eide (plural of eidos). [151] [152] His approach remained influential until the Renaissance, [153] and still, to a lower extent, today. [154]
When observers in the Early Modern period began to develop systems of organization for living things, they placed each kind of animal or plant into a context. Many of these early delineation schemes would now be considered whimsical: schemes included consanguinity based on colour (all plants with yellow flowers) or behaviour (snakes, scorpions and certain biting ants). John Ray, an English naturalist, was the first to attempt a biological definition of species in 1686, as follows:
No surer criterion for determining species has occurred to me than the distinguishing features that perpetuate themselves in propagation from seed. Thus, no matter what variations occur in the individuals or the species, if they spring from the seed of one and the same plant, they are accidental variations and not such as to distinguish a species ... Animals likewise that differ specifically preserve their distinct species permanently; one species never springs from the seed of another nor vice versa. [155]
In the 18th century, the Swedish scientist Carl Linnaeus classified organisms according to shared physical characteristics, and not simply based upon differences. [156] Like many contemporary systematists, [157] [158] [159] he established the idea of a taxonomic hierarchy of classification based upon observable characteristics and intended to reflect natural relationships. [160] [161] At the time, however, it was still widely believed that there was no organic connection between species (except, possibly, between those of a given genus), [94] no matter how similar they appeared. This view was influenced by European scholarly and religious education, which held that the taxa had been created by God, forming an Aristotelian hierarchy, the scala naturae or great chain of being. However, whether or not it was supposed to be fixed, the scala (a ladder) inherently implied the possibility of climbing. [162]
In viewing evidence of hybridisation, Linnaeus recognised that species were not fixed and could change; he did not consider that new species could emerge and maintained a view of divinely fixed species that may alter through processes of hybridisation or acclimatisation. [163] By the 19th century, naturalists understood that species could change form over time, and that the history of the planet provided enough time for major changes. Jean-Baptiste Lamarck, in his 1809 Zoological Philosophy, described the transmutation of species, proposing that a species could change over time, in a radical departure from Aristotelian thinking. [164]
In 1859, Charles Darwin and Alfred Russel Wallace provided a compelling account of evolution and the formation of new species. Darwin argued that it was populations that evolved, not individuals, by natural selection from naturally occurring variation among individuals. [165] This required a new definition of species. Darwin concluded that species are what they appear to be: ideas, provisionally useful for naming groups of interacting individuals, writing:
I look at the term species as one arbitrarily given for the sake of convenience to a set of individuals closely resembling each other ... It does not essentially differ from the word variety, which is given to less distinct and more fluctuating forms. The term variety, again, in comparison with mere individual differences, is also applied arbitrarily, and for convenience sake. [166]
Evolution is the change in the heritable characteristics of biological populations over successive generations. It occurs when evolutionary processes such as natural selection and genetic drift act on genetic variation, resulting in certain characteristics becoming more or less common within a population over successive generations. The process of evolution has given rise to biodiversity at every level of biological organisation.
Microevolution is the change in allele frequencies that occurs over time within a population. This change is due to four different processes: mutation, selection, gene flow and genetic drift. This change happens over a relatively short amount of time compared to the changes termed macroevolution.
Macroevolution comprises the evolutionary processes and patterns which occur at and above the species level. In contrast, microevolution is evolution occurring within the population(s) of a single species. In other words, microevolution is the scale of evolution that is limited to intraspecific (within-species) variation, while macroevolution extends to interspecific (between-species) variation. The evolution of new species (speciation) is an example of macroevolution. This is the common definition for 'macroevolution' used by contemporary scientists. Although, the exact usage of the term has varied throughout history.
In biology, phylogenetics is the study of the evolutionary history of life using genetics, which is known as phylogenetic inference. It establishes the relationship between organisms with the empirical data and observed heritable traits of DNA sequences, protein amino acid sequences, and morphology. The results are a phylogenetic tree—a diagram setting the hypothetical relationships between organisms and their evolutionary history.
A phylogenetic tree, phylogeny or evolutionary tree is a graphical representation which shows the evolutionary history between a set of species or taxa during a specific time. In other words, it is a branching diagram or a tree showing the evolutionary relationships among various biological species or other entities based upon similarities and differences in their physical or genetic characteristics. In evolutionary biology, all life on Earth is theoretically part of a single phylogenetic tree, indicating common ancestry. Phylogenetics is the study of phylogenetic trees. The main challenge is to find a phylogenetic tree representing optimal evolutionary ancestry between a set of species or taxa. Computational phylogenetics focuses on the algorithms involved in finding optimal phylogenetic tree in the phylogenetic landscape.
Molecular phylogenetics is the branch of phylogeny that analyzes genetic, hereditary molecular differences, predominantly in DNA sequences, to gain information on an organism's evolutionary relationships. From these analyses, it is possible to determine the processes by which diversity among species has been achieved. The result of a molecular phylogenetic analysis is expressed in a phylogenetic tree. Molecular phylogenetics is one aspect of molecular systematics, a broader term that also includes the use of molecular data in taxonomy and biogeography.
