This article may be in need of reorganization to comply with Wikipedia's layout guidelines .(July 2018) |
Part of a series on |
Human growth and development |
---|
Stages |
Biological milestones |
Development and psychology |
A motor skill is a function that involves specific movements of the body's muscles to perform a certain task. These tasks could include walking, running, or riding a bike. In order to perform this skill, the body's nervous system, muscles, and brain have to all work together. [1] The goal of motor skill is to optimize the ability to perform the skill at the rate of success, precision, and to reduce the energy consumption required for performance. Performance is an act of executing a motor skill or task. Continuous practice of a specific motor skill will result in a greatly improved performance, which leads to motor learning. Motor learning is a relatively permanent change in the ability to perform a skill as a result of continuous practice or experience.
A fundamental movement skill is a developed ability to move the body in coordinated ways to achieve consistent performance at demanding physical tasks, such as found in sports, combat or personal locomotion, especially those unique to humans, such as ice skating, skateboarding, kayaking, or horseback riding. Movement skills generally emphasize stability, balance, and a coordinated muscular progression from prime movers (legs, hips, lower back) to secondary movers (shoulders, elbow, wrist) when conducting explosive movements, such as throwing a baseball. In most physical training, development of core musculature is a central focus. In the athletic context, fundamental movement skills draw upon human physiology and sport psychology.
Motor skills are movements and actions of the muscles. There are two major groups of motor skills:
Both gross and fine motor skills can become weakened or damaged. Some reasons for these impairments could be caused by an injury, illness, stroke, congenital deformities (an abnormal change in the size or shape of a body part at birth), [4] cerebral palsy, and developmental disabilities. Problems with the brain, spinal cord, peripheral nerves, muscles, or joints can also have an effect on these motor skills, and decrease control over them. [5]
Motor skills develop in different parts of a body along three principles:
In children, a critical period for the development of motor skills is preschool years (ages 3–5), as fundamental neuroanatomic structure shows significant development, elaboration, and myelination over the course of this period. [7] Many factors contribute to the rate that children develop their motor skills. Unless afflicted with a severe disability, children are expected to develop a wide range of basic movement abilities and motor skills around a certain age. [8] Motor development progresses in seven stages throughout an individual's life: reflexive, rudimentary, fundamental, sports skill, growth and refinement, peak performance, and regression. Development is age-related but is not age dependent. In regard to age, it is seen that typical developments are expected to attain gross motor skills used for postural control and vertical mobility by 5 years of age. [9]
There are six aspects of development:
In the childhood stages of development, gender differences can greatly influence motor skills. In the article "An Investigation of Age and Gender Differences in Preschool Children's Specific Motor Skills", girls scored significantly higher than boys on visual motor and graphomotor tasks. The results from this study suggest that girls attain manual dexterity earlier than boys. [10] Variability of results in the tests can be attributed towards the multiplicity of different assessment tools used. [11] Furthermore, gender differences in motor skills are seen to be affected by environmental factors. In essence, "parents and teachers often encourage girls to engage in [quiet] activities requiring fine motor skills, while they promote boys' participation in dynamic movement actions". [12] In the journal article "Gender Differences in Motor Skill Proficiency From Childhood to Adolescence" by Lisa Barrett, the evidence for gender-based motor skills is apparent. In general, boys are more skillful in object control and object manipulation skills. These tasks include throwing, kicking, and catching skills. These skills were tested and concluded that boys perform better with these tasks. There was no evidence for the difference in locomotor skill between the genders, but both are improved in the intervention of physical activity. Overall, the predominance of development was on balance skills (gross motor) in boys and manual skills (fine motor) in girls. [12]
Motor learning is a change, resulting from practice. It often involves improving the accuracy of movements both simple and complex as one's environment changes. Motor learning is a relatively permanent skill as the capability to respond appropriately is acquired and retained. [17]
The stages of motor learning are the cognitive phase, the associative phase, and the autonomous phase.
Motor-skill acquisition has long been defined in the scientific community as an energy-intensive form of stimulus-response (S-R) learning that results in robust neuronal modifications. [19] In 1898, Edward Thorndike proposed the law of effect, which states that the association between some action (R) and some environmental condition (S) is enhanced when the action is followed by a satisfying outcome (O). For instance, if an infant moves his right hand and left leg in just the right way, he can perform a crawling motion, thereby producing the satisfying outcome of increasing his mobility. Because of the satisfying outcome, the association between being on all fours and these particular arm and leg motions are enhanced. Further, a dissatisfying outcome weakens the S-R association. For instance, when a toddler contracts certain muscles, resulting in a painful fall, the child will decrease the association between these muscle contractions and the environmental condition of standing on two feet.[ citation needed ]
During the learning process of a motor skill, feedback is the positive or negative response that tells the learner how well the task was completed. Inherent feedback: after completing the skill, inherent feedback is the sensory information that tells the learner how well the task was completed. A basketball player will note that he or she made a mistake when the ball misses the hoop. Another example is a diver knowing that a mistake was made when the entry into the water is painful and undesirable. Augmented feedback: in contrast to inherent feedback, augmented feedback is information that supplements or "augments" the inherent feedback. For example, when a person is driving over a speed limit and is pulled over by the police. Although the car did not do any harm, the policeman gives augmented feedback to the driver in order for him to drive more safely. Another example is a private tutor for a new student in a field of study. Augmented feedback decreases the amount of time to master the motor skill and increases the performance level of the prospect. Transfer of motor skills: the gain or loss in the capability for performance in one task as a result of practice and experience on some other task. An example would be the comparison of initial skill of a tennis player and non-tennis player when playing table tennis for the first time. An example of a negative transfer is if it takes longer for a typist to adjust to a randomly assigned letter of the keyboard compared to a new typist. Retention: the performance level of a particular skill after a period of no use. [18]
The type of task can have an effect on how well the motor skill is retained after a period of non-use:
The regions of the frontal lobe responsible for motor skill include the primary motor cortex, the supplemental motor area, and the premotor cortex. The primary motor cortex is located in the precentral gyrus and is often visualized as the motor homunculus. By stimulating certain areas of the motor strip and observing where it had an effect, Penfield and Rassmussen were able to map out the motor homunculus. Areas on the body that have complex movements, such as the hands, have a bigger representation on the motor homunculus. [20]
The supplemental motor area, which is just anterior to the primary motor cortex, is involved with postural stability and adjustment as well as coordinating sequences of movement. The premotor cortex, which is just below the supplemental motor area, integrates sensory information from the posterior parietal cortex and is involved with the sensory-guided planning of movement and begins the programming of movement.[ citation needed ]
The basal ganglia are an area of the brain where gender differences in brain physiology is evident. The basal ganglia are a group of nuclei in the brain that is responsible for a variety of functions, some of which include movement. The globus pallidus and putamen are two nuclei of the basal ganglia which are both involved in motor skills. The globes pallid-us is involved with the voluntary motor movement, while the putamen is involved with motor learning. Even after controlling for the naturally larger volume of the male brain, it was found that males have a larger volume of both the globus pallidus and putamen. [21]
The cerebellum is an additional area of the brain important for motor skills. The cerebellum controls fine motor skills as well as balance and coordination. Although women tend to have better fine motor skills, the cerebellum has a larger volume in males than in females, even after correcting for the fact that males naturally have a larger brain volume. [22]
Hormones are an additional factor that contributes to gender differences in motor skill. For instance, women perform better on manual dexterity tasks during times of high estradiol and progesterone levels, as opposed to when these hormones are low such as during menstruation. [23]
An evolutionary perspective is sometimes drawn upon to explain how gender differences in motor skills may have developed, although this approach is controversial. For instance, it has been suggested that men were the hunters and provided food for the family, while women stayed at home taking care of the children and doing domestic work. [24] Some theories of human development suggest that men's tasks involved gross motor skill such as chasing after prey, throwing spears and fighting. Women, on the other hand, used their fine motor skills the most in order to handle domestic tools and accomplish other tasks that required fine motor-control. [24]
Motor learning refers broadly to changes in an organism's movements that reflect changes in the structure and function of the nervous system. Motor learning occurs over varying timescales and degrees of complexity: humans learn to walk or talk over the course of years, but continue to adjust to changes in height, weight, strength etc. over their lifetimes. Motor learning enables animals to gain new skills, and improves the smoothness and accuracy of movements, in some cases by calibrating simple movements like reflexes. Motor learning research often considers variables that contribute to motor program formation, sensitivity of error-detection processes, and strength of movement schemas. Motor learning is "relatively permanent", as the capability to respond appropriately is acquired and retained. Temporary gains in performance during practice or in response to some perturbation are often termed motor adaptation, a transient form of learning. Neuroscience research on motor learning is concerned with which parts of the brain and spinal cord represent movements and motor programs and how the nervous system processes feedback to change the connectivity and synaptic strengths. At the behavioral level, research focuses on the design and effect of the main components driving motor learning, i.e. the structure of practice and the feedback. The timing and organization of practice can influence information retention, e.g. how tasks can be subdivided and practiced, and the precise form of feedback can influence preparation, anticipation, and guidance of movement.