Molecular evolution describes how inherited DNA and/or RNA change over evolutionary time, and the consequences of this for proteins and other components of cells and organisms. Molecular evolution is the basis of phylogenetic approaches to describing the tree of life. Molecular evolution overlaps with population genetics, especially on shorter timescales. Topics in molecular evolution include the origins of new genes, the genetic nature of complex traits, the genetic basis of adaptation and speciation, the evolution of development, and patterns and processes underlying genomic changes during evolution.
A polyphyletic group is an assemblage that includes organisms with mixed evolutionary origin but does not include their most recent common ancestor. The term is often applied to groups that share similar features known as homoplasies, which are explained as a result of convergent evolution. The arrangement of the members of a polyphyletic group is called a polyphyly. It is contrasted with monophyly and paraphyly.
Evolutionary biology is the subfield of biology that studies the evolutionary processes such as natural selection, common descent, and speciation that produced the diversity of life on Earth. In the 1930s, the discipline of evolutionary biology emerged through what Julian Huxley called the modern synthesis of understanding, from previously unrelated fields of biological research, such as genetics and ecology, systematics, and paleontology.
This is a list of topics in evolutionary biology.
Sequence homology is the biological homology between DNA, RNA, or protein sequences, defined in terms of shared ancestry in the evolutionary history of life. Two segments of DNA can have shared ancestry because of three phenomena: either a speciation event (orthologs), or a duplication event (paralogs), or else a horizontal gene transfer event (xenologs).
Molecular ecology is a subdiscipline of ecology that is concerned with applying molecular genetic techniques to ecological questions. It is virtually synonymous with the field of "Ecological Genetics" as pioneered by Theodosius Dobzhansky, E. B. Ford, Godfrey M. Hewitt, and others. Molecular ecology is related to the fields of population genetics and conservation genetics.
Evidence of common descent of living organisms has been discovered by scientists researching in a variety of disciplines over many decades, demonstrating that all life on Earth comes from a single ancestor. This forms an important part of the evidence on which evolutionary theory rests, demonstrates that evolution does occur, and illustrates the processes that created Earth's biodiversity. It supports the modern evolutionary synthesis—the current scientific theory that explains how and why life changes over time. Evolutionary biologists document evidence of common descent, all the way back to the last universal common ancestor, by developing testable predictions, testing hypotheses, and constructing theories that illustrate and describe its causes.
In biology, a species complex is a group of closely related organisms that are so similar in appearance and other features that the boundaries between them are often unclear. The taxa in the complex may be able to hybridize readily with each other, further blurring any distinctions. Terms that are sometimes used synonymously but have more precise meanings are cryptic species for two or more species hidden under one species name, sibling species for two species that are each other's closest relative, and species flock for a group of closely related species that live in the same habitat. As informal taxonomic ranks, species group, species aggregate, macrospecies, and superspecies are also in use.
An internal node of a phylogenetic tree is described as a polytomy or multifurcation if (i) it is in a rooted tree and is linked to three or more child subtrees or (ii) it is in an unrooted tree and is attached to four or more branches. A tree that contains any multifurcations can be described as a multifurcating tree.
Incomplete lineage sorting (ILS) (also referred to as hemiplasy, deep coalescence, retention of ancestral polymorphism, or trans-species polymorphism) is a phenomenon in evolutionary biology and population genetics that results in discordance between species and gene trees. By contrast, complete lineage sorting results in concordant species and gene trees. ILS occurs in the context of a gene in an ancestral species which exists in multiple alleles. If a speciation event occurs in this situation, either complete lineage sorting will occur, and both daughter species will inherit all alleles of the gene in question, or incomplete lineage sorting will occur, when one or both daughter species inherits a subset of alleles present in the parental species. For example, if two alleles of a gene are present and a speciation event occurs, one of the two daughter species might inherit both alleles, but the second daughter species only inherits one of the two alleles. In this case, incomplete lineage sorting has occurred.
The following outline is provided as an overview of and topical guide to evolution:
Reticulate evolution, or network evolution is the origination of a lineage through the partial merging of two ancestor lineages, leading to relationships better described by a phylogenetic network than a bifurcating tree. Reticulate patterns can be found in the phylogenetic reconstructions of biodiversity lineages obtained by comparing the characteristics of organisms. Reticulation processes can potentially be convergent and divergent at the same time. Reticulate evolution indicates the lack of independence between two evolutionary lineages. Reticulation affects survival, fitness and speciation rates of species.
This glossary of genetics and evolutionary biology is a list of definitions of terms and concepts used in the study of genetics and evolutionary biology, as well as sub-disciplines and related fields, with an emphasis on classical genetics, quantitative genetics, population biology, phylogenetics, speciation, and systematics. It has been designed as a companion to Glossary of cellular and molecular biology, which contains many overlapping and related terms; other related glossaries include Glossary of biology and Glossary of ecology.
Microbial DNA barcoding is the use of DNA metabarcoding to characterize a mixture of microorganisms. DNA metabarcoding is a method of DNA barcoding that uses universal genetic markers to identify DNA of a mixture of organisms.
{{cite journal}}
: External link in |title=
(help)I defend a view of the species category, pluralistic realism, which is designed to do justice to the insights of many different groups of systematists.
{{cite book}}
: CS1 maint: numeric names: authors list (link)