Muscle memory is a form of procedural memory that involves consolidating a specific motor task into memory through repetition, which has been used synonymously with motor learning. When a movement is repeated over time, the brain creates a long-term muscle memory for that task, eventually allowing it to be performed with little to no conscious effort. This process decreases the need for attention and creates maximum efficiency within the motor and memory systems. Muscle memory is found in many everyday activities that become automatic and improve with practice, such as riding bikes, driving motor vehicles, playing ball sports, typing on keyboards, entering PINs, playing musical instruments, poker, martial arts, swimming, dancing, and drawing.
Kinesthetic learning, kinaesthetic learning, or tactile learning is learning that involves physical activity. As cited by Favre (2009), Dunn and Dunn define kinesthetic learners as students who prefer whole-body movement to process new and difficult information. However, scientific studies do not support the claim that using kinesthetic modality improves learning in students identified as kinesthetic learning as their preferred learning style.
The motor cortex is the region of the cerebral cortex involved in the planning, control, and execution of voluntary movements. The motor cortex is an area of the frontal lobe located in the posterior precentral gyrus immediately anterior to the central sulcus.
Focal dystonia, also called focal task-specific dystonia, is a neurological condition that affects a muscle or group of muscles in a specific part of the body during specific activities, causing involuntary muscular contractions and abnormal postures. There are many different types of focal dystonia, each affecting a different region of the body. For example, in focal hand dystonia, or writer's cramp, the fingers either curl into the palm or extend outward without control. In musicians, the condition is called musician's focal dystonia, or simply, musician's dystonia. In sports, it may be involved in what is commonly referred to as the yips. The condition appears to be associated with over-training, and individualized treatment strategies may involve medications, retraining techniques, and procedures.
Motor control is the regulation of movements in organisms that possess a nervous system. Motor control includes conscious voluntary movements, subconscious muscle memory and involuntary reflexes, as well as instinctual taxis.
In physiology, motor coordination is the orchestrated movement of multiple body parts as required to accomplish intended actions, like walking. This coordination is achieved by adjusting kinematic and kinetic parameters associated with each body part involved in the intended movement. The modifications of these parameters typically relies on sensory feedback from one or more sensory modalities, such as proprioception and vision.
Gross motor skills are the abilities usually acquired during childhood as part of a child's motor learning. By the time they reach two years of age, almost all children are able to stand up, walk and run, walk up stairs, etc. These skills are built upon, improved and better controlled throughout early childhood, and continue in refinement throughout most of the individual's years of development into adulthood. These gross movements come from large muscle groups and whole body movement. These skills develop in a head-to-toe order. The children will typically learn head control, trunk stability, and then standing up and walking. It is shown that children exposed to outdoor play time activities will develop better gross motor skills.
Premovement neuronal activity in neurophysiological literature refers to neuronal modulations that alter the rate at which neurons fire before a subject produces movement. Through experimentation with multiple animals, predominantly monkeys, it has been shown that several regions of the brain are particularly active and involved in initiation and preparation of movement. Two specific membrane potentials, the bereitschaftspotential, or the BP, and contingent negative variation, or the CNV, play a pivotal role in premovement neuronal activity. Both have been shown to be directly involved in planning and initiating movement. Multiple factors are involved with premovement neuronal activity including motor preparation, inhibition of motor response, programming of the target of movement, closed-looped and open-looped tasks, instructed delay periods, short-lead and long-lead changes, and mirror motor neurons.
Psychomotor learning is the relationship between cognitive functions and physical movement. Psychomotor learning is demonstrated by physical skills such as movement, coordination, manipulation, dexterity, grace, strength, speed—actions which demonstrate the fine or gross motor skills, such as use of precision instruments or tools, and walking. Sports and dance are the richest realms of gross psychomotor skills.
Procedural memory is a type of implicit memory which aids the performance of particular types of tasks without conscious awareness of these previous experiences.
The primary motor cortex is a brain region that in humans is located in the dorsal portion of the frontal lobe. It is the primary region of the motor system and works in association with other motor areas including premotor cortex, the supplementary motor area, posterior parietal cortex, and several subcortical brain regions, to plan and execute voluntary movements. Primary motor cortex is defined anatomically as the region of cortex that contains large neurons known as Betz cells, which, along with other cortical neurons, send long axons down the spinal cord to synapse onto the interneuron circuitry of the spinal cord and also directly onto the alpha motor neurons in the spinal cord which connect to the muscles.
The neuroscience of music is the scientific study of brain-based mechanisms involved in the cognitive processes underlying music. These behaviours include music listening, performing, composing, reading, writing, and ancillary activities. It also is increasingly concerned with the brain basis for musical aesthetics and musical emotion. Scientists working in this field may have training in cognitive neuroscience, neurology, neuroanatomy, psychology, music theory, computer science, and other relevant fields.
Fine motor skill is the coordination of small muscles in movement with the eyes, hands and fingers. The complex levels of manual dexterity that humans exhibit can be related to the nervous system. Fine motor skills aid in the growth of intelligence and develop continuously throughout the stages of human development.
A motor program is an abstract metaphor of the central organization of movement and control of the many degrees of freedom involved in performing an action.p. 182 Signals transmitted through efferent and afferent pathways allow the central nervous system to anticipate, plan or guide movement. Evidence for the concept of motor programs include the following:p. 182
In neuroscience and motor control, the degrees of freedom problem or motor equivalence problem states that there are multiple ways for humans or animals to perform a movement in order to achieve the same goal. In other words, under normal circumstances, no simple one-to-one correspondence exists between a motor problem and a motor solution to the problem. The motor equivalence problem was first formulated by the Russian neurophysiologist Nikolai Bernstein: "It is clear that the basic difficulties for co-ordination consist precisely in the extreme abundance of degrees of freedom, with which the [nervous] centre is not at first in a position to deal."
The neuroscience of rhythm refers to the various forms of rhythm generated by the central nervous system (CNS). Nerve cells, also known as neurons in the human brain are capable of firing in specific patterns which cause oscillations. The brain possesses many different types of oscillators with different periods. Oscillators are simultaneously outputting frequencies from .02 Hz to 600 Hz. It is now well known that a computer is capable of running thousands of processes with just one high-frequency clock. Humans have many different clocks as a result of evolution. Prior organisms had no need for a fast-responding oscillator. This multi-clock system permits quick response to constantly changing sensory input while still maintaining the autonomic processes that sustain life. This method modulates and controls a great deal of bodily functions.
Neuromechanics is an interdisciplinary field that combines biomechanics and neuroscience to understand how the nervous system interacts with the skeletal and muscular systems to enable animals to move. In a motor task, like reaching for an object, neural commands are sent to motor neurons to activate a set of muscles, called muscle synergies. Given which muscles are activated and how they are connected to the skeleton, there will be a corresponding and specific movement of the body. In addition to participating in reflexes, neuromechanical process may also be shaped through motor adaptation and learning.
The bi-directional hypothesis of language and action proposes that the sensorimotor and language comprehension areas of the brain exert reciprocal influence over one another. This hypothesis argues that areas of the brain involved in movement and sensation, as well as movement itself, influence cognitive processes such as language comprehension. In addition, the reverse effect is argued, where it is proposed that language comprehension influences movement and sensation. Proponents of the bi-directional hypothesis of language and action conduct and interpret linguistic, cognitive, and movement studies within the framework of embodied cognition and embodied language processing. Embodied language developed from embodied cognition, and proposes that sensorimotor systems are not only involved in the comprehension of language, but that they are necessary for understanding the semantic meaning of words.
Interlimb coordination is the coordination of the left and right limbs. It could be classified into two types of action: bimanual coordination and hands or feet coordination. Such coordination involves various parts of the nervous system and requires a sensory feedback mechanism for the neural control of the limbs. A model can be used to visualize the basic features, the control centre of locomotor movements, and the neural control of interlimb coordination. This coordination mechanism can be altered and adapted for better performance during locomotion in adults and for the development of motor skills in infants. The adaptive feature of interlimb coordination can also be applied to the treatment for CNS damage from stroke and the Parkinson's disease in the future.
{{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: Cite journal requires |journal=
(help)